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1 Introduction

Actively managed mutual funds are an essential part of the financial industry. From the
standpoint of an active investor, there is a fundamental paradox with respect to the appli-
cation of equilibrium asset pricing models. To model the relation between risk and expected
returns, asset pricing models employ highly restrictive assumptions. The most stringent of
these assumptions, employed by most standard models, is that investors have homogeneous
beliefs defined over investments opportunities that are either stationary or whose variation is
determined by stationary stochastic processes. Given these assumptions, equilibrium asset
pricing equations can be derived that provide a precise definition of risk and its relation
to asset expected returns1. The paradox is that the reason for being an active investor is
the belief that some combination of asset price volatility, nonstationarity, incomplete and
asymmetric information, and heterogeneous information processing capabilities, lead to in-
efficient pricing that can be exploited2. This implies that, from the standpoint of such active
investors, standard asset pricing models must be incorrect. However, if they are not appli-
cable, how is the active investor to measure risk and assess the trade-off between risk and
expected return? This problem has been recognized in various contexts by numerous profes-
sional investors. For example, as reported by Penman (2007), famed investor Warren Buffett
puts the matter this way: “The CAPM says that if the price of a stock drops more than the
market, it has a high beta: It’s high risk. But if the price goes down because the market is
mispricing the stock relative to other stocks, then the stock is not necessarily high risk: The
chance of making an abnormal return has increased, and paying attention to fundamentals
makes the investor more secure, not less secure.3” In a similar vein, Morningstar (2004), a
leading provider of investment analysis, rejects asset pricing based measures of risk, stat-
ing that, “In deciding the rate to discount future cash flows, we ignore stock-price volatility
(which drives most estimates of beta) because we welcome volatility if it offers opportunities
to buy a stock at a discount to its fair value. Instead, we focus on the fundamental risks
facing a company’s business. Ideally, we’d like our discount rates to reflect the risk of per-
manent capital loss to the investor. When assigning a cost of equity to a stock, our analysts
score a company in the following areas:

Financial leverage - The lower the debt, the better.
Cyclicality - The less cyclical the firm, the better.
Size - We penalize very small firms.

1See Cochrane (2005) for example, for a detailed theory.
2Friedman (1953) argues that security prices reflect fundamental values. Otherwise, if securities are

mispriced, as a result of irrational investors’ behavior, rational investors will take advantage of the mispricing,
and therefore push prices to their fundamentals. Other researchers, on the other hand, argue that security
prices may persistently diverge from their fundamentals. Shiller (1984), De Long et al. (1990) argue that
when the transaction costs exceed potential profits then the prices may not converge to their fundamentals.
Campbell and Shiller (2001) show that deviations from the fundamentals have provided valuable forecasting
information for future stock prices. When the Price/Earnings ratio has been above its historical mean, stock
prices tended to fall. Likewise, when the Dividends/Price ratio has been above its mean, stock prices tended
to rise.

3This is consistent with the Fama and French (1992) observation that Book-to-Market (B/M) ratios are
positively correlated with subsequent stock returns, a relation that is known as the book-to-market effect.
That is, value stocks - the stocks with lower B/M ratios yield higher returns compared to growth stocks -
stocks with higher B/M ratios.
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Free cash flow - The higher as a percentage of sales and the more sustainable, the better.”
Both Buffet and Morningstar are getting at the same basic point. If markets are some-

times inefficient, then it makes little sense to rely on measures of risk derived from equilib-
rium asset pricing models. At a minimum, such models fail to take account of the fact that
when the price of an asset is low, relative to the fundamentals as assessed by the investor,
then the risk will be less. Given the focus on construction of equilibrium models, financial
economists have not spent much time developing techniques for assessing risk in inefficient
markets. This is no doubt due in part to the fact the problem faced by an active investor
of measuring risk in an “inefficient” market cannot be unambiguously defined. It depends
on the precise nature of the inefficiency that the investor believes exists. Early efforts to
integrate perceived superior information into the context of the CAPM floundered on this
problem. Despite the inherent ambiguities, modern derivative pricing techniques can pro-
vide active investors with useful tools for assessing risk in markets which they believe reflect
meaningful mispricing4. With that goal in mind, and in the spirit of the quotes from War-
ren Buffett and Morningstar, this paper examines a situation in which the active investor
believes that he can place bounds on the variation of the price of certain specific stocks.

More specifically, we consider two related types of market inefficiency from the standpoint
of the active investor. In the first instance, the investor believes that he can determine
fundamental bounds on the value of a stock during the time interval, [0, T ]. If the market
price penetrates either of those boundaries, it reverts back toward the boundary5. The speed
of reversion is varied in our analysis. We refer to this first case as range reversion or RR6.

In the second, related case, the active investor believes that as of time 0 he can place
strict bounds on the distribution of a stock price at time T. As a result, rather than being
lognormal, as in the Black-Scholes framework, the time T distribution of the stock price is
truncated at the boundaries. More generally, we allow the investor to specify any continuous
distribution for the price at time T . This case is referred to as range distribution, or RD7.
In both cases, it is intuitively clear that the active investors will perceive that both the risk
and expected return of the stock will be a function of the current price.8

The fact that risk and return vary with price, from the standpoint of the active investor,
is contrary to standard models such as the CAPM9 or the Black-Scholes-Merton option

4Under the assumption of existence of market frictions and imperfections, Basak and Croitoru (2000)
show that mispricing can be sustainable in general equilibrium.

5As Campbell and Shiller (2001) state it, the mean reversion in the valuation ratios and its forecasting
ability for future prices are not new concepts. Mean reversion in fundamentals has been frequently discussed
as a forecasting tool for price movements over the last century.

6Our model reflects the assumption that stock prices can diverge from their fundamentals for prolonged
periods. Theorizing this has been a challenge for financial economists. Campbell and Shiller (2001) review
the proposed solutions to this problem. Our model is consistent with the Campbell and Shiller (2001)
observation that prices rather than fundamentals do most of the adjustment in bringing the ratios back
towards their long-run equilibrium levels. Thus, our model is consistent with their argument that valuation
ratios (fundamental bounds in our case) can be used to predict stock price changes.

7Liu and Longstaff (2004) study a related problem. In their setting, an investor has perfect knowledge
about the future value of the security at time T , and thus faces an arbitrage opportunity related to a security,
which is modeled as a Brownian Bridge process.

8This result is consistent with the 3-factor pricing model of Fama and French (see Fama and French
(1993)) in which the factors HML or SMB are functions of the price of the security.

9see Sharpe (1964, 1970), Lintner (1965a, 1965b), and Mossin (1966).
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pricing model10 in which risk and expected return are not correlated with the price of a
security. Furthermore, the distinction between the standard models and the models that
we analyze becomes more pronounced as the price approaches a boundary. Naturally, the
relation of the price to the boundary also affects the optimal holdings of the active investor.
We analyze those holdings in two contexts, in which the investor invests in a risky stock,
an index and a risk-free asset. The first context is a mean-variance framework in which
the portfolio holdings are set at time 0 and cannot be altered. The second is a dynamic
optimization context in which the portfolio holdings can be adjusted continuously.11

Our analysis is presented as follows. We begin with a formal mathematical discussion
of both cases. To simplify the presentations, the results are given without proofs which are
available from the authors. In situations where there are no closed form solutions to the
problems, we provide Monte Carlo simulations. We report on numerical computations of
optimal portfolios in the models, useful for estimating the economic magnitude of the effects
we consider. In particular, we examine how optimal holdings of the active investor, and his
perceived risk and expected return vary as a function of price. We calculate the dependence
of betas, and expectations and variances of relative returns on the stock price relative to the
boundaries. Finally, we compare the performance of the models under consideration with
traditional models and analyze the welfare gain/loss of the active investor from exploiting
his fundamental information. We finish with some conclusions and possible extensions.

2 RR Model: “Range Reversion”

In the range reversion model the active investor believes he can determine an approximate
lower bound Lt and an approximate upper bound Ut of a risky asset with price St. We
call asset S, the stock. The investor believes that the price will revert back into the range
[Lt, Ut] with a certain speed over a given time interval [0, T ]. We allow Lt and Ut to vary
with time. This type of modeling is similar to traditional mean reversion models, except in
those models the stock price reverts back to a single value. Consequently, mean reversion
models are a special case of our model in which Lt = Ut.

For Monte Carlo computations, it is more convenient to work with log-values. Thus, we
write the range reversion model as follows. Denote

L̃t = log Lt , Ũt = log Ut , Yt = log St.

In this framework, the log-asset price Yt is given by the Stochastic Differential Equation
(SDE)

dYt =
[
µt − σ2

t /2 + nL max{0, L̃t − Yt} − nU max{0, Yt − Ũt}
]
dt + σtdBt. (2.1)

10See Black and Scholes (1973), and Merton (1973).
11Black and Litterman (see Black and Litterman (1990)) were one of the first to use investors’ subjective

views along with CAPM as a benchmark in portfolio management context. Their model uses a Bayesian
approach to combine the subjective views of an investor regarding the expected returns of assets with the
market equilibrium expected returns (via the prior distribution) to form a new estimate of expected returns.
The resulting new set of returns (the posterior distribution) leads to portfolios with more stable weights and
thus results in a better asset allocation.
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Here, Bt is a one-dimensional standard Brownian Motion process, and nL and nU are the
“speeds of reversion” from the lower and upper bounds respectively. If the stock price S
is below L (log-stock price Y is below L̃) the term containing nL pushes up the price back
towards L. Similarly if S is above U it reverts back toward U at speed nU . Setting L = −∞,
U = ∞, gives the standard generalized Black-Scholes-Merton model, henceforth BSM model.
In the computations we will take µ, σ to be deterministic.

2.1 Optimal investing in the RR model

In this section we compare optimal investments of a pasive investor who accepts BSM model
with an active investor who uses a RR model. Consider a BSM model for the stock price

Ŝt = Ŝ0e
(µ̂−σ̂2/2)t+σ̂Bt

Also assume that there exists a market index I, modeled as a geometric Brownian Motion
process:

It = I0e
(µI−σ2

I/2)t+σI [ρBt+
√

1−ρ2Wt]

where W is a Brownian Motion process, independent of B. Moreover, assume that there is
a risk-free asset with constant interest rate r ≥ 0.

We assume that both the BSM investor and the RR investor have the same beliefs
regarding the index I and the risk-free asset. They differ in their beliefs about the dynamics
of S.

For the given time horizon T > 0, we assume that σ, µ in the RR model (2.1) are
constants and that

L̃t = L̃− r(T − t) , Ũt = Ũ − r(T − t)

where L̃, Ũ are constants. In other words, the likely range for the final stock price ST is
[LT , UT ], and the likely range for the value of St for t < T is [LT e−r(T−t), UT e−r(T−t)].

As the measure of risk we compute the beta of asset S12, defined by

β =
Cov[IT /I0, ST /S0]

V ar[IT /I0]
. (2.2)

To solve the portfolio optimization problem, we assume that the investors have logarithmic
preferences in order to simplify the calculations. Given this framework, we compute optimal
investment weights for both a static, Markowitz Mean-Variance portfolio, and for a dynamic,
Merton Log-optimal portfolio.

More specifically, denote the value of the investor’s portfolio at time T by XT . For the
Markowitz Mean-Variance setting, we consider the maximization of

E

[
XT

X0erT
− 1− γ

2
(

XT

X0erT
− 1)2

]
(2.3)

In particular, with the risk aversion parameter γ equal to one, this approximates log(XT /X0) =
log(1 + ( XT

X0erT − 1)). For the Merton case, we maximize E[log(XT )].

12We only consider here partial equilibrium, in which investors take prices as given and cannot influence
them; thus, it is not a priori clear that beta is the right measure of risk in this model. We will consider full
equilibrium implications of heterogeneous beliefs on the range of prices in future work.
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2.1.1 Optimal mean-variance investment

To compare our results with those of the standard model, we denote by π = (πS, πI) the
optimal weight proportions in assets S and I respectively, for the RR model. The optimal
weights for the BSM investor are denoted by, π̂ = (π̂S, π̂I). We place a superscript M , πM

for the static, Markowitz case, and no superscript for the dynamic, Merton case. Finally, in
order to simplify notation, we define the quantities representing return in excess of the risk
free rate,

ĪT = IT − I0e
rT , S̄T = ST − S0e

rT . (2.4)

Given this framework, we first derive formulas for optimal investment strategies, and later
compare numerical results for the two models.

Proposition 2.1 For an investor maximizing expected value of the expression in (2.3), the
optimal static portfolio proportions are given by

πM
S =

2− γ

γ
S0e

rT E[S̄T ]E[Ī2
T ]− E[ĪT S̄T ]E[ĪT ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
(2.5)

πM
I =

2− γ

γ
S0e

rT E[ĪT ]E[S̄2
T ]− E[S̄T ĪT ]E[S̄T ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
(2.6)

and similarly for π̂M
S and π̂M

I , which are just like the above expressions with ŜT used instead
of S̄T .

Proof: This is obtained by standard mean-variance optimization and the result is fa-
miliar: the optimal portfolio is proportional to the inverse of the variance-covariance matrix
applied on the excess returns:

{
E[S̄2

T ] E[S̄T ĪT ]
E[S̄T ĪT ] E[Ī2

T ]

}−1

(E[S̄T ], E[ĪT ])Tr

The main reason why the optimal strategies will qualitatively differ between the RR and
the BSM model is that in the BSM model the expected relative return is given by

E[ŜT /S0] = eµ̂T

which is independent of the current stock price. This is not the case for the RR model, where
the expected return and the beta depend on the stock price relative to the boundaries. In
the Comparative Statics subsection below, we provide numerical results which illustrate the
impact of the stock price on risk and expected return.
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2.1.2 Optimal dynamic investment

Next, we consider vectors of proportions π, π̂ that are optimal for the investor who can
continuously rebalance his portfolio (without transaction costs or other frictions).

For the RR model with constant volatility σ, in the notation

dSt = µS
t Stdt + σS

t StdBt

we have
σS

t = σ,

µS
t = µt + nL max{0, L̃t − log St} − nU max{0, log St − Ũt}

Introduce the volatility matrix,

Σt =

{
σS

t 0
ρσI

√
1− ρ2σI

}
,

and the vector of excess expected return rates,

Rt = {µS
t − r, µI − r}.

(Actually, for neither model does Σ depend on t.) Then, from the classical Merton’s problem
(see Merton (1969, 1971)), we know that the optimal vector of proportions π of wealth to
be held in S and I, for an investor with logarithmic utility, is given by

πt = (ΣtΣ
Tr
t )−1Rt. (2.7)

In the same fashion, we can solve for the optimal π̂t in the BSM model with µS, σS replaced
by µ̂, σ̂. We use (2.7) to compute optimal dynamic portfolios. Again, the main difference
between the two models is that the parameters entering the computation in (2.7) are in-
dependent of the stock price for the BSM model, while this is not the case for the RR
model.

2.1.3 Comparative Statics

To assess the economic significance of the difference between the RR and BSM models we
use the following benchmark parameters, which approximate those observed for individual
common stocks and a hypothetical market index:

T = 1, r = 0.03, I0 = 1, S0 = 1, X0 = 1, µ = 0.08, σ = 0.3, µI = 0.05, σI = 0.25, ρ = 0.2,

Ũ = log S0 + µT + 2σ
√

T , L̃ = log S0 + µT − 2σ
√

T , γ = 1.

We choose µ̂, σ̂ so that the mean and the variance of the stock price at time T are the same
in the two models, for S0 = Ŝ0 = 1. That is, we choose µ̂ and σ̂ so that

E[ST ] = E[ŜT ] = eµ̂T ,

E[S2
T ] = E[Ŝ2

T ] = e(2µ̂+σ̂2)T .
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In the calculations, we keep µ̂ and σ̂ fixed at the initial level, corresponding to S0 = 1,
but allow S0 to vary. The interpretation of this procedure is as follows. Suppose the stock
price is low today. For the BSM investor (since BSM is a stationary model) this does not
change the long-run mean µ̂ and volatility σ̂ (and thus the risk-premium on the stock).
Consequently, the optimal investment weights will not change with the stock price. For the
RR investor, however, if the stock price is close to what the active investor believes is its
approximate lower bound, the risk premium should be higher (because the expected returns
would be higher and beta lower) than predicted by BSM model, and the optimal weight
should be greater. Tables 1 and 2 present the results of the calculations comparing the RR
model with the BSM model.13 Panel A of Table 1 shows that the investment weights for
the RR investor change markedly as the stock price approaches either of the bounds. When
the stock is near the bottom boundary the RR investor greatly increases his relative holding
in the stock and the reverse is true for the upper boundary14. In order to compensate for
this behavior, the RR investor also takes more extreme positions in the index than the BSM
investor, but not as extreme as in the stock, because the index has unlimited range in the
model15. Panel B of Table 1 shows the Merton’s optimal dynamic portfolio weights for the
Log-investors of the RR type and the BSM type. The quantitative results are even more
dramatic than those for the mean-variance calculation, but the qualitative behavior is the
same. Table 2 shows how the weights change with the speed of range reversion. For low
speeds, less than 0.1, the weights are very close to BSM weights and do not vary much with
the initial stock prices. As the RR speeds rise, the investment proportions vary more with
stock prices. For example, for the speed of nL = nU = 1, the optimal allocation to the stock
is about 93% as the stock price approaches its lower bound, and is -74% as the stock price
gets closer to its upper bound. This shows the dependence of the investor’s risk-taking on
the speed of reversion from the bounds. However, after the value of 100 of the reversion
speed, further variation in the weights is limited.

3 RD Model: Modeling return distribution at a future

time

We now analyze a class of models in which the active investor believes he has superior infor-
mation regarding the future stock price distribution, at a fixed future time T . For example,

13The portfolio weights for the RR model are actually expected values of the portfolio weights at time
t = T/2. We do this because at time t = 0 the stock price is inside the believed bounds, and not much
interesting happens.

14This may help explain why fund managers may want to hold less-diversified portfolios. A fund manager
that has superior skills or information which allow him to estimate boundaries, may decide to hold a more
concentrated portfolios. Coval and Moskowitz (1999, 2001) show that mutual funds have strong preferences
for investing in local firms where they might have informational advantages. Our analysis is consistent with
those results.

15These findings may be used to explain the investment strategies of corporate executives. Under the
assumption that executives are more knowledgeable about their company’s future prospects, they can better
assess the“closeness” of their company’s stock price to fundamental bounds and make investment decisions
based on that assessment. For example, if an executive believes his firm’s stock is close to the lower bound (or
is undervalued relative to the assessed fundamentals), he will hold more shares and thus, be under-diversified.
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this is consistent with the investor who believes that the stock price will be constrained to
be in the vicinity of its fundamental value in the long run. We refer to this scenario as the
RD model16.

More specifically, given a future time T , let ST be a random variable which represents the
active investor’s beliefs regarding the distribution of the stock price at time T . We assume
that ST is of the form

ST = f(BQ
T )

where f is a deterministic function and BQ is a Brownian Motion process, but under a
probability Q which is risk-neutral from the point of view of the active investor. From his
point of view, Brownian Motion process B under the actual physical probability is such that

BQ(t) = B(t) + θQt

where the risk premium θQ perceived by the investor is assumed to be constant. From the
investor’s point of view, the stock price is the expected value of its discounted future value
under probability Q. That is, we have

St = EQ
t [e−r(T−t)f(BQ

T )]. (3.1)

Denote by N(·) the standard normal cumulative distribution function. We have the following
useful result:

Proposition 3.1 (i) For an arbitrary continuous distribution function F , if we set

ST = F−1(N(BT /
√

T )) (3.2)

then ST will have F as its distribution.
(ii) Furthermore, from the investor’s point of view, St = V (t, BQ

t ), where the function V
is a solution to the following PDE:

∂tV +
1

2
∂xxV − rV = 0

with the boundary condition
V (T, x) = f(x) , ∀x

Proof: Part (i) is straightforward. Part (ii) is a direct consequence of the Feynman-Kac
theorem and (3.1).

The focus in the next subsection is on the investor’s modeling the stock price at a fixed
future time, and his calibrating the risk premium θQ to the current stock price using (3.1)
with t = 0. Put differently, because the active investor believes in a different distribution
than the BSM investor, he also believes in different risk premium, hence in different risk-
neutral probability.

16Liu and Longstaff (2004) study the investment decisions of an active investor who faces an arbitrage
opportunity regarding the future value of a security about which the investor has perfect foresight.
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3.1 BSMCT Model

To make the analysis tractable, we study a special case of RD models, a model for which
the log-price YT = log ST has a conditionally truncated normal distribution. More precisely,
the distribution of Y = YT is the distribution of the normal random variable with mean

m = log S0 + (µ− σ2/2)T (3.3)

and variance
σ̃2 = σ2T

conditional on taking values in the interval with endpoints

L̃ = log L, Ũ = log U.

We call this model BSMCT (for Black-Scholes-Merton Conditionally Truncated). It is known
that the distribution function of Y is then given by

FY (y) =
N

(
y−m

σ̃

)−N
(

L̃−m
σ̃

)

N
(

Ũ−m
σ̃

)
−N

(
L̃−m

σ̃

) .

Computing F−1
Y from the preceding, we see from (3.2) that the corresponding model for the

stock price at time T is

log(ST ) = m + σ̃N−1

{
N

(
L̃−m

σ̃

)
+ N

(
BQ

T − θQT√
T

)[
N

(
Ũ −m

σ̃

)
−N

(
L̃−m

σ̃

)]}

(3.4)
Recall that θQ is not a free parameter – it has to be chosen so that

S0 = EQ[e−rT ST ].

Denoting

U∗ =
Ũ −m

σ̃
, L∗ =

Ũ −m

σ̃
,

the formulas needed for computations are based on the following proposition.

Proposition 3.2 In the BSMCT model, the stock price at time T can be written as

ST = e
m+σ̃N−1

{
N(L∗)+N

(
B

Q
T
−TθQ
√

T

)
[N(U∗)−N(L∗)]

}

and the stock price for t < T is given by St = V (t, BQ
t ) where

V (t, x) = e−r(T−t)EQ


e

m+σ̃N−1

{
N(L∗)+N

(
x+B

Q
T
−B

Q
t −θQ(T−t)√
T−t

)
[N(U∗)−N(L∗)]

}
 . (3.5)

We also have

Vx(0, 0) = e−rT EQ


 σ̃√

T
ST

n
(

BQ
T −TθQ

√
T

)
[N (U∗)−N (L∗)]

n
(

log ST−m
σ̃

)


 . (3.6)
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Proof: We get the expression for ST from (3.4), we get (3.5) from (3.1), and (3.6) from
differentiating (3.5).

If we write,
dSt = St[µ

S
t dt + σS

t dBt],

in the terminology of CAPM, we can define the “instantaneous beta” of asset S by

βS(t) =
ρσS

t

σI

(3.7)

where σI is the volatility of the index. In order to compute the instantaneous beta of S we
need the following lemma, which follows directly from Ito’s rule.

Lemma 3.1 In BSMCT model, we have

σS
t =

Vx(t, B
Q
t )

St

3.2 Optimal investing in the BSMCT model

In this section, we compare optimal investments of an investor who uses a BSM model or an
RR model, and an investor who uses a BSMCT model. The BSM model for S is the same
as in the previous section. As before, we also assume that both the BSM investor and the
BSMCT investor have the same beliefs regarding the index I and the risk-free asset, but they
differ in their beliefs about S. Note that since ST takes values in [L,U ], the stock price values
before T are contained in the corresponding discounted interval [Le−r(T−t), Ue−r(T−t)]. We
again assume that the investors have logarithmic utility and we compute optimal investment
weights for a static, Markowitz mean-variance portfolio, and for a dynamic, Merton log-
optimal portfolio. The qualitative behavior of the static portfolios is the same as for the
dynamic portfolios, but they differ quantitatively - the latter are more variable than the
former.

3.2.1 Mean-Variance portfolio

The formulas here are the same as in the RR case. From Proposition 2.1:

πM
S =

2− γ

γ
S0e

rT E[S̄T ]E[Ī2
T ]− E[ĪT S̄T ]E[ĪT ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
(3.8)

πM
I =

2− γ

γ
S0e

rT E[ĪT ]E[S̄2
T ]− E[ĪT S̄T ]E[S̄T ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
(3.9)

and similarly for π̂M
S and π̂M

I , which are just like the above expressions with ŜT used instead
of S̄T .
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3.2.2 Dynamic portfolios

We know from proposition 3.2 that St = V (t, BQ
t ) and also that

dSt = rStdt + Vx(t, B
Q
t )dBQ

t

It follows from this that
dSt = µS

t Stdt + σS
t StdBt

with
µS = r + θQVx/S , σS = Vx/S

Introduce the volatility matrix,

Σ =

{
σS 0
ρσI

√
1− ρ2σI

}
,

and the vector of excess returns,

R = {µS − r, µI − r}.

Then, from the classical Merton problem, we know that the vector of optimal proportions,
πt, of wealth to be held in stock and in the index for an investor with logarithmic utility is
given by

π = (ΣΣ′)−1R. (3.10)

Similarly, the optimal proportion, π̂, in the Black-Scholes model is calculated by replacing
µS, σS with µ̂, σ̂ in the above formula (3.10). We use (3.10) to compute optimal dynamic
portfolios.

3.3 Comparative Statics

In the numerical computations, we again use these benchmark parameters as in the previous
section:

T = 1, r = 0.03, I0 = 1, S0 = 1, X0 = 1, µ = 0.08, σ = 0.3, µI = 0.05, σI = 0.25, ρ = 0.2,

L = 0.65, U = 2, γ = 1.

We choose µ̂, σ̂ so that the mean and the variance of the stock at time T are the same in
the two models, for S0 = Ŝ0 = 1. That is, we choose µ̂ and σ̂ so that

E[ST ] = E[ŜT ] = eµ̂T ,

E[S2
T ] = E[Ŝ2

T ] = e(2µ̂+σ̂2)T .

As before, we keep µ̂ and σ̂ fixed at this level corresponding to S0 = 1, but vary initial stock
price S0,in this case by varying risk premium θQ.

We consider three different cases of the BSMCT model. In the first, we fix the value m of
(3.3) at the value corresponding to S0 = 1. This represents the case in which the investor has
a fixed belief about the distribution of the final stock price ST , independent of the current
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stock price S0. In the second case, which we call “m floating”, we will let m change with
S0. This reflects an active investor whose belief about ST changes with the current value
of S0, and is, in this sense, close to the BSM investor, except that the distribution of the
log-price for him is a conditionally truncated normal distribution. In the third model, m is
fixed, but with L = 0 and U = ∞. That is, there are no bounds on the distribution of ST ,
as in the BSM model, but the investor does not adapt his beliefs about ST as the value of
S0 changes, unlike in the BSM model.

Table 3 shows how the risk premium θQ changes with the stock price for those three
models. The table shows that overall, the premium varies least as a function of the stock
price in the model with no bounds. However, near the initial stock price the m floating
version shows less variation. The first model with fixed beliefs shows the greatest variation
in the premiums as a function of the stock price.

Panel A of Table 4 presents expected returns E[ST /S0] for all four non-standard models.
The m-fixed models with and without the bounds cannot be distinguished, indicating that
the bounds are not restrictive with respect to the expected returns. These are the models in
which the investor fixes the distribution of ST in his decision making, which is independent
of the initial value S0 of stock price. The expected returns in the RR case are least variable
in the initial stock price because the bounds in that model are soft bounds.

Panel B of Table 4 presents the variances V ar[ST /S0] of returns. Again, the two m-fixed
models are similar, and have larger variance changes than the RR and m-floating models.
This is partly because we divide by S0, and the numerator does not change in the m-fixed
models.

Panel A of Table 5 presents the results for the static betas as defined in (2.2), which
mirror the results for the variances across the different models. On the other hand, the
instantaneous betas in panel B of Table 5, as defined in (3.7), are quite different from the
static betas. In all three BSCT models: the instantaneous betas are low when the stock
price is close to the lower and upper bounds, and higher in the middle, but they are always
lower than the stationary beta in the BSM model. This shows that because of his perceived
fundamental information the active investor will always interpret stocks about which he has
information as less risky. The greater variation in beta as a function of the stock price is due
to the fact that this is a local beta, which does not take into account possible future changes
of the stock price dynamics, and the fact that the local volatility is lower when closer to the
bounds. The instantaneous beta of the RR model is not presented, but it is the same as the
stationary BSM beta, since the volatility is fixed in the RR model.

Panels A, B, and C of Table 6 present optimal Markowitz weights in the stock and the
index for the m-fixed, m-floating and the unbounded BSMCT models, respectively. Table
7 shows the stock investment weight as a function of the stock price for all four models.
Once again, the two m-fixed cases, with and without bounds are very similar. The RR case
shows the least variation, and the m-floating case is the most variable at the boundaries of
the range.
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4 Utility Gains and Losses across models

In this section we compare the performances of static Markowitz investment strategies that
follow the proposed models. The benchmark for comparison in the first case is the situ-
ation in which the investor follows the RR model, taken as the true model of stock price
movements. The benchmark for comparison in the second case is the situation in which the
investor follows the BSM model, taken as the true model of stock price movements. In both
cases, we compare the certainty equivalents of the utility of terminal wealth of the investor
that follows a ”wrong” model (the perceived stock price dynamics are different from the true
dynamics), and the investor that follows the benchmark.

The wealth-process of the investor at time T is given by

XT (S, δS, δI) = δIIT + δSST + (X0 − δII0 − δSS0)e
rT (4.1)

where δI and δS are computed using (2.4):

δSS0/X0 =
2− γ

γ
S0e

rT E[S̄T ]E[Ī2
T ]− E[ĪT S̄T ]E[ĪT ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
(4.2)

δII0/X0 =
2− γ

γ
S0e

rT E[ĪT ]E[S̄2
T ]− E[ĪT S̄T ]E[S̄T ]

E[Ī2
T ]E[S̄2

T ]− (E[S̄T ĪT ])2
. (4.3)

Using the dynamics of S and I, and the above formulas with γ = 1, we can compute the
expected utility of the investor

u(S, δS, δI) := E

[
XT (S, δS, δI)

X0erT
− 1− 1

2
(
XT (S, δS, δI)

X0erT
− 1)2

]
(4.4)

In this context, we study the performances of our models by examining the certainty equiv-
alents (CE) of the models and comparing them to the ones of the benchmark case. We do
this analysis for the case of Markowitz’ static portfolios. Define the following ratios in the
Markowitz’ case:

(i)
CE(SRR, δBSM

S , δBSM
I )

CE(SRR, δRR
S , δRR

I )
.

Here, the denominator represents the CE of an investor who believes the stock price follows
the RR model and the stock price does follow the RR model. The numerator is the CE of
the investor, who believes the stock price follows the BSM model, whereas the stock follows
the RR model. Thus, this ratio measures the relative gain/loss in CE of a BSM investor
in case he is wrong about the model. We study the welfare gain/loss of an investor by
computing this ratio in the RR-model, and also in the three cases of the BSMCT model:
m-fixed, m-floating, and L = 0, U = ∞.

(ii)
CE(SBSM , δRR

S , δRR
I )

CE(SBSM , δBSM
S , δBSM

I )
.

In this case, in the denominator we have the CE of an investor who believes the stock follows
the BSM model and the stock does follow the BSM model. In the numerator we have the
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CE of the investor who believes that the stock price follows the RR model, whereas, in
reality, the stock price follows the BSM model. Thus, the above ratio measures the relative
gain/loss in CE of an RR investor in case he is wrong about the model. We do a similar
exercise replacing RR model with our other non-standard models.

As in previous sections, we normalize the parameters so that the means and the variances
are the same at S0 = 1 for the models under consideration. We see from Table 8 that if the
non-BSM investor is wrong, the relative loss in CE gets larger as we move away from S0 = 1,
up to a point, and it is far bigger for values of S that are higher than one. In other words, if
the BSM model is correct, the non-BSM investor will bear a loss for using a wrong model,
especially if the stock price is high and he believes it cannot go much higher, so that it is
optimal for him to take a short position in the stock. The losses on the low end of the stock
price are also not insignificant – when the stock price is about half the starting value of $1,
the CE of the non-BSM investor can take values anywhere from 50% of the BSM investor’s
profit to a loss of five times as high as BSM investor’s profit, depending on the model.

On the other hand, CE losses for the BSM investor who is wrong about the model are
less extreme for most values of the stock prices, and don’t vary as dramatically with those
values. Nevertheless, they can be very high, and sometimes even higher than the relative
CE losses of the non-BSM investor when he is wrong. In particular, this happens in a range
of somewhat high values of S, for which the CE value of the BSM investor can represent
a loss which is three times as high as non-BSM investor’s profit, depending on the model.
In other words, when the stock still has some room to move up, but not that much, and
it is optimal to sell it short, the investor who incorrectly believes in the BSM model can
experience significant losses.

Overall, the most interesting message of this section is that, even though in most cases
the non-standard investor is exposed to a higher mean-variance loss if he is wrong about
the model than the loss of the standard investor when he is wrong, there is a range of stock
prices for which the standard investor is in fact at a risk of higher utility loss if he is wrong
about the model of the stock price movements.

5 Conclusions and Extensions

From the standpoint of active investors, standard equilibrium asset pricing models cannot be
correct. As Warren Buffett notes, the very reason for being an active investor is the belief
that certain securities are not valued appropriately. If that is the case, active investors
cannot rely on the risk and expected return results derived from equilibrium models. This
leads to the question of how the active investor should assess the risk and expected return of
an individual security. There is no general answer to that question. It depends on the type of
misvaluation that the active investor believes exists. In this paper, we analyze a basic form
of mispricing. In particular, we assume that, perhaps via the application of fundamental
analysis, an active investor can estimate bounds on the stock price. In this context, the
risk, expected return, and the optimal investment policy of the active investor depend on
the current price of the stock relative to the bounds. We consider two types of models,
one with reversion from the boundaries, and another in which the investor, in addition to
the boundaries, has a belief regarding the risk premium of the stock. We derive optimal
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investment strategies for both classes of models, when the active investor choses between
investment in a single stock and a market index. Our results show how an investor who
places fundamental boundaries on a stock price will alter his investment strategy. We also
demonstrate how the risk and expected return perceived by such an active investor depend
on the current stock price.

One extension of our analysis would be to consider multiple stocks. More precisely, in
the case of d stocks, we can replace σB in stock i with

d∑
j=1

σijB
(j)
T , i = 1, . . . , d (5.1)

for a given d−dimensional Brownian Motion B = (B(1), . . . , B(d)). Appropriately choosing
σij’s produces various correlation structures on the stocks. We can also replace σ2 for stock
i with

Σ2
i =

d∑
j=1

σ2
ij

and since we can write
d∑

j=1

σijB
(j)
T = ΣiW

(i)
T

for some one-dimensional Brownian Motion W (i), we can use the RD model derived for
individual stocks. To model a multi-dimensional distribution of the vector (S1

T , . . . , Sd
T ),

a copula approach could be employed. From the theoretical standpoint, it would also be
of interest to analyze full equilibrium models in the presence of investors with RR or RD
beliefs.
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Table 1
Optimal allocation in the Range Reversion (RR) case

The column πS measures the optimal proportion of wealth to be invested in the risky security,
πI measures the optimal proportion of wealth to be invested in the Index, in the Range
Reversion Model (RR). The column π̂S measures the optimal proportion of wealth to be
invested in the risky security, π̂I measures the optimal proportion of wealth to be invested
in the Index, in the Black-Scholes Model (BSM). S0 is the initial price of the security, the
range reversion parameters are taken to be nL = nU = 1. We take T = 1, x = 1, µ =
0.08, σ = 0.3, k = 2, r = 0.03, µI = 0.05, σI = 0.25, ρ = 0.2, γ = 1.

PANEL A - Markowitz PANEL B - Dynamic

S0 πS πI π̂S π̂I S0 πS πI π̂S π̂I

0.595 0.932 0.074 0.457 0.176 0.595 1.146 0.045 0.531 0.194
0.663 0.674 0.134 0.457 0.176 0.663 0.829 0.121 0.531 0.194
0.732 0.554 0.164 0.457 0.176 0.732 0.659 0.162 0.531 0.194
0.801 0.498 0.175 0.457 0.176 0.801 0.579 0.181 0.531 0.194
0.870 0.475 0.179 0.457 0.176 0.870 0.544 0.189 0.531 0.194
0.939 0.462 0.181 0.457 0.176 0.939 0.531 0.193 0.531 0.194
1.000 0.458 0.181 0.457 0.176 1.000 0.526 0.194 0.531 0.194
1.008 0.456 0.183 0.457 0.176 1.008 0.525 0.194 0.531 0.194
1.077 0.453 0.184 0.457 0.176 1.077 0.522 0.194 0.531 0.194
1.146 0.451 0.184 0.457 0.176 1.146 0.518 0.196 0.531 0.194
1.215 0.447 0.189 0.457 0.176 1.215 0.510 0.198 0.531 0.194
1.284 0.438 0.194 0.457 0.176 1.284 0.497 0.201 0.531 0.194
1.353 0.421 0.197 0.457 0.176 1.353 0.475 0.206 0.531 0.194
1.422 0.396 0.207 0.457 0.176 1.422 0.442 0.214 0.531 0.194
1.491 0.359 0.218 0.457 0.176 1.491 0.396 0.225 0.531 0.194
1.560 0.304 0.233 0.457 0.176 1.560 0.333 0.240 0.531 0.194
1.629 0.225 0.252 0.457 0.176 1.629 0.254 0.259 0.531 0.194
1.698 0.115 0.276 0.457 0.176 1.698 0.158 0.282 0.531 0.194
1.767 -0.037 0.306 0.457 0.176 1.767 0.047 0.309 0.531 0.194
1.836 -0.223 0.340 0.457 0.176 1.836 -0.076 0.338 0.531 0.194
1.905 -0.464 0.379 0.457 0.176 1.905 -0.211 0.371 0.531 0.194
1.974 -0.742 0.415 0.457 0.176 1.974 -0.349 0.404 0.531 0.194
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Table 2
Optimal allocation to the risky security in the Range Reversion (RR) case

with various range reversion speeds

The column πS measures the optimal proportion of wealth to be invested in the risky security
in the Range Reversion Model (RR). S0 is the initial price of the security. nL and nU are
the range reversion parameters. We use n (in paranthesis below) for the values of nL = nU .
We take T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r = 0.03, µI = 0.05, σI = 0.25, ρ = 0.2, γ = 1.

S0 πS(n = 0.01) πS(n = 0.1) πS(n = 1) πS(n = 10) πS(n = 100) πS(n = 1000)

0.595 0.457 0.506 0.932 1.835 1.993 1.995
0.663 0.453 0.476 0.674 1.287 1.623 1.738
0.732 0.452 0.462 0.554 0.870 1.113 1.213
0.801 0.451 0.457 0.498 0.657 0.793 0.856
0.870 0.451 0.453 0.475 0.554 0.628 0.664
0.939 0.452 0.451 0.462 0.504 0.544 0.564
1.000 0.451 0.452 0.458 0.479 0.500 0.509
1.008 0.451 0.452 0.456 0.476 0.494 0.503
1.077 0.451 0.450 0.453 0.459 0.456 0.453
1.146 0.451 0.452 0.451 0.435 0.411 0.395
1.215 0.451 0.450 0.447 0.339 0.336 0.305
1.284 0.451 0.450 0.438 0.340 0.217 0.156
1.353 0.451 0.448 0.421 0.240 0.026 -0.084
1.422 0.450 0.447 0.396 0.080 -0.277 -0.448
1.491 0.449 0.443 0.359 -0.171 -0.715 -0.972
1.560 0.450 0.439 0.304 -0.532 -1.308 -1.635
1.629 0.448 0.433 0.225 -1.020 -2.003 -2.360
1.698 0.449 0.423 0.115 -1.633 -2.684 -2.984
1.767 0.447 0.415 -0.037 -2.255 -3.194 -3.388
1.836 0.446 0.401 -0.223 -2.846 -3.487 -3.545
1.905 0.445 0.386 -0.464 -3.246 -3.552 -3.523
1.974 0.443 0.367 -0.742 -3.443 -3.475 -3.394
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Table 3
Risk Premia for BSMCT Models

Column θ measures the risk premium in the corresponding case of the BSMCT model. S0

is the initial price of the security. We take T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r =
0.03, µI = 0.05, σI = 0.25, ρ = 0.2, nL = nU = 1, γ = 1.

S0 θ(m-fixed) θ(m-floating) θ(L = 0, U = ∞)

0.595 3.197 2.122 1.900
0.663 2.036 1.027 1.534
0.732 1.476 0.649 1.205
0.801 1.064 0.448 0.905
0.870 0.724 0.325 0.629
0.939 0.425 0.242 0.375
1.000 0.185 0.185 0.167
1.008 0.154 0.178 0.139
1.077 -0.098 0.121 -0.082
1.146 -0.336 0.064 -0.288
1.215 -0.565 0.000 -0.483
1.284 -0.788 -0.074 -0.667
1.353 -1.009 -0.162 -0.842
1.422 -1.232 -0.267 -1.007
1.491 -1.461 -0.393 -1.165
1.560 -1.701 -0.546 -1.316
1.629 -1.958 -0.733 -1.460
1.698 -2.249 -0.970 -1.598
1.767 -2.598 -1.286 -1.731
1.836 -3.084 -1.768 -1.859
1.905 -4.236 -3.041 -1.981
1.974 -5.912 -5.346 -2.100
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Table 4
Expected Returns and Variances of Returns for all four models: RR and three

BSMCT models

The columns in Panel A represent the Expected Returns in the corresponding case and
in Panel B they represent the Variances of Returns in the corresponding case. We take
T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r = 0.03, µI = 0.05, σI = 0.25, ρ = 0.2, nL = nU =
1, γ = 1.

PANEL A PANEL B

S0 RR m-fix m-flo L = 0, U = ∞ S0 RR m-fix m-flo L = 0, U = ∞

0.595 1.123 1.822 1.312 1.822 0.595 0.093 0.237 0.073 0.313
0.663 1.101 1.633 1.238 1.633 0.663 0.100 0.190 0.079 0.251
0.732 1.091 1.479 1.185 1.479 0.732 0.105 0.156 0.084 0.206
0.801 1.087 1.352 1.148 1.352 0.801 0.107 0.131 0.087 0.172
0.870 1.085 1.245 1.120 1.245 0.870 0.108 0.111 0.088 0.146
0.939 1.084 1.153 1.099 1.153 0.939 0.109 0.095 0.087 0.125
1.000 1.083 1.083 1.083 1.083 1.000 0.108 0.084 0.084 0.111
1.008 1.083 1.074 1.081 1.074 1.008 0.108 0.082 0.083 0.109
1.077 1.082 1.006 1.065 1.006 1.077 0.107 0.072 0.078 0.095
1.146 1.081 0.945 1.048 0.945 1.146 0.106 0.064 0.072 0.084
1.215 1.079 0.891 1.031 0.891 1.215 0.103 0.057 0.066 0.075
1.284 1.077 0.844 1.013 0.844 1.284 0.100 0.051 0.059 0.067
1.353 1.074 0.801 0.994 0.801 1.353 0.097 0.046 0.052 0.060
1.422 1.070 0.762 0.974 0.762 1.422 0.093 0.041 0.046 0.055
1.491 1.065 0.727 0.954 0.727 1.491 0.088 0.038 0.041 0.050
1.560 1.059 0.694 0.932 0.694 1.560 0.083 0.034 0.036 0.045
1.629 1.051 0.665 0.911 0.665 1.629 0.078 0.032 0.032 0.042
1.698 1.043 0.638 0.890 0.638 1.698 0.073 0.029 0.028 0.038
1.767 1.032 0.613 0.869 0.613 1.767 0.069 0.027 0.024 0.035
1.836 1.021 0.590 0.848 0.590 1.836 0.064 0.025 0.022 0.033
1.905 1.008 0.569 0.828 0.569 1.905 0.060 0.023 0.019 0.030
1.974 0.994 0.549 0.808 0.549 1.974 0.055 0.022 0.017 0.028
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Table 5
Betas and Instantaneous betas for the four models: RR and three BSMCT

models

The columns in Panel A represent the Betas, and in Panel B they represent the Instantaneous
Betas in the corresponding case. We take T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r =
0.03, µI = 0.05, σI = 0.25, ρ = 0.2, nL = nU = 1, γ = 1.

PANEL A PANEL B

S0 RR m-fix m-flo L = 0, U = ∞ S0 m-fix m-flo L = 0, U = ∞

0.595 0.216 0.354 0.189 0.406 0.595 0.039 0.034 0.240
0.663 0.227 0.318 0.197 0.364 0.663 0.120 0.109 0.240
0.732 0.228 0.288 0.206 0.329 0.732 0.162 0.156 0.240
0.801 0.234 0.263 0.211 0.301 0.801 0.186 0.180 0.240
0.870 0.239 0.243 0.214 0.278 0.870 0.200 0.197 0.240
0.939 0.241 0.224 0.213 0.257 0.939 0.207 0.207 0.240
1.000 0.243 0.210 0.211 0.242 1.000 0.210 0.210 0.240
1.008 0.241 0.209 0.210 0.240 1.008 0.210 0.210 0.240
1.077 0.240 0.196 0.204 0.225 1.077 0.210 0.209 0.240
1.146 0.241 0.184 0.196 0.211 1.146 0.206 0.205 0.240
1.215 0.233 0.173 0.188 0.198 1.215 0.201 0.197 0.240
1.284 0.288 0.165 0.177 0.188 1.284 0.193 0.187 0.240
1.353 0.230 0.156 0.168 0.179 1.353 0.183 0.176 0.240
1.422 0.223 0.149 0.158 0.170 1.422 0.172 0.162 0.240
1.491 0.218 0.141 0.148 0.162 1.491 0.158 0.147 0.240
1.560 0.211 0.135 0.138 0.155 1.560 0.142 0.131 0.240
1.629 0.206 0.130 0.129 0.148 1.629 0.124 0.112 0.240
1.698 0.198 0.124 0.121 0.142 1.698 0.103 0.092 0.240
1.767 0.198 0.119 0.113 0.137 1.767 0.079 0.069 0.240
1.836 0.185 0.115 0.105 0.132 1.836 0.049 0.043 0.240
1.905 0.180 0.111 0.099 0.127 1.905 0.010 0.008 0.240
1.974 0.167 0.107 0.093 0.122 1.974 0.000 0.000 0.240
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Table 6
Markowitz Portfolios in BSMCT model with m-fixed and m-floating.

The columns in Panel A represent weights on the stock and the index in the case of BSMCT
and BSM models, in which m is fixed. The columns in Panel B represent weights on the
stock and the index in the case of BSMCT and BSM models, in which m is floating. We
use T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r = 0.03, µI = 0.05, σI = 0.25, ρ = 0.2, nL = nU =
1, γ = 1.

PANEL A PANEL B

S0 πS πI π̂S π̂I S0 πS πI π̂S π̂I

0.595 0.957 -0.258 0.616 0.037 0.595 1.934 -0.222 0.616 0.037
0.663 1.138 -0.260 0.616 0.037 0.663 1.779 -0.156 0.616 0.037
0.732 1.313 -0.248 0.616 0.037 0.732 1.496 -0.074 0.616 0.037
0.801 1.439 -0.212 0.616 0.037 0.801 1.119 0.007 0.616 0.037
0.870 1.429 -0.135 0.616 0.037 0.870 0.952 0.072 0.616 0.037
0.939 1.150 0.002 0.616 0.037 0.939 0.751 0.125 0.616 0.037
1.000 0.598 0.165 0.616 0.037 1.000 0.598 0.165 0.616 0.037
1.008 0.502 0.188 0.616 0.037 1.008 0.579 0.170 0.616 0.037
1.077 -0.420 0.378 0.616 0.037 1.077 0.402 0.214 0.616 0.037
1.146 -1.318 0.508 0.616 0.037 1.146 0.202 0.259 0.616 0.037
1.215 -1.953 0.557 0.616 0.037 1.215 -0.050 0.308 0.616 0.037
1.284 -2.295 0.550 0.616 0.037 1.284 -0.381 0.364 0.616 0.037
1.353 -2.435 0.515 0.616 0.037 1.353 -0.787 0.422 0.616 0.037
1.422 -2.457 0.470 0.616 0.037 1.422 -1.271 0.477 0.616 0.037
1.491 -2.420 0.425 0.616 0.037 1.491 -1.796 0.523 0.616 0.037
1.560 -2.357 0.386 0.616 0.037 1.560 -2.316 0.550 0.616 0.037
1.629 -2.284 0.351 0.616 0.037 1.629 -2.767 0.557 0.616 0.037
1.698 -2.210 0.320 0.616 0.037 1.698 -3.114 0.545 0.616 0.037
1.767 -2.139 0.294 0.616 0.0373 1.767 -3.345 0.519 0.616 0.037
1.836 -2.073 0.271 0.616 0.037 1.836 -3.463 0.478 0.616 0.037
1.905 -2.012 0.251 0.616 0.037 1.905 -3.497 0.437 0.616 0.037
1.974 -1.956 0.233 0.616 0.037 1.974 -3.470 0.396 0.616 0.037
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Table 6
Markowitz Portfolios in BSMCT model with L = 0, U = ∞

The Panel C represents weights on the stock and the index in the case of BSMCT and BSM
models, in which L = 0, U = ∞. We use T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r =
0.03, µI = 0.05, σI = 0.25, ρ = 0.2.

PANEL C
S0 πS πI π̂S π̂I

0.595 0.881 -0.259 0.449 0.184
0.663 1.027 -0.252 0.449 0.184
0.732 1.154 -0.229 0.449 0.184
0.801 1.221 -0.180 0.449 0.184
0.870 1.162 -0.094 0.449 0.184
0.939 0.895 0.039 0.449 0.184
1.000 0.451 0.184 0.449 0.184
1.008 0.375 0.205 0.449 0.184
1.077 -0.325 0.369 0.449 0.184
1.146 -1.032 0.490 0.449 0.184
1.215 -1.588 0.548 0.449 0.184
1.284 -1.940 0.557 0.449 0.184
1.353 -2.130 0.535 0.449 0.184
1.422 -2.208 0.500 0.449 0.184
1.491 -2.221 0.461 0.449 0.184
1.560 -2.198 0.423 0.449 0.184
1.629 -2.156 0.388 0.449 0.184
1.698 -2.106 0.357 0.449 0.184
1.767 -2.054 0.329 0.449 0.184
1.836 -2.002 0.305 0.449 0.184
1.905 -1.952 0.283 0.449 0.184
1.974 -1.905 0.265 0.449 0.184
1.974 -3.470 0.396 0.449 0.184
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Table 7
Optimal allocation to stocks in all four models

The columns represent the optimal allocation to the risky security in all 4 Markowitz cases:
RR model, BSMCT case when m is fixed, BSMCT case when m is floating, and BSMCT
case when L = 0, U = ∞. We take T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r = 0.03, µI =
0.05, σI = 0.25, ρ = 0.2, nL = nU = 1, γ = 1.

S0 RR m-fix m-flo L = 0, U = ∞

0.595 0.932 0.957 1.934 0.881
0.663 0.674 1.138 1.779 1.027
0.732 0.554 1.313 1.496 1.154
0.801 0.498 1.439 1.199 1.221
0.870 0.475 1.429 0.952 1.162
0.939 0.462 1.150 0.751 0.895
1.000 0.458 0.598 0.598 0.451
1.008 0.456 0.502 0.579 0.375
1.077 0.453 -0.420 0.402 -0.325
1.146 0.451 -1.318 0.202 -1.032
1.215 0.447 -1.953 -0.050 -1.588
1.284 0.438 -2.295 -0.381 -1.940
1.353 0.421 -2.435 -0.787 -2.130
1.422 0.396 -2.457 -1.271 -2.208
1.491 0.359 -2.420 -1.796 -2.221
1.560 0.304 -2.357 -2.316 -2.198
1.629 0.225 -2.284 -2.767 -2.156
1.698 0.115 -2.210 -3.114 -2.106
1.767 -0.037 -2.139 -3.345 -2.054
1.836 -0.223 -2.073 -3.463 -2.002
1.905 -0.464 -2.012 -3.497 -1.952
1.974 -0.742 -1.956 -3.470 -1.905
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Table 8
Certainty Equivalents for all models

The columns represent the Certainty Equivalents for all models in all 4 Markowitz cases:
RR model, BSMCT case when m is fixed, BSMCT case when m is floating, and BSMCT
case when L = 0, U = ∞. We take T = 1, x = 1, µ = 0.08, σ = 0.3, k = 2, r = 0.03, µI =
0.05, σI = 0.25, ρ = 0.2, nL = nU = 1, γ = 1.

In cases (i) we compute the following Certainty Equivalence ratios:
CE(SRR,δBSM

S ,δBSM
I )

CE(SRR,δRR
S ,δRR

I )
,

and in cases (ii) we compute the following Certainty Equivalence ratios:
CE(SBSM ,δRR

S ,δRR
I )

CE(SBSM ,δBSM
S ,δBSM

I )

S0 RR-i RR-ii m-fix-i m-fix-ii m-flo-i m-flo-ii L = 0, U = ∞-i L = 0, U = ∞-ii

0.595 0.754 0.161 0.828 0.486 0.494 -3.107 0.703 0.006
0.663 0.909 0.825 0.740 0.151 0.551 -2.219 0.634 -0.484
0.732 0.974 0.965 0.676 -0.308 0.645 -0.868 0.589 -1.025
0.801 0.994 0.994 0.643 -0.707 0.761 0.174 0.578 -1.330
0.870 0.999 0.999 0.662 -0.624 0.871 0.733 0.617 -0.959
0.939 1.000 1.000 0.782 0.306 0.952 0.976 0.760 0.234
1.000 1.000 1.000 0.969 1.032 0.969 1.032 1.000 1.000
1.008 1.000 1.000 0.918 1.010 0.964 1.031 0.973 0.979
1.077 1.000 1.000 -3.034 -1.400 0.747 0.940 -2.396 -1.278
1.146 1.000 1.000 -0.996 -7.197 -0.436 0.657 -0.888 -7.040
1.215 0.999 0.999 -0.620 -12.953 -3.460 0.036 -0.548 -13.621
1.284 0.998 0.998 -0.491 -16.538 -2.937 -1.218 -0.424 -18.561
1.353 0.994 0.995 -0.434 -18.114 -1.660 -3.397 -0.366 -21.465
1.422 0.983 0.986 -0.407 -18.413 -1.019 -6.828 -0.336 -22.744
1.491 0.951 0.963 -0.395 -18.054 -0.698 -11.437 -0.320 -23.005
1.560 0.860 0.912 -0.390 -17.398 -0.520 -16.759 -0.312 -22.693
1.629 0.594 0.798 -0.389 -16.645 -0.417 -21.897 -0.307 -22.090
1.698 -0.138 0.564 -0.390 -15.887 -0.354 -26.137 -0.306 -21.368
1.767 -1.475 0.094 -0.393 -15.167 -0.314 -29.089 -0.305 -20.612
1.836 -2.010 -0.708 -0.397 -14.507 -0.290 -30.671 -0.306 -19.863
1.905 -1.592 -2.111 -0.401 -13.903 -0.275 -31.191 -0.308 -19.151
1.974 -1.140 -4.204 -0.406 -13.356 -0.266 -30.909 -0.310 -18.490
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