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Abstract

We study effects of using Sharpe ratio as a performance measure for compensating
money managers in a dynamic and frictionless market setting. First, we demonstrate
that with such a performance measure, the manager’s focus on the short horizon per-
formance is detrimental to the investor’s long horizon performance. Numerical exper-
iments illustrate that when returns are iid, the performance loss is significant, even
when the investor’s investment horizon is not much longer than the manager’s. When
expected returns are mean reverting, the performance loss is exacerbated. Second, we
show that Sharpe ratio maximization strategies tend to increase (decrease) the risk in
the later part of the optimization period after a bad (good) performance in the earlier
part of the optimization period. As illustrated by a simulation exercise, this prediction
is in agreement with empirical observations, and it presents a rational expectations
alternative to the prevalent tournament theory explanation.
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Jakša Cvitanić (corresponding author) is with the California Institute of Technology, Division of The Humanities and Social Sciences, M/C

228-77 Caltech 1200 E. California Blvd. Pasadena, CA 91125. E-mail: cvitanic@hss.caltech.edu; Ali Lazrak is with the Sauder School of Business

at the University of British Columbia, Vancouver, BC, V6T 1Z2, E-mail: lazrak@sauder.ubc.ca. Tan Wang is with the Sauder School of Business at

the University of British Columbia and CCFR, Vancouver, BC, V6T 1Z2, E-mail: tan.wang@sauder.ubc.ca. We would like to express our gratitude

to Murray Carlson, Murray Frank, Emmanuel Gobet, Monique Jeanblanc, Alan Kraus as well as participants at the UBC finance seminar, the Asset

Pricing and Microstructure conference IFM/HEC Montreal (2003), Bachelier World Congress Chicago (2004), NFA (2005), The workshop adavnces

in portfolio decision making Notre Dame (2007) and The bank of Canada-Rotman workshop on advances in portfolio management Toronto (2007)

for helpful discussions and comments. We are grateful to the editor and the anonymous referees for many suggestions. J. Cvitanić is grateful to
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1 Introduction

Institutional portfolio management has significantly increased over the past four decades1.

The risk-adjusted performance measurement is an important factor for fund investors when

selecting fund managers, and for deciding on the ways for compensating them. Although

introduced almost four decades ago, the Sharpe ratio (Sharpe (1966, 1994) and Modigliani

and Modigliani (1997)), is still one of the most commonly used measures of the performance

of money managers.

The aim of this paper is to report and quantify some implications of the dynamic in-

vestment strategy of a fund manager whose compensation is based on the Sharpe ratio

performance measure (for instance in form of a quarterly bonus). More specifically, we com-

pute and analyze, in a couple of different models, the portfolio strategy with the maximal

Sharpe ratio of a manager who trades dynamically in a frictionless market.

Our first implication is that the Sharpe ratio creates a tension between the short term

performance and the long term performance. This is what we call the horizon problem. To

see this, assume that there is an investor who has the maximization of the Sharpe ratio as his

objective for a given horizon. Assume that this investor invests with a mutual fund manager

who also maximizes the Sharpe ratio, but who has a shorter horizon. The horizon problem

simply points out that the manager’s and the investor’s interests are then not aligned. For

example, a strategy that maximizes the one-year Sharpe ratio for ten years, will be different

(and inferior for the overall horizon) to the strategy which maximizes the ten-year Sharpe

ratio. In order to assess the practical importance of the horizon problem, we investigate

quantitatively how much damage the interests of the long-term investor suffer in such a

situation. We study this in two different settings. One is where the returns are iid. We

show that in this setting, the difference between the optimal long-term Sharpe ratio and the

suboptimal long-term Sharpe ratio that results from maximizing short-term Sharpe ratios,

can be as large as 6% for a one-year investment horizon and over 40% for a 5-year horizon.

In the second setting, the returns follow a mean-reverting process. In this setting, there is

predictability in expected returns and long-term risk is smaller (Barberis (2000), Campbell

and Viciera (1999)). Thus, the longer investment horizon should allow the investor to take

advantage of the predictability and the smaller risk. Indeed, we show that the difference in

Sharpe ratio is even larger. For the parameters used in this paper, the difference in Sharpe

1According to the 2002 Mutual Fund Fact Book published by the Investment Company Institute, the
total mutual fund industry net assets in US have grown from 17 billion dollars in 1960 to 6.97 trillion dollars
in 2001, an over 400-fold increase. In the same period, the number of funds has increased from 361 to 8,307.
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ratios for a two-year investment horizon are more than two times larger than in the iid

environment.2

Our second implication concerns the time series behavior of the Sharpe ratio maximizing

investment strategy. We show that for a fixed horizon, say a year, the risk of the portfolio

in the second half of the year is negatively related to the performance of the portfolio in

the first half of the year. More precisely, after periods of high returns, the fund manager

has the incentive to lower the risk, while after periods of low returns, the manager has the

incentive to increase the risk. This prediction is very general: it does not require any specific

assumptions on the returns dynamics, other than a complete market. It is also consistent

with the empirical findings of Brown et al (1996) who show that the funds that have a

poor half-year performance tend to increase the risk of their positions in the second half

of the year3. They rationalize this finding with the so called ”tournament view” of fund

management. In this view, the fund managers compete with each other for the limited

investment pool of the fund investors. The empirical literature documents that the fund

investors are likely to invest in a fund which realizes a good performance at the end of the

year4. Now, since the managers’ compensation is typically proportional to the value of the

assets under management, the managers have an incentive to improve their return towards

the end of the year, often by taking unusually high risks. These incentives are even stronger

when the mid-year performance has been bad (relative to the targeted expected returns). Our

framework provides an alternative explanation for the empirical finding of Brown et al (1996):

it is consistent with a standard, rational expectations model of portfolio choice where the

managers maximize the Sharpe ratio, and it does not require the ”tournament” explanation.

To make this point concrete, we perform a numerical exercise where we assume that the

manager maximizes the one year Sharpe ratio, and simulate 3000 paths of returns from the

iid returns model. As in Brown et al (1996), we estimate the ratio of the risk exposure in

the second period of the year and the risk exposure in the first period of the year (denoted

σ2/σ1) and construct a 2 × 2 frequency table which presents the level of risk ratio (σ2/σ1)

2In the real world, it is of course difficult to identify clearly the investment horizon of the fund investors.
However, it is reasonable to argue that more established funds have a longer investment horizon than younger
funds. The result of our paper may be tested empirically along that dimension.

3There are still some mixed views on the issue: Busse (2001), argues that the result of Brown et al (1996)
may be the result of a bias in their volatility estimates. Qiu (2003), using a different data set, found that
the result of Brown et al does not hold for that data set.

4See, among others, Ippolito (1992), Berkowitz and Kotowitz (1993, 2000), Goetzmann and Peles (1997),
Chevalier and Ellison (1997), Sirri and Tufano (1998), Koski and Pontiff (1999), Huang, Wei and Yan (2004).
See also Berk and Green (2004) for a rational model of the relationship between the investment flows and
the performance.
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relative to the interim mid-year performance. The direction of our results is systematically

consistent with the Brown et al (1996) findings and the magnitude is comparable.

A substantial literature in financial economics addresses the performance measurement

issue in general, and the Sharpe ratio in particular5. According to the mean-variance theory

developed by Markowitz (1952) and the Capital Asset Pricing model developed by Sharpe

(1964) and Lintner (1965), the portfolios with the highest Sharpe ratio are mean-variance

efficient. While Sharpe ratio derives its appeal from its simplicity, its theoretical foundation

relies on several restrictive assumptions. In particular, the efficiency property of Sharpe ratio

requires either the assumption that investors have a mean-variance utility (Leland (1999),

Bernardo and Ledoit (2000)), or an assumption on the distributional properties of the returns

(for example, normal distribution). More recently, Sharpe ratio has also been studied under

conditions of non-symmetrical distributions (Leland (1999)) and in the presence of derivative

securities (Spurgin (2001) and Goetzmann, Ingersoll, Spiegel, and Welch (2002)). This recent

literature shows that when out-of-the-money options can be written, a manager can enhance

the Sharpe ratio of his portfolio by altering the tail of its return distribution. This is

possible because Sharpe ratio depends only on the first two moments of the distribution of

the portfolio return. By sacrificing the higher moments of the distribution, one can enhance

the mean-variance tradeoff and hence obtain higher Sharpe ratios. This “manipulation”

possibility presents a drawback of using the Sharpe ratio. Our work extends this literature

in two directions. First, our framework emphasizes another drawback of the Sharpe ratio

performance measure, namely the tension between the long term performance and the short

term performance. Given the high pressure that mutual fund managers experience relative

to the short term performance, the horizon problem is directly relevant for the mutual funds

investors. Second, the form of the Sharpe ratio maximizing strategies that we compute, gives

insight in how the managers would reallocate their portfolio if they wanted to manipulate

the Sharpe ratio. For instance, our results suggest that in order to duplicate the short out-

of-the-money option positions reported in Goetzmann, Ingersoll, Spiegel, and Welch (2002),

one has to use a dynamic investment strategy which induces a higher risk exposure after bad

performance.

Let us mention here that we do not model in this paper “agency” (e.g. moral hazard)

issues of delegated portfolio management, other than those arising from the difference in

the time horizons of the investors and the managers. And even for this issue, we do not

study how to reduce the inefficiencies arising from the horizon problem, we just compute

their size in different models. There is a growing literature that examines explicitly the

5See Grinblatt and Titman (1995) for a review.
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agency issues in portfolio management, and its potential asset pricing implications. That

literature typically searches for optimal contracts, or compares different types of contracts,

but there are no horizon or other timing issues. Some more recent examples include Ou-

Yang (2003a,b), Cadenillas, Cvitanić and Zapatero (2004), and Cuoco and Kaniel (2003).

As the objective of our paper is the study of the dynamic implications of the Sharpe ratio

performance measure, we focus our attention on that, and abstract from other agency issues.

In terms of the mathematical methodology for the mean-variance problems in multi-

period settings, we do not offer new insights, as the theory has been thoroughly developed in

recent years (most notably, using the theory of Backward Stochastic Differential Equations).

This literature includes among others, the following papers: Korn and Trautmann (1995),

Bajeux, Portait (1998), Li and Ng (2000), Zhou and Li (2000), Lim and Zhou (2002), Lim

(2003), Bielecki, Pliska, Jin and Zhou (2005). A textbook presentation for the case of a

single risky asset with constant parameters is available in Cvitanić and Zapatero (2004).

As it is done in part of this literature, we assume a complete market, which enables us to

use the so-called martingale approach, which is conceptually quite simple. In particular,

the approach allows us to provide semi-explicit computations for the optimal strategy in

the general complete market model (Proposition 3), and new, explicit computations in the

special case of the model with mean reversion expected returns (Proposition 6).

The rest of the paper is organized as follows. Section 2 uses a simple binomial setting

to illustrate the main economic implications of our study. Section 3 describes a continuous-

time investment environment and the definition of Sharpe ratio and then provides the general

solution to the Sharpe ratio maximization problem for different horizons. Section 4 studies

quantitatively the difference in Sharpe ratios maximized by long-run and short-run money

managers in an economy with a constant investment opportunity set. Section 5 studies the

same issue when the stock price follows a mean-reverting process. Section 6 analyzes the

time series properties of the Sharpe ratio maximizing strategies and performs a simulation

exercise. Finally, Section 7 concludes. Technical details are collected in the appendix.

2 A Simple Binomial Example

In this section, we describe in a simple four-period binomial model the basic intuition behind

our study. The mathematical form of the optimal portfolio could be obtained directly from

a general discrete multi-period framework analyzed in Li and Ng (2000), but we choose to

present this very simple example to point out the main economic insights.
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We will consider each period to be a quarter, and assume that the performance of a

portfolio is reported every six months. In this model, the long-term investor desires the

trading strategy that maximizes the Sharpe ratio of his portfolio for a one-year horizon,

while the short-term manager chooses the portfolio that maximizes the six-month Sharpe

ratio and renews the same procedure at the end of the second quarter.

Assume that each quarter the stock either increases by u = 10% or falls by d = 10% with

probabilities 60% and 40%, respectively. Let z(t) denote the corresponding random return

for quarter t (t = 1, .., 4). Assume, for simplicity, that the risk free rate is 0%.

Consider first the long-term investor with an initial wealth X(0) and the investment

horizon of four quarters. Let π(t) be the dollar amount he has invested in the stock at time

t. The wealth at time 1 is then

X(1) = π(0)z(1) + (X(0)− π(0)) = π(0)(z(1)− 1) + X(0)

and by recursion, the terminal wealth X(4) associated with the strategy π is given by

X(4) = X(0) +
4∑

t=1

(z(t)− 1)π(t− 1) (1)

The long-term investor’s objective is to choose a strategy that maximizes the Sharpe ratio

of his portfolio over the four-quarter period:

Problem 1: Choose a portfolio strategy π(t) to minimize V ar(X(4)) under the constraint

E(X(4)) ≥ X(0)(1 + b)4 where b is an arbitrary, but positive level of expected return, which

we fix at 2%.

The problem is straightforward to solve. The optimal portfolio strategy is described by

the left tree in Figure 1.

It gives the optimal portfolio weights, that is, the wealth proportion invested in the stock.

The weights depend on the past returns. More specifically, after a good realized return, the

weight decreases, while after a bad return, the weight increases. This dependence will be

crucial for the understanding of the empirical implications of the Sharpe ratio maximizing

strategy6.

The problem of the short-term manager is

Problem 2: At t = 0, choose the investment strategy (π(0), π(1)) that minimizes V ar(X(2))

under the constraint E[X(2)] ≥ X(0)(1+ b)2. Then, at t = 2, choose the investment strategy

6Technically speaking, these are Markovian strategies, whose value can be determined from the current
wealth value, but the latter indirectly depends on the past performance.
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Figure 1: The Optimal Trading Strategy for the Long-term and the Short-term horizon

The trees give the optimal portfolio weights in the stock, the left tree for the
long horizon, and the right tree for the short horizon.

(π(2), π(3)) that minimizes V ar2(X(4)) under the constraint E2[X(4)] ≥ X(2)(1+b)2, where

the variance V ar2 and the expectation E2 are conditional on the information at time t = 2.

Solving Problem 2 yields the optimal weights shown in the right tree in Figure 1. Like the

optimal long-term strategy, the optimal short-term strategy is negatively correlated with the

past returns. However, at the performance assessment date t = 2, this effect is stopped, and

then it restarts again at time t = 3, because the manager restarts his optimization problem.

We make two observations based on this example. First, the solution to Problem 1 yields

the optimal Sharpe ratio of 0.4212, while the solution to Problem 2 yields the optimal Sharpe

ratio of 0.4027. The difference in the Sharpe ratios illustrates how the incentives of the long-

term investor and of the short-term manager are not perfectly aligned, as mentioned in the

introduction. Second, the optimal trading strategies of both problems are dependent on how

good the past performance has been.

In order to illustrate the (straightforward) intuition for these effects, in Figure 2 we show

the expected returns over the remaining periods implied by the optimal trading strategy. If

the return history has been good (resp. bad) the remaining expected return is low (resp.

high). Since the long-term strategy targets a 2% annual expected return over four quarters,

a good return in the first quarter means that a lower expected return will be targeted in

the coming quarters. This implies using a strategy with a lower risk in the coming quarters,
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which, in turn, brings down the overall risk of the portfolio. Conversely, after a bad return

in the first quarter, the a higher expected return will be targeted for the following periods,

which necessarily raises the risk of the portfolio. This adjustment of the strategy according

to the past returns represents the dependence on the past performance mentioned above.

2%

1.49%

1.14%
0.88%

1.49%

2%
1.49%

2.75%

2.76%

2%
1.49%

2.75%

3.99%
2.75%

6.29%

2%

1.49%

2%
1.49%

2.75%

2%
1.49%

2.75%

2.75%

2%
1.49%

2.75%

2%
1.49%

2.75%

Figure 2: Remaining Expected Returns Implied by the Optimal Trading Strategies

The strategy which maximizes the Sharpe ratio for a given level of expected return should

be contrasted with the strategy that maximizes a CRRA utility. In iid settings, which include

the binomial model of this section, an agent with a CRRA utility would optimally set the

portfolio weights to be constant, hence, in particular, horizon-invariant (see for example

Merton (1971)). However, when the agent’s objective function is quadratic,

E[XT ]− γ

2
Var(XT ),

corresponding to the problem of maximizing Sharpe ratio, this is no longer true, as we saw

in the above example, and as we will see in the more elaborate models below. Such an

agent follows a trading strategy that is indirectly influenced by the past performance and it

depends also on the horizon, even though the investment opportunities are iid.

In the following sections, we will extend the analysis also to non-iid settings, with chang-

ing investment opportunities leading to more interesting stock holding dynamics. We will

adopt a continuous-time framework, which will give us analytical tractability and allow us

to obtain explicit solutions which are easily amenable to numerical calculations.
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3 Sharpe Ratio in a Continuous Time Setting

We begin by providing an expression for Sharpe ratio in a continuous time setting. Apart

from completeness of the market, we impose as few restrictions as possible on the financial

markets. The assumption of the market completeness is mainly for analytical convenience,

as it allows us to derive closed-form solutions. These results can also be derived from the

general theory developed in the papers mentioned at the end of the introduction.

The underlying uncertainty is modeled by the complete probability space (Ω,F , P ) en-

dowed with a filtration F = {Ft; T ≥ t ≥ 0} representing the information available to

the investor up to time T . This filtration is the usual P− augmentation of the filtration

generated by the J−dimensional Brownian motion W (t) = (W1(t), ..., WJ(t))>.

There are J risky assets (stocks) indexed by i ∈ {1, 2, · · ·, J} and a riskless asset in the

economy. The prices of these risky assets evolve according to the equations

dSi(t) = Si(t)

[
µi(t)dt +

J∑
j=1

σij(t)dWj(t)

]
, Si(0) > 0, i = 1, . . . , J, (2)

where the J-vector process µ(t) = (µ1(t), · · · , µJ(t))> represents the mean returns and the

J × J-matrix process σ(t) = {σij(t)}1≤i,j≤J represents co-variances of the returns. The

riskless asset provides a constant interest rate r. We assume that σ(t) is invertible almost

surely. Thus the market is complete. The processes µ(t), σ(t), and σ−1(t) are all assumed

to be progressively measurable with respect to F and bounded uniformly.

Let

β(t) ≡ exp {−rt} , 0 ≤ t,

and

θ(t) ≡ σ−1(t)[µ(t)− r · 1], (3)

where 1 = (1, 1, ..., 1)> is an J-vector of ones. Under the assumption made above, the process

Z(t) defined by

Z(t) = exp

(
−

∫ t

0

θ>(s)dW (s)− 1

2

∫ t

0

θ>(s)θ(s)ds

)
,

is a martingale and thus we may define the risk neutral probability measure by

dP̃ = Z(T )dP.

By Girsanov Theorem, the J-dimensional process (W̃1(t), · · ·, W̃J(t))> defined by

W̃ (t) ≡ W (t) +

∫ t

0

θ(s)ds, t ≤ T
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is a Brownian motion under P̃ . Under the risk neutral probability measure, the discounted

stock prices β(t)S(t) are martingales. Finally, we define

ξ(t) = β(t)Z(t),

which is the state-price density process.

We will assume that the objective of the manager is to maximize the Sharpe ratio of the

portfolio under his management over T years. This of course corresponds to the standard

Markowitz problem for the investment horizon T . Let x be the initial wealth under man-

agement. For simplicity, we assume that there is no additional influx or deduction of funds

from the managed portfolio.

Denote by X(t) the portfolio wealth value at time t. In other words, X(t) is the value of

a dollar invested at time zero. Denote by π(t) the vector of amounts the manager invests in

the risky assets. Then the value of the wealth evolves according to

X(t) = x +

∫ t

0

(
J∑

i=1

πi(s) (µi(t)− r) + rX(s)

)
ds +

∫ t

0

(
J∑

i,j=1

πi(s)σij(s)dWj(s)

)
. (4)

Note that the discounted wealth process satisfies

β(t)X(t) = x +

∫ t

0

(
J∑

i,j=1

β(s)πi(s)σij(s)dW̃j(s)

)
, (5)

under the risk neutral measure. Thus, βX is a P̃−martingale under mild regularity condi-

tions. By definition, the set A(x) of admissible strategies consists of those portfolio processes

π for which βX is a P̃− martingale satisfying (5).

More formally, the objective of the manager is to minimize

V ar(X(T )) (6)

subject to

E (X(T )) = xebT , (7)

and to equation (4), where b > r is an arbitrary, but fixed annualized expected return and

X(T ) is the portfolio value at time T .7

7As mentioned in Introduction, the minimization problem (6) is the multi-period mean-variance problem
studied in a number of papers in the mathematical finance literature (Korn and Trautmann (1995), Bajeux,
Portait (1998), Li and Ng (2000), Zhou and Li (2000), Lim and Zhou (2002), Lim (2003), Bielecki, Pliska,
Jin and Zhou (2005) among others). These papers develop a comprehensive theory for the problem and some
of them provide closed form expressions for the optimal trading strategy in particular contexts. While the
focus of this paper is different, we do add a contribution to this literature by solving for the optimal trading
strategy when returns are mean reverting.
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In the real world, different funds may have different investment horizons, which may

also differ from the horizon of the performance measurement period. For example, a typ-

ical performance measurement period is one year, while a more established fund may care

more about the long run average performance and pay less attention to the year by year

performance.8 We consider two types of funds, a short-run fund and a long-run fund. Let

T denote the horizon in years of the long-run fund and XL(T ) its wealth at time T . We

will assume that the investment horizon of the short-run fund coincides with that of the

performance measurement period, τ . This enables us to interpret the short-run fund as the

fund which is completely aligned with the interests of the manager who cares only about the

next performance measurement.

Let N = T /τ , assumed to be an integer, for simplicity. At the beginning of every quarter

Tn, the short-run manager’s investment objective is

inf
π∈A(XS(Tn))

V arTn(XS(Tn+1)) ≡ E
[
(XS(Tn+1)− E [XS(Tn+1)|FTn ])2 |FTn

]
(8)

subject to

E [XS(Tn+1)|FTn ] = XS(Tn)ebτ , (9)

where XS(Tn) is the portfolio wealth at time Tn and A(XS(Tn)) is the set of feasible invest-

ment strategies for the time period (Tn, Tn+1).

Note that while the objectives of both the short-run and long-run managers are the

maximization of Sharpe ratio, the investment horizons differ, one being T years and the

other being τ . The following proposition provides the general expression of the maximal

Sharpe ratio for an investment horizon T , and versions of this result are available in the

literature mentioned at the end of Introduction and in Footnote 7.

Proposition 1 Let x be the initial value of the fund. Denote

Λ(t, s) = E[(Z(s)/Z(t))2|Ft] =
E[Z2(s)|Ft]

Z2(t)
.

Then the maximum value of Sharpe ratio

ST =
x(ebT − erT )√
V ar(X(T ))

8As indicated in Introduction, and illustrated by results in this section and later sections, the best expected
year-by-year performance may not give the best expected performance over a longer horizon, in terms of
Sharpe ratio.
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for investment horizon T is given by 9

ST =
√

Λ(0, T )− 1.

In particular, this maximum Sharpe ratio is independent of b.

Denote by

SL =
x(ebT − erT )√
V ar(XL(T ))

≡
√

Λ(0, T )− 1

the maximum long-run Sharpe ratio. The short-run manager maximizes the τ -year Sharpe

ratio. Thus if XS(Tn) is the value of the fund after n periods at the beginning of the nτ

year, then the value of the fund after another period will be XS(Tn+1) where XS(Tn+1) is the

result of the optimization problem (8). Let XS(T ) be the value of the fund at time T = TN

as the result of period by period Sharpe ratio maximization by the short-run fund manager.

In other words, XS(T ) is the wealth of an investor’s who invest x at time zero, has the long

horizon T , but whose portfolio is managed by the short-term manager. As we will verify in

the proof of Corollary 2, the short-term manager achieves the return b on the long horizon,

that is, E (XS(T )) = xebT , so that the Sharpe ratio of the short term manager on the long

horizon is given by

SS ≡ x(ebT − erT )

√
V ar(XS(T ))

Since SL maximizes Sharpe ratio on the long horizon, it is to be expected that SL ≥ SS. In

fact, since SL is independent of b, we have SL ≥ SS, no matter what target b the short-run

manager has. Thus, we have the following result:

Corollary 2 Assume that the short-run manager sets an arbitrary, but fixed expected target

return b > r for all periods. If N > 1, then the risk of the portfolio managed by the short-run

manager is higher than that of the long-run manager, no matter what the value of b > r is.

That is, V ar(XS(T )) ≥ V ar(XL(T )), and, consequently, SL ≥ SS, for all b > r.

Thus, the optimal Sharpe ratio that can be achieved on a long horizon T is always at

least as high than that of the Sharpe ratio achieved by a short-run manager, no matter

what the value of the targeted return is (actually, as we illustrate below, it is usually strictly

higher). A prediction of this corollary is that the funds with longer measurement periods

will have higher long-run Sharpe ratios than the funds with shorter measurement periods.

9As shown in the appendix, Sharpe ratio is equal to
√

Λ(0, T )− 1 also with a stochastic price of risk
process θ.
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We now analyze the optimal trading strategies. The following result is an easy conse-

quence of expression (28) in the appendix.

Proposition 3 The optimal trading strategy of the long-run manager is given by,

πL(t) = x

[(
ebT −

(
ebT − erT )

Λ(0, T )− 1

)
e−r(T −t) − XL(t)

x

]
(
σ>(t)

)−1
D(t), (10)

where D(t) is a process which is independent of preferences and which is defined in the

appendix. Similarly, let XS(Tn) be the value of the fund managed by the short-run manager

at time Tn as the result of the minimization in (8). Then, for n = 0, . . . , N−1, t ∈ [Tn, Tn+1)

πS(t) = XS(Tn)

[(
ebτ −

(
ebτ − erτ

)

Λ(Tn, Tn+1)− 1

)
e−r(Tn+1−t) − XS(t)

XS(Tn)

]
(
σ>(t)

)−1
Dn(t), (11)

where Dn(t) is a preference free process given in the appendix.

Proposition 3 formalizes how the the Sharpe ratio maximizing trading strategy depends

on the past performance. As seen in equations (10) and (11), the optimal trading strategy

depends on X(t) (even when divided by X(t), unlike the optimal CRRA strategies) and

hence it depends indirectly also on the past history of the stocks returns.

Note that in this section we have not made any specific assumptions about the functional

form of σ(t) and µ(t). In particular, they both can be history dependent. In the following

sections, we will make more specific assumptions about µ(t) and σ(t) in order to study

quantitatively the potential impact of the horizon problem on Sharpe ratios as well as the

implications of the investor’s/managers stocks holdings.

4 Horizon Problem in the IID Environment

In this section, we study, as a benchmark, the simple case where the investment opportunity

set is constant (the constant coefficients model). This continuous-time model corresponds

exactly to the binomial model in Section 2. It illustrates further, in the continuous time

setting, the basic observation from Section 2, how the two Sharpe ratios, SL and SS differ.

It will also provide results on how significant the difference is quantitatively. The following

proposition expresses the optimal strategy in terms of current wealth.
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Proposition 4 Assume µ(t) = µ is a constant vector and σ(t) = σ is a constant invertible

matrix. The optimal strategy of the long-run manager is given by,

πL(t) = x

(
e(b−r+θ2)T − 1

eθ2T − 1
ert − XL(t)

x

)
(
σ>

)−1
θ. (12)

The trading strategy used by the short-run manager is given by, for t ∈ [Tn, Tn+1), n = 0,

. . . , N − 1,

πS(t) = XS(Tn)

(
e(b−r+θ2)τ − 1

eθ2τ − 1
er(t−Tn) − XS(t)

XS(Tn)

)
(
σ>

)−1
θ. (13)

The time t conditional expected return and conditional variance of the strategy initiated at

t = 0 by the long-run manager with horizon T are given by

E

[
XL(T )

XL(t)
|Ft

]
= er(T −t)e−θ2(T −t) +

x

XL(t)

(
ebT +

ebT − erT

eθ2T − 1

) (
1− e−θ2(T −t)

)
(14)

and

var

[
XL(T )

XL(t)
|Ft

]
= e−θ2(T −t)

(
1− e−θ2(T −t)

) [
x

XL(t)

(
ebT +

ebT − erT

eθ2T − 1

)
− er(T −t)

]2

, (15)

where θ = σ−1(µ− r) and θ2 is defined as θ>θ.

Proposition 4 shows that the Sharpe ratio maximizing dynamic portfolio strategy in an

iid return environment has the following property: the amount invested in the risky assets

decreases after good performance and vise versa. From the equations (14)-(15) , we see

that an implication of this property is that when past returns are low (high), the targeted

expected return is high (low) and the associated variance is high (low). This is a more

general formulation of the intuition illustrated in the example in Section 2.

The following proposition is obtained by straightforward computations.

Proposition 5 If µ(t) = µ is a constant vector and σ(t) = σ is a constant invertible matrix,

then

SL =
√

eθ2T − 1, (16)

and

SS =
ebT − erT

√[
e2bτ + (ebτ−erτ )2

eθ2τ−1

]N

− e2bT
(17)

where θ = σ−1(µ− r) and θ2 is defined as θ>θ. In particular, SL > SS for N > 1.
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It is worthwhile to note that for a fixed horizon, when the short-term horizon becomes

arbitrarily small (i.e, when N = ∞ and T < ∞), the optimal Sharpe ratio of the short-term

manager converges to a constant,

lim
N↑∞

SS =
1− e−(b−r)T

√
e

(b−r)2

θ2 T − 1

.

In particular, in the limit, the manager’s trading strategy maximizes the instantaneous

Sharpe ratio. In this case, the manager’s investment behavior is in fact consistent with

that of a particular CRRA utility maximizer. 10 Moreover, since, for a given time horizon,

the optimal Sharpe ratio does not depend on the expected return b, as is seen from (16),

the manager who wants to maximize the instantaneous Sharpe ratio can use the optimal

portfolio of any CRRA utility maximizer (Merton (1971)).

In order to get a sense of how significant the difference SL − SS can be quantitatively,

we calibrate the model to a set of parameters broadly consistent with the market data

under the iid assumption. We take r = 3%. We assume that there is a single stock with

the volatility σ = 20% and the mean µ = 10%, resulting in θ = 0.35. We set τ to be a

quarter, in agreement with quarterly return reports. Using such a short period will highlight

the quantitative importance of the potential difference in Sharpe ratios due to the different

investment horizons. We perform the calibration for three levels of b: 6%, 10% and 14%. The

results are reported in Table 1. The three panels in Table 1 correspond to the three levels

of b. The main message of the table can be seen across columns within each panel. We see

that SL increases as the investment horizon increases, which is not always true for SS. For

example, in panels two and three, SS first rises and then falls. Quantitatively, the difference

between SL and SS is alarmingly large. Even with the one year investment horizon of the

investor, the difference ranges from 3.7% to 8.5% across the three panels. With a longer

investment horizon, say 5 years, the difference can be as big as 68%. Since both the trading

strategy followed by the long-run manager and the strategy used by the short-run manager

10The intuition behind this result is that when the managers measurement period is arbitrarily small, they
are facing a stationary problem. Consequently, they use the same portfolio proportion over time, consistent
with power utility maximization. To establish the result mathematically, one must compute the limit of (13)
when the interval [Tn, Tn+1] becomes small. In the single asset case this limit will give

πS(t)
X(t)

=
b− r

θ2

1
σ

θ.

This is the same as the optimal strategy for an agent with power utility u(c) = c1−γ

1−γ where γ =
(

b−r
θ2

)−1
.

In fact, there is a one-to-one mapping between the set of optimal portfolios for a power utility maximizers
(indexed by the relative risk aversion parameter γ) and the set of the “instanteneous” Sharpe ratio maximizers
(indexed by the targeted expected return b).
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produce the same expected return b, the difference in SL and SS corresponds exactly to that

in the risk of the two portfolios. For example, for a one-year horizon, the risk of the portfolio

managed by the short-run manager is 3.7% higher than that of the long-run portfolio, when

b = 6%.

5 Horizon Problem in a Mean-Reverting Environment

In the previous section, we studied the Sharpe ratio maximizing portfolio strategies as well

as the associated horizon problem in the context of an iid investment opportunity set. In

this section, we assume a more realistic investment environment, one in which the expected

stock returns follow a mean-reverting process. There is a significant literature that shows

that in a mean-reverting environment, investors with a short investment horizon exhibit

a “trend chasing” behavior while those with a long investment horizon tend to hold more

stocks (Barberis (2000), Watcher (2002)). By trend chasing or ”momentum” strategies, we

mean buying stocks that have been performing well, and selling stocks that have had low

returns. In this section, we study whether such behavior may be consistent with maximizing

Sharpe ratios, and whether the changing investment opportunity set has a quantitative effect

on the difference of the Sharpe ratios of the long-run manager and the short-run manager.

In the previous section, Sharpe ratios SL and SS depend only on b, r and θ2. The fact that

there are more than one risky assets is not crucial. This motivates us to make a simplifying

assumption in this section that there is only one stock (perhaps an index). We consider a

model similar to Wachter (2002). The stock price process is given by,

dS(t)

S(t)
= (r + σθ(t))dt + σdW (t), (18)

where θ(t) is the price of risk, r and σ are riskless rate and volatility of the stock return,

respectively. We assume that both r and σ are constant and that the price of risk θ(t) follows

a mean-reverting process.

dθ(t) = −λ(θ(t)− θ)dt− σθdW (t), θ(0) > 0, (19)

where λ, θ, σθ are given fixed parameters. In particular, the stock price process is negatively

correlated with the price of risk process. For technical reasons, we assume λ > (2 +
√

2)σθ.

The basic reason behind this assumption is that if λ is too small relative to σθ, the force for

mean-reversion would be too weak and the movement of θ(t) would be mainly determined

by the random shocks coming from σθdW (t).
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Proposition 6 The trading strategy of the long-run manager is given by

πL(t) =
x

σ

[(
e(b−r)T +

(e(b−r)T − 1)

Λ(T , θ(0))− 1

)
ert − XL(t)

x

]
((1 + A(T − t)σθ)θ(t) + B(T − t)σθ) ,

(20)

where11

Λ(T , θ) = exp

[
A(T )

θ2

2
+ B(T )θ + C(T )

]
,

and the expressions for A(t), B(t) and C(t) can be found in the appendix. The Sharpe ratio

is given by

SL =
√

Λ(T , θ(0))− 1.

It is interesting to contrast the optimal stock holdings in the mean-reverting case with

that in the iid case given in equation (12). We know from the previous section that in the iid

case, the investor’s strategy has a reversal feature. That is, when the portfolio has done well,

other things being equal, the holdings of the risky asset tend to be reduced, and vice-versa.

In the mean reverting case, we cannot say that the long-run manager always follows the

reversal strategy12. In fact, there is an additional force, the price of risk (θ), that is at work

in the mean reverting context. The equation (20) says that when θ(t) is high, the holding

of the stock is high (the term in the bracket on the right-hand side of expression (20) is

always positive and A(t) > 0 as shown in the appendix). The intuition is that, because

θ(t) is mean-reverting, when θ(t) is high, it is likely to fall in the future, as is the expected

return on the stock. Then the long-run manager should hold more of the stock today, other

things being equal. However, despite this additional force, the investor’s strategy with mean

reverting returns does have the reversal feature when the model is calibrated along the lines

of Wachter (2002) .

For the short-run manager, we have

Proposition 7 The trading strategy of the short-run manager is given by, for t ∈ [Tn, Tn+1),

n = 0, . . . , N − 1,

πS(t) =
XS(Tn)

σ

[(
e(b−r)τ +

(e(b−r)τ − 1)

Λ(τ, θ(Tn))− 1

)
er(t−Tn) − XS(t)

XS(Tn)

]

× ((1 + A(Tn+1 − t)σθ)θ(t) + B(Tn+1 − t)σθ) . (21)

11Here, for simplicity, we abuse the notation a bit by writing Λ(t, T ) = Λ(T − t, θ(t)). This is justified
because parameters in (18) and (19) are time invariant, and θ(t) is the only state variable.

12Our numerical computations indicate that when the risk premia is negative and the investment horizon
is small, it may be optimal for the investor to adopt a momentum strategy. That is, if the risky asset has
performed well, increase the investment therein, and vice-versa.
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The conditional instantaneous variance of the optimally managed portfolio is

1

σ2

[
XS(Tn)

XS(t)

(
e(b−r)τ +

(e(b−r)τ − 1)

Λ(τ, θ(Tn))− 1

)
er(t−Tn) − 1

]2

× ((1 + A(Tn+1 − t)σθ)θ(t) + B(Tn+1 − t)σθ)
2 . (22)

To assess quantitatively the importance of a changing investment environment relative

to the iid environment studied in Section 4, we calibrate the model parameters to those in

Watcher (2002). The results are reported in the first three panels of Table 2. It is seen that,

while SL/SS − 1 depends on the initial θ0, it is always significantly different from zero. For

example, for θ0 = 0.1 and with a one-year horizon, SL/SS − 1 = 1.0574.

We mentioned above that in a mean-reverting environment the difference in Sharpe ratios

is expected to be larger than in an iid environment. Indeed, in all cases (the first three

panels), the values of SL/SS−1 are significantly larger than those reported in the first panel

of Table 1.13 It should be noted, however, that the cases studied in the first four panels in

Table 2 are not directly comparable to the iid environment because in the iid environment the

expected returns of the risky assets are constant while in the mean-reverting environment

the expected returns are time-varying. To make the comparison as close as possible, we

considered an iid environment where the expected return of the risky asset is equal to the

long-run expected return of (18). That is, we set θ(t) to its long-run average θ̄ and set

σθ = 0. We then considered a mean-reverting environment with θ0 = θ̄. Thus, at time zero,

in these two environments the stock has the same expected return. As time progresses, the

expected returns start to deviate, but they still have the same long-run average. The result

is reported in the last two panels of Table 2. Again, the Sharpe ratios differ. For example,

at one year horizon, SL/SS − 1 = 0.0753 in the iid environment, but SL/SS − 1 = 1.2659

in the mean-reverting environment. Moreover, as the horizon becomes longer, the difference

becomes bigger. For example, the ratio of SL/SS − 1 for the 5-year horizon to that for the

one-year horizon in the iid environment is 0.6328/0.0753 = 8.4, while that in the mean-

reverting environment is 42.6018/1.2659 = 33.7. Intuitively, this is due to the fact that the

long-run risk in a mean-reverting environment is lower.

It is also worth noting that for both the long-run and the short-run managers, ignoring

the predictability (the mean-reversion) will lead to an economically significant error in the

Sharpe ratio measurement especially for long horizons. For instance, for a five-year horizon,

ignoring the mean reversion will underestimate the investor’s Sharpe ratio. The intuition

behind this result is the following: since returns are mean reverting, the cumulative variance

13In the calculation of Table 2, we have assumed that b = 6%.
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of the return shocks at long horizons grows less than linearly with the horizon T . On the

other hand, when the returns are iid , the cumulative returns variance grows linearly with

T and consequently the Sharpe ratio is lower than in the mean reverting case.

6 Time Series Properties of the Optimal Strategy

We consider again the general model (2). The following proposition is a corollary of Propo-

sition 3 that focuses on the risk of the trading strategy. We have already obtained analogous

results for the special models of the previous sections.

Proposition 8 At any intermediate time t ∈ (0, T ), the Sharpe ratio maximizing strategy

initiated at time t = 0 by the manager with horizon T generates the conditional expected

return

E

[
XL(T )

XL(t)
|Ft

]
=

er(T −t)

Λ(t, T )
+

x

XL(t)

(
ebT +

ebT − erT

Λ(0, T )− 1

)(
1− 1

Λ(t, T )

)
(23)

and the conditional variance

var

[
XL(T )

XL(t)
|Ft

]
=

1

Λ(t, T )

(
1− 1

Λ(t, T )

)[
x

XL(t)

(
ebT +

ebT − erT

Λ(0, T )− 1

)
− er(T −t)

]2

. (24)

This proposition shows that the risk of the Sharpe ratio maximizing portfolio over the

interval [t, T ] depends on XL(t)/x. If the portfolio performed well in the past so that

XL(t)/x is large, then the manager will lower the risk of the portfolio over [t, T ].14 This

type of behavior is sometimes labeled “risk manipulation” in the performance literature,

e.g. Brown et al (1996), Chevalier and Ellison (1997). The explanation offered by those

papers for such behavior is largely based on the tournament theory, that is, on the fact

that funds compete for a limited pool of investment money. Here, we have shown that

similar behavior is also implied by a standard portfolio choice model, as the trading strategy

which maximizes Sharpe ratio exhibits the “risk manipulation” properties. Note that the

proposition is established without any specific assumptions on the return dynamics, and thus

the “risk manipulation” feature appears to be a fundamental implication of the Sharpe ratio

maximization.

In order to get a sense of the prediction’s magnitude in our model, we did a simple

simulation exercise. Using a dataset of monthly returns of growth-oriented mutual funds

14It can be shown using the results in the appendix that the expression in the square bracket in equation
(24) is always positive, and we also have, by Jensen’s inequality, Λ(t, T ) > 1.
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between 1980 and 1991, Brown et al (1996) documented that the managers risk behavior

depends on the realized performance. More specifically, one of the exercises that Brown et

al (1996) performed is to test if the fund’s relative performance in the first six months of

the year explains the change of the fund’s volatility in the second part of the year. For that

purpose, they construct two variables. First, for each year during the sample period, the

6-months cumulative return variable for each fund j is defined by

Rj = (1 + r1,j)(1 + r2,j)...(1 + r6,j)− 1

In the above notation, ri,j represents the rate of return of the fund j during the month i. For

each year, the sample of funds is divided into two subsets, the “losers” and the “winners”

according to the ranking of the fund with respect to the variable R (see the explanations in

Table 3). Second, Brown et al (1996) constructed the “risk adjustment ratio” variable RAR

to assess the risk behavior of each fund. For each year, the variable RAR for the the fund j

is defined by

RARj =

√∑12
i=7(ri−r7,12)2

5√∑6
i=1(ri−r1,6)2

5

where r1,6 (resp. r7,12) represent the rate of return over the first (resp. last) six months of a

given year. For each year, each sub-sample (formed on the basis of “R”) is in turn divided

into two sub-samples, “high RAR” and “low RAR”, where high and low are defined relative

to the median RAR in the cross section of funds within the same year.

Brown et al (1996) construct a 2 × 2 contingency table according to the variable R

(“losers/winners”) and the variable RAR. They show that the ratio RAR is larger for the

loser funds subset than for the winner funds subset. In the base case scenario, their findings

are reported in Table 3 in the line labeled BHS. Our exercise simply consists of reproducing

the 2 × 2 contingency table in the context of a simulated sample of 3000 fictitious funds15

which maximize the one year Sharpe ratio with expected returns b = 8.3%, b = 9%, b = 13%,

b = 16%, b = 20% and b = 25%. We assume that the fund manager uses one risky asset,

called index, and a risk-free asset, and that the index returns are iid. We calibrate the

parameters (µ, σ, r) with the 3 months US treasury bills and an US value-weighted index.

We use monthly returns from the Kenneth French’s web site16. The results of the simulation

15The size of the sample roughly matches the Brown et al (1996) size which is around 334 funds for 12
years.

16http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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exercise are systematically17 consistent with the theoretical predictions of Proposition 8 that

is, the ratio RAR is lower for the “winner” funds. The effect is actually higher than the

empirical results, possibly due to the choice of the iid model and the specific calibration

we employ, or because the Sharpe ratio maximization is only one factor in the investment

strategy of the considered funds. Nevertheless, the simulation results seem to provide a

correct order of magnitude for the frequency of the funds exhibiting the “risk manipulation”

behavior.

7 Conclusion

In this paper, we study a multi-period framework in which a portfolio manager with a short-

term horizon maximizes, over a long horizon, the Sharpe ratio of the managed portfolio. Two

implications we found should be of interest to the literature on fund management. The first

implication is that the strategy of maximizing the short-term Sharpe ratio can result in a

significant loss of performance for investors who care about the long-term Sharpe ratio. The

second implication is that the trading strategy that maximizes Sharpe ratio exhibits the risk

manipulation features documented in the literature (e.g., Brown et al (1996), and Chevalier

and Ellison (1997)) within the measurement period. That is, the funds that perform poorly

in the first half of the performance measurement period tend to increase their risk in the

second half, and vice-versa.

This second implication suggests that the ”risk manipulation” behavior documented in

the literature is not necessarily due to the funds’ managers caring about attracting new

investments in the following year, while competing with other funds for those investments.

In fact, the observed behavior is consistent with the prediction of our more standard portfolio

choice model, in which the manager maximizes the short-term Sharpe ratio. The existing

empirical studies of the risk manipulation behavior are mostly based on the former, so-

called tournament view of investment, but our findings show that such behavior may have

alternative explanations. It would be of considerable interest to conduct further empirical

studies to test which, if either, of the two theoretical explanations is more valid.

Finally, an important practical question is whether there are simple and natural perfor-

mance measures other than the Sharpe ratio, that could be used for managers’ compensation,

and which would make the interests of the managers and the investors of differing horizons

17We tried various sample sizes (3000, 5000, 10000) as well as other parameters for (µ, σ, r). The results
always have the same direction and we can fit closer the BHS empirical findings if we give ourselves the
freedom to pick those parameters.
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more closely aligned. At the broader level, it would be interesting to study the welfare im-

plications of the Sharpe ratio performance measure, for example in the terms of expected

utility. For instance, a long-run investor with a CRRA utility may be better off investing

with a short-run than with a long-run Sharpe ratio maximizer, depending on the model and

the parameters. We leave this task for future research.
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A Appendix

Proof of Proposition 1: We provide a detailed proof for completeness, although there are

proofs available in the literature mentioned at the end of Introduction.

First let us define for each λ > 0 and d > 0 an unconstrained version of the problem (6),

inf
π∈A(x)

E
[
(X(T )− d)2 + λ (X(T )− d)

]
, (25)

which we will solve by duality. Define the convex function

R(x) = (x− d)2 + λ (x− d) ,

and its dual function R̃ defined for each y ∈ R by

R̃(y) ≡ inf
x

(R(x)− yx) = R

(
d +

1

2
(y − λ)

)
− y

(
d +

1

2
(y − λ)

)
.

Now, for all x, y ∈ R and π ∈ A(x),

R (X(T )) ≥ R̃ (yξ(T )) + yξ(T )X(T ). (26)

In particular, if we take expectations in (26) we get for all x, y ∈ R and π ∈ A(x), by

definition of A(x),

E [R (X(T ))] ≥ E
[
R̃ (yξ(T )) + yx

]
.

This gives a lower bound for E [R (X(T ))], which is attained if we choose a portfolio π̂ so

that the associated terminal wealth is

X̂(T ) = d +
1

2
(yξ(T )− λ).

Such a portfolio exists if we choose y so that E[ξ(T )X̂(T )] = x (see Karatzas and Shreve

(1998)). This is satisfied if

y = 2 (x− E(ξ(T )(d− λ/2))) /E(ξ2(T )). (27)

To recap, the optimal terminal wealth of the unconstrained problem (25) is X̂(T ) and

the value function is given by

V (λ, x, d) =
(x− E(ξ(T )(d− λ/2)))2

E(ξ2(T ))
− λ2

4
.
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It can easily be verified that the objective function in the problem (6) is a convex function

of π. Additionally, the constraint in the problem (6) is linear and therefore the subset of

A(x) that satisfies this constraint is convex. Therefore, from Luenberger (1979), we know

that the value function of the constrained problem (6) is

V (x) = max
λ

V (λ, x, xebT ),

and one can easily check that the optimum is attained by

λ∗ = 2x
E(ξ(T ))

V ar(ξ(T ))
(1− ebT E(ξ(T ))).

After a substitution in equation (27) we have

y∗ = 2x
1

V ar(ξ(T ))
(1− ebT E(ξ(T ))).

Furthermore, from Luenberger (1979) the optimal terminal wealth of the unconstrained

problem (6) is

X∗(T ) = xebT − x
ebT E(ξ(T ))− 1

V ar(ξ(T ))
(ξ(T )− E(ξ(T ))). (28)

Now, it is easy to check that

V ar (X∗(T )) = x2 E2(ξ(T ))

V ar(ξ(T ))

(
ebT − 1

E(ξ(T )

)2

,

and therefore the efficient frontier in the portfolio diagram is a straight line defined by

σ = x
E(ξ(T ))√
V ar(ξ(T ))

| ebT − 1

E(ξ(T ))
| .

Thus, the Sharpe ratio of the optimal portfolio is given by

S ≡
| E (X∗(T ))− x

E(ξ(T ))
|

√
V ar(X∗(T ))

=

√
V ar(ξ(T ))

E(ξ(T ))
=

√
V ar(Z(T ))

E(Z(T ))
=

√
V ar(Z(T )) =

√
Λ(0, T )− 1.

Note finally, that the results of the current section are quite general and do not necessitate

any assumptions on the investment opportunity set other than market completeness.

Proof of Corollary 2: We denote by Xb
S the wealth for the short-run manager when the

expected return is b > r and Xb
L the wealth for the long-run manager when the expected

return is b > r.18 By taking the successive conditional expectations of the constraint (9)

E
[
Xb

S(T )|FTN−1

]
= Xb

S(TN−1)e
bτ ,

18This notation is only adopted for this proof.
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with respect to the sequence of the sigma algebras FTn , n = N − 1, N − 2, ..., 0, one can get

E
[
Xb

S(T )
]

= xebT ,

and hence the short-run manager’s optimal strategy leads to a terminal wealth satisfying the

long-run constraint (7). Therefore, var(Xb
S(T )) ≥ var(Xb

L(T )). Consequently, Sharpe ratio

of the long-run manager Sb
L is at least as high as Sharpe ratio of the short-run manager Sb

S.

However, Proposition 1 shows that the Sharpe ratio of the long-run manager is independent

from the expected return and consequently, the inequality

SL ≥ SS

holds for all b > r.

Proof of Proposition 3: Under our assumption of bounded θ the process

N(t) ≡ E
[
Z(T )2 | Ft

]

is a positive martingale and thus it must admit the representation

N(t) = N0 +

∫ t

0

N(s)φ>(s)dW (s),

for a suitable adapted process φ. On the other hand, Λ(t, T ) = N(t)/Z(t)2 and thus by Ito’s

Lemma

dΛ(t, T ) = [..]dt + Λ(t, T ) (φ(t) + 2θ(t))> dW (t).

Now, under the assumption of constant interest rates, the wealth equation (28) translates

into

X∗(T ) = xebT − x
ebT − erT

Λ(0, T )− 1
(Z(T )− 1), (29)

and by the assumption of no arbitrage, the deflated wealth must be a martingale, that is,

X∗(t) = Et

(
ξ(T )

ξ(t)
X∗(T )

)
= xe−r(T−t)

[
ebT − ebT − erT

Λ(0, T )− 1
(Λ(t, T )Z(t)− 1)

]
. (30)

Differentiating the above expression gives the martingale part of the wealth differential

dX∗(t) = [..]dt− xe−r(T−t)

[
ebT − erT

Λ(0, T )− 1

]
Z(t)Λ(t, T ) (φ(t) + θ(t))> dW (t).

Now identifying the above expression with the wealth dynamic (4), which translates to

dX(t) = rX(t)dt + π>(t)
[
σ−1(t)θ(t)dt + σ(t)dW (t)

]
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in vector notation, gives the first best optimal strategy in term of the processes Z, Λ, φ

and θ. In order to get the expression in equation (10), we just substitute Z(t)Λ(t, T ) by its

expression in term of the optimal wealth from equation (30) and define the process D as

D(t) ≡ −φ(t)− θ(t).

To get the manager strategy in equation (11), one just need to specialize the investor strategy

with appropriate adjustments for the horizon and the wealth.

Proof of Proposition 8: To establish the expression (23), one must first compute the

conditional expectation of (29) to obtain

E[XL(T )|Ft] = xebT − x
ebT − erT

Λ(0, T )− 1
(Z(t)− 1),

Substituting, the current wealth given in the expression (30) (with T = T ) in the above

expectation gives the expression (23). A similar method gives the return conditional variance

(24). Notice that the conditional Sharpe ratio can be easily derived from (23)− (24) and it

is given by

St,T =
√

Λ(t, T )− 1. (31)

Proof of Proposition 5 : In the iid case, a Girsanov transformation gives the expression

Λ(0, T ) = eθ2T and thus (16) is implied by Proposition 1. To get (17), one need to substitute

the expression of Λ in (11) and get

XS(T ) = x

N−1∏
n=0

[
ebτ −

(
ebτ − erτ

)

eθ2τ − 1

(
Z(Tn+1)

Z(Tn)
− 1

)]
.

In particular, noticing that Z(Tn+1)/Z(Tn), n = 0, ..., N − 1 are mutually independent one

can get,

E(XS(T ))2 = x2

N−1∏
n=0

[
e2bτ +

(
ebτ − erτ

)2

(eθ2τ − 1)
2 E

(
Z(Tn+1)

Z(Tn)
− 1

)2
]

(32)

= x2

[
e2bτ +

(
ebτ − erτ

)2

eθ2τ − 1

]N

. (33)

Thus,

Var(XS(T )) = x2




(
e2bτ +

(
ebτ − erτ

)2

eθ2τ − 1

)N

− e2bT



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and (17) obtains.

Proof of Propositions 4 : In the iid case, it can be calculate that

Λ(t, T ) = exp
(
θ2(T − t)

)
, E[Z(T )2|Ft] = Z(t)2 exp

(
θ2(T − t)

)

and thus D(t) defined in the proof of Proposition 3 is equal to θ.

Proof of Proposition 6 : Obviously, the mean reverting model fits in the class of models

studied in the first section and to prove Proposition 6, we first need to compute the quantity

Λ(T − t, θ(t)) ≡ E

[(
Z(T )

Z(t)

)2

| Ft

]

in the context of this model and apply Proposition 1 to get the expression of the maximal

Sharpe artio. Note that we use here the abuse of notation, Λ(t, T, θ(t)) = Λ(T − t, θ(t))

legitimated by the fact the model parameters in (18) and (19) are time invariant. Then, to

compute the first best optimal strategy, one need to compute the optimal wealth process

and then identify its martingale part with the wealth dynamic (4). This part of the proof

is very similar to the iid case (except that the Ito computations are more involved) and we

omit it.

The following lemma provides the expression of Λ.

Lemma 9 : Under the assumption λ∗2−2σ2
θ > 0, where we recall λ∗ = λ−2σθ the function

Λ has the closed form expression

Λ(T − t, θ(t)) = exp

[
A(T − t)

θ2(t)

2
+ B(T − t)θ(t) + C(T − t)

]
(34)

where

A(u) =
λ∗

σ2
θ

+
β

σ2
θ

αe−2βu + 1

αe−2βu − 1

B(u) = −λ∗θ
∗

σ2
θ

+
2θ
∗

β

(1 + α)e−βu

αe−2βu − 1
− 2θ

∗

β

(
1 +

β2

2σ2
θ

)
αe−2βu + 1

αe−2βu − 1

C(u) =
λ∗

2σ2
θ

θ
∗2

+

(
λ∗

2
+ θ

∗2 − β

2
+

1

2

η2

β2

)
u +

βθ
∗2

2σ2
θ

(
1 +

4σ2
θ

β2

)
αe−2βu + 1

αe−2βu − 1

−2θ
∗2 (1 + α)

β

e−βu

αe−2βu − 1
− 1

2
ln

[
αe−2βu − 1

α− 1

]

+
η2

2β3

(
(α + 1)2

2α
+ 2

)(
1

αe−2βu − 1
− 1

α− 1

)

− η2α + 1

β3

(
e−βu

αe−2βu − 1
− 1

α− 1

)
,
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and

β ≡
√

λ∗2 − 2σ2
θ , α ≡ λ∗ − β

λ∗ + β
, η ≡ 2σθθ

∗
, θ

∗
= λθ/(λ− 2σθ).

Proof of Lemma 9 : First,let us state the following technical result:

Lemma 10 : Assume that f and g are two functions of class C1 on [0, T ] and denote by

W y a translated Brownian starting at y ∈ (−∞, +∞) (i.e. Y (t) ≡ y +W (t)). Then we have

the following property

E

{
exp

[
g(t)Y (t) +

1

2
f(t)Y 2(t)− 1

2

∫ t

0

(f 2(s) + f ′(s))Y 2(s)ds

−
∫ t

0

(f(s)g(s) + g′(s)) Y (s)ds

]}

= exp

[
1

2
f(0)y2 + g(0)y +

1

2

∫ t

0

f(s)ds +
1

2

∫ t

0

g2(s)ds

]
(35)

Proof of Lemma 10 : Note that the process

M(t) ≡ exp

[∫ t

0

(f(s)Y (s) + g(s))dY (s)− 1

2

∫ t

0

(f(s)Y (s) + g(s))2ds

]
,

is a martingale. An integration by part gives

∫ t

0

(f(s)Y (s) + g(s))dY (s) = g(t)Y (t)− g(0)Y0 +
1

2
(f(t)Y 2(t)− f(0)Y 2

0 )

−
∫ t

0

g′(s)Y (s)ds− 1

2

∫ t

0

(f(s) + Y 2(s)f ′(s))ds, (36)

and one can get (35) by substituting (36) in the equation E(M(t)) = 1.

Second, to pursue the proof of Lemma 9, one can easily get after a change of probability

Λ(T − t, θ(t)) = E∗
[
exp(

∫ T

t

θ2(s) ds)
∣∣∣ Ft

]
, (37)

where E∗ is an expectation under a probability measure P ∗ defined by

dP ∗

dP
= exp

(
−2

∫ t

0

θ(s)dW (s)− 2

∫ t

0

|θ(s)|2ds

)
.

By Girsanov Theorem, the process θ follows the Ornstein Uhlenbeck dynamic

dθ(t) = −λ∗(θ(t)− θ
∗
)dt− σθdW ∗(t),
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where the process W ∗ is defined by

dW ∗(t) = dW (t) + 2θ(t)dt,

is a Brownian motion under P ∗.

Let us now define another new probability P by

dP

dP ∗ = exp

(
−

∫ t

0

λ∗

σθ

(θ(s)− θ
∗
)dW ∗(s)− 1

2

∫ t

0

λ2∗

σ2
θ

|θ(s)− θ
∗|2ds

)
.

By Girsanov Theorem, the dynamic of θ under P is given by

dθ(t) = −σθdB(t), (38)

where

B(t) ≡ W ∗(t) +
λ∗

σθ

∫ t

0

(θ(s)− θ)ds

is a standard Brownian motion under the probability P . An integration of (38) gives

θ(t)

σθ

=
θ(0)

σθ

−B(t),

and proves that the process θ(t)
σθ

is a translated Brownian motion under the probability P ,

starting at θ(0)
σθ

. Thus letting

υ ≡ θ(0)− θ

σθ

, (39)

the process

Bυ(t) ≡ θ(t)− θ

σθ

is also a translated Brownian motion under the probability P , starting at Bυ(0) = υ.

Now, by Girsanov Theorem,

Λ(T, θ(0)) = E∗
[
exp

(∫ T

0
θ2(s)ds

)]
= E

[
dP ∗
dP

exp
(∫ T

0
θ2(s)ds

)]

= E
[
exp

(
− ∫ T

0
λ∗Bυ(s)dBυ(s)− 1

2

∫ T

0
λ∗2B2

υ(s)ds
)

exp
(∫ T

0
(θ
∗
+ σθBυ(s))

2ds
)]

,

where E denotes the expectation under the probability measure P .

Applying Ito’s expansion to B2
υ(s) allows to erase the stochastic integral in the above

expression of Λ and leads after some computations to

Λ(T, θ(0)) = exp
(

λ∗
2
υ2 + λ∗

2
T + θ

∗2
T

)

×E
[
exp

(
−1

2

∫ T

0
(λ∗2 − 2σ2

θ)Bυ(s)
2ds + 2

∫ T

0
σθθ

∗
Bυ(s)ds− λ∗

2
B2

υ(T )
)]

.
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This last expression of Λ puts us in position to apply Lemma 10 and reduce the problem

of computing Λ to an ordinary differential equation (ode) resolution problem. As a matter

of fact, applying Lemma 10 under the probability P gives

Λ(T, θ(0)) = exp

(
λ

2
υ2 +

λ

2
T + θ

2
T

)

× exp

(
1

2
f(0)υ2 + g(0)υ +

1

2

∫ T

0

f(s)ds +
1

2

∫ T

0

g2(s)ds

)
, (40)

where the function f solves the Riccati equation

f 2(t) + f ′(t) = λ∗2 − 2σ2
θ ; f(T ) = −λ∗,

and where the function g solves the linear ordinary differential equation

f(t)g(t) + g′(t) = −2σθθ
∗
; g(T ) = 0.

Standard ode resolution techniques give, in case λ∗2 − 2σ2
θ > 0,

f(t) = β
αe−2β(T−t) + 1

αe−2β(T−t) − 1
,

and

g(t) =
η

β

(α + 1)e−β(T−t) − (1 + αe−2β(T−t))

αe−2β(T−t) − 1
.

Now incorporating (39) in the expression (40) gives

Λ(T, θ(0)) = exp

[
1

2

f(0) + λ∗

σ2
θ

θ2(0)−
(

f(0) + λ∗

σ2
θ

θ
∗ − g(0)

σθ

)
θ(0)

]

× exp

[
1

2

f(0) + λ∗

σ2
θ

θ
∗2 − g(0)

σθ

θ
∗
+ (θ

∗2
+

λ∗

2
)T +

1

2

∫ T

0

f(s)ds +
1

2

∫ T

0

g2(s)ds

]
(41)

and identifying the last expression of Λ with (34) gives immediately the expressions of A

and B provided in Lemma 9. An additional integration exercise must however be done to

get the expression of C.

After some integration by parts, it can be proven that

1

2

∫ T

0

f(t)dt = −β

2
T − 1

2
ln

[
αe−2βT − 1

α− 1

]
,

and, for T small enough,
∫ T

0

1

2
g2(t)dt =

T

2

η2

β2
+

η2

2β3

(
(α + 1)2

2α
+ 2

)(
1

αe−2βT − 1
− 1

α− 1

)

− η2α + 1

β3

(
e−βT

αe−2βT − 1
− 1

α− 1

)
.

One can now easily conclude the expression of C by incorporating the expression
∫ T

0
f(t)dt

and
∫ T

0
g2(t)dt into equation (41).
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Table 1: Sharpe Ratios for various levels of b and investment horizons

This table displays the two Sharpe ratios SL and SS (for a quarterly frequency) as the investment

horizon and the expected return b vary. In order to judge whether the difference in investment

horizon has significant effect on the Sharpe ratios, the table also reports the ratio of the two Sharpe

ratios. In the calibration, we have assumed that r = 3%, σ = 20% and µ = 10%. We look at three

levels of b = 6%, 10% and 14%.

year 1/2 1 2 5 10 20 30

Panel with b = 6%

SL 0.251 0.361 0.527 0.919 1.551 3.254 6.201

SS 0.248 0.348 0.484 0.729 0.950 1.149 1.211

SL/SS − 1 0.012 0.037 0.088 0.261 0.632 1.833 4.121

Panel with b = 10%

SL 0.251 0.361 0.527 0.919 1.551 3.254 6.201

SS 0.247 0.341 0.462 0.641 0.734 0.699 0.595

SL/SS − 1 0.019 0.058 0.141 0.435 1.111 3.653 9.424

Panel with b = 14%

SL 0.251 0.361 0.527 0.919 1.551 3.254 6.201

SS 0.245 0.333 0.435 0.548 0.536 0.379 0.2443

SL/SS − 1 0.028 0.085 0.210 0.678 1.892 7.577 24.384
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Table 2: Sharpe Ratios for a mean-reverting environment

This table displays the two Sharpe ratios SL and SS in the mean-reverting environment described

in Section 5. In the calculation of the Sharpe ratios, b is set to 6%. The other parameters are:

λ = 0.0226×12, σθ = 0.0189×√12, θ̄ = 0.0788, r = 0.0168. We calculate the Sharpe ratios for four

initial levels of θ0: 0.35, 0.10, 0.0788, 0.03. The numbers in brackets are standard errors. The cases

studied in the first three panels are not directly comparable to those in Table 1. Panel four gives

the Sharpe ratios differences in a benchmark iid model which is comparable to the mean reverting

model under consideration.

year 1/2 1 2 5

Panel with θ0 = 0.35

SL 0.2475 0.3502 0.4965 0.7973

SS 0.2335 0.3060 0.3188 0.0631

SL/SS − 1
0.0599

(0.0358)
0.1448

(0.0272)
0.5573

(0.0278)
11.6284
(0.4489)

Panel with θ0 = 0.10

SL 0.0756 0.1131 0.1752 0.3333

SS 0.0603 0.0550 0.0372 0.0088

SL/SS − 1
1.2537

(0.0113)
1.0574

(0.0163)
3.7122

(0.0487)
37.0467
(1.5907)

Panel with θ0 = 0.03

SL 0.0332 0.0587 0.1079 0.2477

SS 0.0227 0.0240 0.0196 0.0042

SL/SS − 1
0.4605

(0.0062)
1.4452

(0.0132)
4.4940

(0.0509)
57.9807
(6.2139)

Panel for iid distribution (σθ = 0 and θ = θ ≡ 0.0788)

SL 0.0558 0.0789 0.1118 0.1776

SS 0.0544 0.0734 0.0941 0.1088

SL/SS − 1 0.0243 0.0753 0.1880 0.6328

Panel with θ0 = 0.0788

SL 0.0619 0.0951 0.1525 0.3043

SS 0.0457 0.0420 0.0302 0.0070

SL/SS − 1
0.3552

(0.0107)
1.2659

(0.0186)
4.0464

(0.0461)
42.6018
(2.5133)
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Table 3: Frequency distribution of a 2 × 2 classification of the risk adjustment

ratio and ”Winner/Loser” variables.

The table displays a 2× 2 contingency matrix for a simulated sample of 3000 funds which are run

by a manager investing in an iid index and maximizing the one year Sharpe ratio. We simulate the

sample after calibrating the short term interest rate from the 3-months treasury bill (r = 8.21%)

and the index mean and variance from a value-weighted US equity index µ = 16.02%, σ = 16.73%

during the period 1980-1991 (We used the data from the K. French web site). In the first

panel (labeled “Median”), the funds are ranked with respect to the median value of the

return R during the same year. The second panel (labeled “Quartile”), the loser funds are

the bottom quartile and the winner funds are the top quartile across funds during the same

year. In each panel, the line “BHS” line reports the empirical findings in the base case

scenario of Brown et al (1996) while the other lines report the contingency frequency table

for the simulated sample for various level of targeted expected return (b).

Low Returns R (“Losers”) High Returns R (“Winners”)

Low RAR High RAR Low RAR High RAR

I) Median

Simulation

b = 8.3%

b = 9%

b = 13%

b = 16%

b = 20%

b = 25%

20.26%

19.99%

19.05%

18.23%

17.33%

16.46%

29.76%

30.02%

30.96%

31.79%

32.69%

33.55%

29.76%

30.02%

30.96%

31.79%

32.69%

33.55%

20.22%

19.97%

19.03%

18.19%

17.29%

16.44%

BHS 22.46% 27.46% 27.46% 22.62%

II) Quartile

Simulation

b = 8.3%

b = 9%

b = 13%

b = 16%

b = 20%

b = 25%

18.07%

17.80%

16.13%

14.73%

13.47%

12.33%

31.93%

32.20%

33.87%

35.27%

36.53%

37.67%

33.93%

34.33%

35.73%

36.60%

37.87%

38.80%

16.07%

15.67%

14.27%

13.40%

12.13%

11.20%

BHS 22.63% 27.25% 28.63% 21.49%
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