Pricing Options with Mathematical Models

1. OVERVIEW

Some of the content of these slides is based on material from the book Introduction to
the Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando
Zapatero.



e What we want to accomplish:

Learn the basics of option pricing so you can:

- (i) continue learning on your own, or in
more advanced courses;

- (ii) prepare for graduate studies on this
topic, or for work in industry, or your own
business.



The prerequisites we need to know:

(i) Calculus based probability and statistics, for
example computing probabilities and expected
values related to normal distribution.

#u) Basic knowledge of differential equations,
or example solving a linear ordinary
differential equation.

(iii) Basic programmmg or intermediate
knowledge of Excel



 Arough outline:

- Basic securities: stocks, bonds
- Derivative securities, options

- Deterministic world: pricing fixed cash
flows, spot interest rates, forward rates



e Arough outline (continued):

- Stochastic world, pricing options:

e Pricing by no-arbitrage

e Binomial trees

e Stochastic Calculus, Ito’s rule, Brownian motion
e Black-Scholes formula and variations
 Hedging

* Fixed income derivatives
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2. Stocks, Bonds, Forwards

Some of the content of these slides is based on material from the book Introduction to
the Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando
Zapatero.



A Classification of Financial Instruments

SECURITIES AND CONTRACTS
BASIC SECURITIES DERWES ATD CONTRACTS
FIXED INCOME EQUITIES OPTIONS ~ SWAPS FUTURES AND FORWARDS  CREDIT RISK

N T R

Bonds  Bank Accour  Loans Stocks Calls and Puts Exotic Options



Stocks

Issued by firms to finance operations
Represent ownership of the firm

Price known today, but not in the future
May or may not pay dividends



Bonds

Price known today
Future payoffs known at fixed dates
Otherwise, the price movement is random

Final payoff at maturity: face value/nominal
value/principal

Intermediate payoffs: coupons
Exposed to default/credit risk



Derivatives

Sell for a price/value/premium today.

Future value derived from the value of the
underlying securities (as a function of
those).

Traded at exchanges — standardized
contracts, no credit risk;

or, over-the-counter (OTC) — a network of
dealers and Institutions, can be non-
standard, some credit risk.



Why derivatives?

To hedge risk
To speculate
To attain “arbitrage” profit

To exchange one type of payoff for
another

To circumvent regulations




Forward Contract

« An agreement to buy (long) or sell (short) a
given underlying asset S:

— At a predetermined future date T (maturity).
— At a predetermined price F (forward price).

[ Is chosen so that the contract has zero
value today.

* Delivery takes place at maturity T
— Payoff at maturity: S(T) - For F - S(T)
— Price F set when the contract is established.
— S(T) = spot (market) price at maturity.



Forward Contract (continued)

 Long position: obligation to buy
 Short position: obligation to sell

 Differences with options:
— Delivery has to take place.
— Zero value today.



Example

 On May 13, a firm enters into a long
forward contract to buy one million euros In
six months at an exchange rate of 1.3

 On November 13, the firm pays
F=%$1,300,000 and receives S(T)= one
million euros.

 How does the payoff look like at time T as a
function of the dollar value of S(T) spot
exchange rate?



Profit from a
long forward position

I Profit = S(T)-F

Value S(T) of underlying
at maturity




Profit from a
short forward position

[ Profit = F-S(T)

Value S(T) of underlying
at maturity
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3. Swaps

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Swaps

e Agreement between two parties to exchange two
series of payments.
 Classic interest rate swap:

— One party pays fixed interest rate payments on a
notional amount.

— Counterparty pays floating (random) interest rate
payments on the same notional amount.

 Floating rate is often linked to LIBOR (London
Interbank Offer Rate), reset at every payment date.



Motivation

* The two parties may be exposed to different
Interest rates in different markets, or to
different institutional restrictions, or to
different regulations.



A Swap Example

* New pension regulations require higher
Investment In fixed income securities by pension
funds, creating a problem: liabilities are long-term
while new holdings of fixed income securities
may be short-term.

 Instead of selling assets such as stocks, a pension
fund can enter a swap, exchanging returns from
stocks for fixed income returns.

 Or, If it wants to have an option not to exchange, it
can buy swaptions instead.



Swap Comparative Advantage
US firm B wants to borrow AUD, Australian firm A wants to

porrow USD

-iIrm B can borrow at 5% in USD, 12.6% AUD
-1Irm A can borrow at 7% USD, 13% AUD
Expected gain = (7-5) — (13-12.6) = 1.6%

Swap:
— USD5% —USD6.3%
— FIrm B BANK Firm A—
5% —AUDI11.9% —AUDI13% 13%

Bank gains 1.3% on USD, loses 1.1% on AUD, gain=0.2%
~irm B gains (12.6-11.9) = 0.7%

—irm A gains (7-6.3) =0.7%

Part of the reason for the gain is credit risk involved




A Swap Example: Diversifying

Charitable foundation CF receives 50mil in
stock X from a privately owned firm.

CF does not want to sell the stock, to keep the
firm owners happy

Equity swap: pays returns on 50mil in stock
X, receives return on 50mil worth of S&P500
Index.

A bad scenario: S&P goes down, X goes up; a
potential cash flow problem.



Swap Example: Diversifying ||
An executive receives 500mil of stock of her
company as compensation.

She i1s not allowed to sell.

Swap (if allowed): pays returns on a certain
amount of the stock, receives returns on a
certain amounts of a stock index.

Potential problems: less favorable tax treatment;
shareholders might not like It.
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4. Call and Put Options

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Vanilla Options

— Call option: a right to buy the underlying
— Put option: a right to sell the underlying

— European option: the right can be exercised
only at maturity

— American option: can be exercised at any time
before maturity



Various underlying variables

— Stock options

— Index options

— Futures options

— Foreign currency options

— Interest rate options

— Credit risk derivatives

— Energy derivatives

— Mortgage based securities

— Natural events derivatives ...



Exotic options

— Asian options: the payoff depends on the
average underlying asset price

— Lookback options: the payoff depends on the
maximum or minimum of the underlying asset
price

— Barrier options: the payoff depends on
whether the underlying crossed a barrier or not

— Basket options: the payoff depends on the
value of several underlying assets.



Terminology

« Writing an option: selling the option
* Premium: price or value of an option

e Option in/at/out of the money:
— At: strike price equal to underlying price
— In: immediate exercise would be profitable
-Out: Immediate exercise would not be profitable



Long Call

Outcome at maturity
S(T)<K S(T)>K

Payoff: 0 S(T)-K

Profit: —C(t,K,T) S(T)-K-C(t,K,T)
A more compact notation:
Payoff: max [S(T) — K, 0] = (5(T)-K)+
Profit: max [S(T) — K, 0] — C(t,K,T)



Long Call Position

o Assume K = $50, C(t,K,T) = $6

max [S(T) — 50, 0] — 6

Profit

S(T)=K=50

Break-even:

o Payoff: max|[S(T) - 50, 0]
e Profit:
Payoff “

S(T)LK=50 S(T)




Short Call Position

. K =$50, C(t,K,T) = $6

« Payoff:

e Profit;

Payoff |

S(T)=K=50

l

S(T)

— max [S(T) — 50, 0]
6 — max [S(T) — 50, O]

Profit | Break-even:
6 S(T)=56
i S(T)

S(T)=K=50



Long Put

Outcome at maturity
S(T)<K S(T)>K

Payoff: K —S(T) 0

Profit: K-S(T)-P(t,K,T) —-P(t,K,T)
A more compact notation:
Payoff: max [K — S(T), 0] = (K-S(T))+
Profit: max [K — S(T), 0] - P(t,K,T)



o Assume K = $50, P(t,K,

o Payoff: max[50 — S(7

o Profit: max [50 — S(]
Payoff “
50

Long Put Position

AN

t
S(T)=K=50

S(:T)

=8
), 0]

Profit

42

-)’ O] — 8

\S(T)=K=50
}

-8

[

S(T)

/

Break-even: S(T)=42



Short Put Position

e K=850,P(t,K,T)=%8
e Payoff: —max[50— S(T), 0]
e Profit: 8 —max[50— S(T), O]

Payoff Profit

Break-even: S(T)=42
S(T)=K=50 \

| 8 \

S(T) =
/ » /S(T)LKZSO >(7)
-50




Implicit Leverage: Example

e Consider two securities
— Stock with price S(0) = $100
— Call option with price C(0) = $2.5 (K = $100)
» Consider three possible outcomes at t=T:
— Good: S(T) = $105
— Intermediate: S(T) = $101
— Bad: S(T) = $98



Implicit Leverage: Example
(continued)

ppose we plan to invest $100

Invest In: Stocks Options

Units 1 40
Return In:
Good State 5% 100%
Mid State 1% -60%

Bad State -2% -100%




EQUITY LINKED BANK

DEPOSIT
Investment =10,000

Return = 10,000 if an index below the current
value of 1,300 after 5.5 years

Return = 10,000 x (1+ 70% of the percentage
return on index)

Example: Index=1,500. Return =
=10,000-(1+(1,500/1,300-1) -70%)=11,077

Payoff = Bond + call option on index



HEDGING EXAMPLE

Your bonus compensation: 100 shares
of the company, each worth $150.

Your hedging strategy: buy 50 put
options with strike K = 150

If share value falls to $100: you lose
$5,000 in stock, win $2,500 minus
premium In options
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5. Options Combinations

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Bull Spread Using Calls

A Profit




Bull Spread Using Puts

)i,,‘l‘?rofit




Bear Spread Using Puts

|Profit




Bear Spread Using Calls

yProfit




Butterfly Spread Using Calls

A Profit




Butterfly Spread Using Puts

P ofi t




Bull Spread (Calls)

e Two strike prices: K,, K, with K; < K,

 Short-hand notation: C(K,), C(K,)

Outcome at Expiration

S(TY<K, K, <S(T)<LK, S(T) > K,
Payoff: 0 S(T) - K, S(T)-K,=(S(T)-K,) =
=K, - K,
Profit: C(K,)-C(K))

C(K,)-C(K)
+S(T)-K,

C(Kz) _C(Kl) T Kz - K1



Bull Spread (Calls)

« Assume K, = $50, K, = $60, C(K,) = $10, C(K,) = $6
o Payoff: max [S(T) — 50, 0] — max [S(T) — 60, 0]
o Profit: (6-10) + max [S(T)-50,0] — max [S(T)-60,0]

Payoft Profit
6
10 B Break-even:
| / S(T)=54
- ! S(T ! S(T
K,=50 K,=60 (1) 2 K,=60 (T)




Bear Spread (Puts)

e Again two strikes: K,, K, with K, < K,
 Short-hand notation: P(K,), P(K,)

Outcome at Expiration

S(T) <K,

K, <S(T)<K,

S(T) > K,

Payoff. K,-S(T)-(K,-S(T))=
=Ky =K

Profit: P(K,)-P(K,)+K, -K,

Kz R S(T)

P(K,)—-P(K,)+
+ K, —S(T)

P(Kl) B P(Kz)



Calendar Spread

Payoff

Short Call (T,) + Long Call (T,)

S(T)




Butterfly Spread

 Positions in three options of the same class, with
same maturities but different strikes K,, K,, K,

— Long butterfly spreads: buy one option each with
strikes K,, K,, sell two with strike K,

* K= (K +Ky) /2



Long Butterfly Spread (Puts)

. K, =$50, K, = $55, K, = $60
. P(K,) = $4, P(K,) = $6, P(K,) = $10

Payoff

ZAN

Profit

/
K,=50

K,=55

N\
K,=60

Break-even 1;

S(T)=52

\WaV

Break-even 2;
S(T)=58

S(VT) )

/

/
K,=50

K,=55

\ S(T)
\
K,=60




Bottom Straddle

Assume K = $50, P(K) = $8, C(K) = $6

Payoff

50

S(:T)

Profit

36

K=50 Break-even 2:
| & S(1)=64

~ 14

f S(T)

Break-even 1: S(T)=36



Bottom Strangle

Assume K, = $50, K, = $60, P(K,) = $8, C(K,) = $6

Payoff Profit

Break-even 2:

S(T)=74
50
36
K=50 K=60
: ' ' :
! T f S(T
K=50 K=60 () - 14 / M)
Break-even 1: S(T)=36



Arbitrary payoff shape

* Suppose we want to have a payoff of the form

f (S(T)) for some function f ( ). Assume that call
options written on S(T) are traded for all possible
strike values K.

« CLAIM: If f () is smooth and f'(e0) « 0 =0, then

o f(s)=1(0)+f"(0)s+
fooof"(K) max(S — K,0) dK



Proof sketch

foof "(K)max(s — K,0)dK
0

= (integration by parts) =
= £'(0) * 0 - F'(0) * s - fooof '(K)d[max(s — K,0)]
=-f(0)+s+ [ f'(K)dK
=-f(0)+s+f(s) — £(0).
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6. Pricing deterministic payoffs

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Future value with constant
INterest rate

e Suppose you can lend money at annual interest rate r, so that

pgesent Value (PV)=$1.00 - Future Value (FV) after 1 year=$(1 +
r

e Different conventions:
- Simple interest: after T years, FV=1+4+T Xr
- Interest compounded once a year: after T years, FV = (1 + )T

- Interest compounded n times a year: after m compounding
periods,

FV=((1+r/n)™



» Effective annual interest rate r':
(1+r/n)"=14+71

EXAMPLE: Quarterly compounding at nominal annual rate r = 8%,
(14 0.08/4)*=1.0824 = 1 + 0.0824

Thus, the effective annual interest rate is 8.24%.

e Continuous compounding:
- afteroneyear, FV=1im, _, oo (1 +1r/n)"=e",e=2.718 ..

- after Tyears, FV=1lim, _, o (1 +r/n)" =e™

EXAMPLE: r=8%, e" =1.0833,1r' = 8.33%



Price as Present Value

LAW OF ONE PRICE: If two cash flows deliver the same payments in
the future, they have the same price (value) today.

PRICE DEFINITION: If one can guarantee having SX(T) at time T by
investing SX(0) today, then, today’s price of X(T % is X(0).

For deterministic X(T), X(0) is called the present value, PV(X(T)).
Thus, if one can invest at compounded rate of r/n, and T=m periods,

X(0) =PV(X(T)) =X(T)/(1 +r/n)™

because this is equivalent to X(0)(1 + r/n)™ = X(T) .
e Discount factor: 1/(1+7r/n)™ , e ™



PV of cash flows

e Cash flow X(0), X(1), X(2), ..., X(m), paid at compounding intervals:

X(1) n X(2)2+ + X(m)

() ) )"

PV = X(0) +

e When X(0)=0 and X(|) = X, we have a geometric series:
e PV =X- ( s+ ...+

(1+ ) (1+ ) (1+%)m

=X -—-(1-




Example

 We want to estimate the value of leasing a gold mine
for 10 years. It is estimated that the mine will produce
10,000 ounces of gold per year, at a cost of $200 per
ounce, and that the gold will sell for S400 per ounce.
We also estimate that, if not invested in the mine, we
could invest elsewhere at r=10% return per year.

Annual profit = 10,000 (400-200) = 2 mil

1
(1+0.1)10

py=y10 2™l _ 5 10.(1-

k21 o ) = 12.29 mil



Loan payments

* Suppose you take a loan with value PV = SV, and
the loan is supposed to be paid off (amortized) in

. . r
equal amounts X over m periods at interest rate —.

* Inverting the PV formula, we get

(1+%)m—1




EXAMPLE 1. You take a 30-year loan on $400,000, at annual rate of 8%,

compounded monthly. What is the amount X of your monthly
payments?

With 12 months in a year, the number of periods is m=30 - 12=360. The
rate per period is 0.08/12=0.0067. The value of the loan is V=400,000.
We compute X= 52,946 in monthly payments, approximately.

The loan balance is computed as follows:

e Before the end of the first month, balance =400,000+0.0067 -
400,000=402,680

o After the first installment of $2,946 is paid, balance = 402,680-
2,946=399,734.

e Before the end of the second month, balance = 399,734(1+0.0067),
and so on.

The future value corresponding to these payments thirty years from
NOW is

400,000 - (1 + 0.0067)3°Y = 4,426,747 .



EXAMPLE 2 (Loan fees). For mortgage products, there are usually two
rates listed: the mortgage interest rate and the APR, or annual percentage
rate. The latter rate includes the fees added to the loan amount and also
paid through the monthly installments. Consider the previous example with
the rate of 7.8% compounded monthly, and the APR of 8.00%. As computed
above, the monthly payment at this APR is 2,946. Now, we use this monthly
payment of 2,946 and the rate of 7.8/12=0.65% in the formula for V, to find
that the total balance actually being paid is 407,851.10. This means that

the total fees equal

407,851.10 - 400,000 = 7,851.10 .



Perpetual annuity

* Pays amount X at the end of each period, for ever.
If the interest rate per period is 7,

- X X
PV'= D=1 Gt =7



Internal rate of return

* The rate r for which

X(1) n X(2)2+ + X(m)

(14) (1+5) (1+r)

0=X(0)+
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/. Bonds

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Bond yield

* Yield to maturity (YTM) of a bond is the internal rate of return of
the bond, or the rate that makes the bond price equal to the
present value of its future payments.

e Suppose the bond pays a face value VV at maturity T = m periods and
n identical coupons a year in the amount of C/n, and its price today
is P. Then, the bond’s annualized yield corresponding to
compounding n times a year is the value y that satisfies

P =

v C/n v
pym, L ¥

G e T

e Higher price corresponds to lower yield.



Price-yield curve

 Terminology: ‘a 10% five-year bond’ is a bond that
pays 10% of its face value per year, for five years,
plus the face value at maturity.

Price 4
15%
0%
100 %
5

—
< — < >

10 15
Yield to maturity

Price yield curves for 30-year bonds with various coupon rates



Price

100

= = <> '

Yield to maturity

Price yield curves for 10% coupon bonds with various maturities

 Why do they all intersect at the point (10, 100) ?

* Hint:Set C=y -V in the formula for P. We say ‘the bond trades at
par’.



Yield curve (term structure of
Interest rates
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Spot rates and arbitrage

Spot rate = yield of a zero-coupon bond (pure discount bond)

Arbitrage (of strong kind) = making positive sure profit with zero
investment

EXAMPLE: A 6-month zero-coupon bond with face value 100 trades
at 98.00. A coupon bond that pays 3.00 in 6 months and 103 in 12
months trades at 101.505. What should be the yield of the 1-year
zero coupon bond with face value 1007?

REPLICATION: Find a combination of the traded bonds to replicate
exactly the payoff of the 1-year bond.

IEI?;UYaone coupon bond; SELL (short): 0.03 units of the 6-month
on

COST =101.505-0.03-98 = 98.565
In 6 months: pay 3.00 for the short bond, receive 3.00 as a coupon

In 12 months: receive 103.00

103

98.565 = o T 4.4996 % ; Otherwise arbitrage!



Alternative computation

e First, compute the 6-month spot rate:

98 = > y=4.1233%

 Then, compute the one-year rate from

3 103

101.505 = (140.041233)1/2 * 1+7r

= r=4.4996 %




Arbitrage if mispriced

e Suppose the 1-year bond price is 95.00 instead of

100
1+0.044996

=95.6942

e BUY CHEAP, SELL EXPENSIVE:
- buy the 1-year bond
- go short 100/103 of the portfolio that replicates it:
sell short 100/103 units of the coupon bond;
buy 0.03:100/103 units of the 6-month bond.
- this results in initial profit of 95.6942
e After 6 months: have to pay 3:100/103, and receive the same amount
e After 1 year: have to pay 100 and receive 100
e Total profit: 95.6942 — 95.00 - arbitrage!



Forward rates

* 17, = annualized spot rate for k periods from now

e Annualized forward rate between the i-th and j-th period, compounding n
times a year:

(1+7/m) =@ +n/m)iA+f,/m) "

e EXAMPLE: The 1-year zero c. bond trades at 95, and the 2-year z.c. bond trades
at 89, compounding done once a year.

95-(1+ 1) =100 — 1, =5.2632%
89-(1+1,)% =100 - T, =5.9998%
1.052632 - (1 + f1,) = (1.059998)? - f;,=6.7416%
* Suppose you believe f; , is too high:
- buy one 2-year bond and sell short 89/95 units of the 1-year bond, at zero cost.
o After 1 year: have to pay 89/95:100 = 93.6842
e After 2 years: receive 100 for the second year return of 6.7416%

e |f after 1O?Iear, the 1-year spot rate is, indeed, less than 6.7416%, sell the 1-
year bond and receive more than 93.6842, and make arbitrage profit.
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8. Model independent pricing
relations: forwards, futures and swaps

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Pricing forward contracts

e Consider a forward contract on asset S, starting at ¢,
with payoff at Tequal to

S(T) = F(t)

* Here, F(t) is the forward price, decided at t and paid at
T.

e QUESTION: What is the value of F(t) that makes time
t value of the contract equal to zero?

e Suppose $1.00 invested/borrowed at risk-free rate at
time t results in payoff SB(t,T) at time T.



e CLAIM: There is no arbitrage if and only if

F(t) =B(t, T)S(t),

that is, if the forward price is equal to the time T value of one
share worth invested at the risk-free rate at time t.

e Suppose first F(t) > B(t,T)S(t):

- At t: borrow S(t) to buy one share, and go short in the
forward contract;

- At T: deliver the share, receive F(t), which is more than
enough to cover the debt of B(t,T)S(t). Arbitrage!

e Suppose now F(t) < B(t,T)S(t):

- At t: sell short one share, invest S(t) risk-free, long the
forward contract.

- At T: have more than enough in savings to pay for F(t) for
one share and close the short position.



e Suppose S pays deterministic dividends between t and T,
with present value D(t). Then,

F(t) = B(t, T)(S(t) = D(V)) .
e Suppose dividends will be paid between t and T,
continuously at a constant rate q. Then,

F(t) = B(t, T) e 9T-D S(¢) .



EXAMPLE: S(t)=100, a dividend of 5.65 is paid in 6 months. The 1-
year continuous interest rate is 10%, and the 6-month continuous
annualized rate is 7.41%.The price of the 1-year forward contract

should be
F(t) = e%! (100 - ¢00741/2. 5 65) = 104.5
Suppose that the price is instead F(t) = 104.

- At t: long the forward, sell one share, buy the 6-month bond in

the amount of e~0-0741/2 . 5 65 = 5.4445; invest the remaining
balance, 100-5.4445=94.5555, in the 1-year bond.

- At 6 months from t : receive 5.65 from the 6-month bond and
pay the dividend of 5.65.

- At 1 year from t : receive €%1-94.5555 = 104.5 from the 1-year
bond; pay F(t) = 104 for one share, and deliver the share to cover
the short position; keep 104.5-104 = 0.5, as profit. Arbitrage!



EXAMPLE: Forward contract on foreign currency. Let S(t)
denote the current price in dollars of one unit of the foreign
currency. We denote by r¢ () the foreign (domestic) risk-
free rate, with continuous compounding. The foreign interest
is equivalent to continuously paid dividends, so we guess that

F(t) = e AT g(t) |
If, for example, F(t) < e~ AT~ g(y):.

- At time t: long the forward, borrow e~ (Tt units of

foreign currency and invest its value in dollars e~ rp(T=t) S(t)
at rate r.

- At time T: use part of the amount e~ "= §(t) > F(t)
from the domestic risk-free investment to pay F(t) for one
unit of foreign currency in the forward contract, and deliver
that unit to cover the foreign debt. There is still extra money

left. Arbitrage! Similarly if e~ 7DT=D §(t) < F(¢t).



Futures

 Main difference relative to forwards: marked to market daily.

e The daily profit/loss is deposited to/taken out of the margin
account:

Total profit/loss for a contract starting at t, ignoring the margin
interest rate, using F(T)=S(T),
= [F(t+1)-F(t)] + ... + [F(T)-F(T-1)] = S(T)-F(t)

e CLAIM: If the interest rate is deterministic, futures price F(t) is
equal to the corresponding forward price.

e REPLICATION: At t=0, go long e "(T'~D fuytures; at t=1,
increase to e (T2 fytures, ..., at t=T-1, increase to 1 future
contract.

Profit/loss in period (k,k+1) = [F(k + 1) — F(k)]e 7T (k+1)
the time T value of which is= [F(k + 1) — F(k)] . Thus, time T
profit/loss is S(T)-F(0), the same as for a forward contract.



Swaps pricing

e The payoff of the party receiving the floating rate L and paying the fixed
rate R at time 7; 1s

C@' = AT[L(Ti_l,T@) - R]

e LIBOR rate is, by definition,

1—P(T;—1,T;)
L Ti— 7T’£ = )
Ti-1, 1) ATP(T,_1,T})
implying
1
C; = — (1 4+ RAT
PT_, T TR

e The value at time t < T} of the constant amount (1 + RAT') paid at time
T, >tis (14+ RAT)P(t,T;). (Why?)



Swaps pricing (continued)

o As for the first term, we claim that the value at time ¢ < Tj of the payoff
1/P(T;_1,T;) paid at time T; is equal to P(t,T;_1). Indeed, if we invest
P(t,T;_1) at time ¢ in buying a bond with maturity 7;_1, we get 1 dollar
at time T;_1, with which we can buy exactly 1/P(T;_1,T;) of bonds with
maturity 7;, and hence collect 1/P(T;_1,T;) at time T;. Altogether, the

price at time ¢ 1s
C;(t) = P(t,T;_1) — (1 + RAT)P(t,T;)

Therefore, the price S(t) of the swap at time ¢ is

5(6) = 3" Ct) = S IP( Do) — (1 + RAT)P(t, )

1=1

S(t) = P(t,Tp) — RATi P(t,T;) — P(t,T,)

1=1



Swaps pricing (continued)

S(t) = P(t,Ty) — RAT Z P(t,T)) - P(t,T,) .

1=1

o The swap rate R is the fixed rate such that the cost of entering the swap
at the initial time 0 is equal to zero. We get

R = P(OaTO) _ P(OaTn)
AT P(0,T;)



Example

e Consider a swap investor who receives a fixed rate of 10% in semiannually
paid coupons and pays the six-month LIBOR. The swap still has 9 months
left to maturity. At the last resetting date, the six-month LIBOR was
6%. The continuous three-month and nine-month rates are 5% and 7%,
respectively. Nominal principal is 10,000. In the above notation, Tj is 3
months in the past, 7T} is 3 months from now, and 75 is 9 months from
now, AT = 0.5. We want to find the value of the investor’s position today.

e The payoff 3 months from now, on one unit of the notional principal, is

1
— — (1 AT
O = Py~ (T EAD)
and 9 months from now it is
1
Cy = — (1+ RAT)

P(Ty,T5)



Example (continued)

e The first payoft’s price is obtained by multiplying it by the price of the
3-month bond, and is equal to

1
1 A —0.05-0.25
Cl(t)— P(TO’Tl) —( +R 1)]6

e The bond price P = P(Tj,T}) can be found from P(1+ ATL) =1, where
L = 0.06 is the LIBOR rate. We get P =1/1.03, and C(t) = —0.0198.

e The price of (5 is found to be

Cy(t) = P(t,T1)—(1+RAT)P(t, Tp) = e %9025 _(140.1.0.5)e 20707 = _0.0087



Example (continued)

e Altogether, the value of the swap for the short position is

C(t) = Oy () + Cs(t) = —0.0285

e Since our investor is long the swap, his value is

10,000 - 0.0285 = 285






Pricing Options with Mathematical Models

9. Model Independent pricing
relations: options

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



* Notation:
- European call and put prices at time t, c(t),p(t)
- American call and put prices at time t, C(t), P(t)

e RELAT
e RELAT
e RELAT
e RELAT
- Suppose not:

ON 1:
ON 2:
ON 3:
ON 4:

c(t) <C(t) <S(t)
p(t) < P(t) <K
o(t) < Ke 7(T-1)

c(t) = S(t) — Ke "It if S pays no dividends

c(t) + Ke T~ < S(t); sell short one sh

more than enough money to buy one call and invest Ke™

Tr.

At T:

* RELATION 5:

rir=6

If S(T) > K, exercise the option by buying S(T) for K;
If S(T) < K, buy stock from your invested cash.

p(t) = Ke 7T~ — §(¢t)

nd have
at rate



e RELATION 6: c(t) = C(t),if S pays no dividends.

- Suppose not: c(t) < C(t)
1. Att:Sell C(t) and have more than enough to buy c(t);

2. If C exercised at t: have to pay S(1) — K, \fvhich IS possible by
selling c, because ¢(t) = S(t) — Ke "I~ > §(t) — K ;

3. If C never exercised, there is no obligation to cover.
Arbitrage!

e COROLLARY: An American call on an asset that pays no dividends
should not be exercised early.

- Indeed, it is better to sell it than to exercise it: C(t) = S(t) — K .
e What if there are dividends?
 What about the American put option?



e RELATION 7, Put-Call Parity:
c(t) + Ke 7T = p(t) + S(t)

1. Portfolio A: buy c(t) and invest discounted K at risk-free rate;

2. Portfolio B: buy put and one share.

2.
3.

fS(T) > K, both portfo
fS(T) < K, both portfo
RELATION 8:

ios worth S(T') at time T.
ios worth K attime T.

S(t) =K < C(t) — P(t) < S(t) —Ke 7T~
The RH side follows from put-call parity and P(t) = p(t), C(t) = c(t).
For the LHS, suppose not: S(t) + P(t) > C(t) + K.
1. Att: Sell the LHS and have more than enough to buy the RHS;

If P exercised at t: use the invested cash to pay K for S(1);

If P never exercised, exercise C at maturity.
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10. Discrete-time models

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Single-Period Model

S(0)

s (K-1)

s K

P(S(T) = si) =,



e Risk-free asset, bank account:
B(0O)=1,B(1)=1+r

e |nitial wealth:
X(0) =x

* Number of shares in asset i: 0;

* End-of-period wealth:

 Budget constraint, self-financing condition:

X(0) =6yB(0) +6;S5;(0) + ---+ 65Sy(0)



* Profit/loss, P&L, or the gains of a portfolio strategy:
G(1) = X(1) - X(0)

 Discounted version of process Y: Y(t) = Y(t)/B(t)
 Change in price: AS;(1) = S;(1) — S;(0)
 We have

G(1)=8,r + 8;45,(1) + -~ + 6ASy (1)

X(1) =X(0) +G(1)
Denoting

AS; (1) = S;(1) —S;(0), G(1) = 8;A08,(1) + -+ + 8y ASy (1)

one can verify that

X(1)=X0)+ ¢(1)



Multi-Period Model




e Risk-free asset, bank account:
B(0) =1,B(t) = (1+7r(®))B(t—1)
 Number of shares in asset i during the period [t — 1,1) :

O;(t)
* Wealth process:

X(t) =80(t)B(t) +8:(t)S1(t) + -+ dn(£)Sn(E)
e Self-financing condition:

X(t)
= 6o(t + 1)B(t) + &6;(t + 1)S;(t) + -+ 65 (t + 1Sy (E)



e Change in price: AS;(t) = S;(t) —S;(t — 1)

o G(D)=25-100(S)AB(s) + X5-18:(S)AS1(s) + -+ + 251 On(s) ASy ()

e |tcan becheckedthat X(t) =X(0)+ G(t)
Denoting

AS;(8) = Si(D) — St — 1),
GO = ) 6:()BT, () + -+ ) 8y(5)A5y(S)
s=1 s=1

one can verify that
X() =X(0) + G(t)



For example, with one risky asset and two periods:

e Change in price: AS;(t) = S;(t) —S;(t — 1)
* G(2) = §o(D(B(1) — B(0)) +8,(2)(B(2) — B(1))
+68,(1)(S(1) = 5(0)) +6:(2)(S(2) — S(1))
e Using self-financing
6o(1)B(1) + 6:(1)S(1) = 60(2)B(1) + 8,(2)S(1)
we get
* G(2) = 60(2)B(2) +64(2)S(2) — 8,(1)B(0) — 6,(1)S(0)
e This is the same as
G(2) = X(2)-X(0)



Binomial Tree
(Cox-Ross-Rubinstein) model

+ p=P(St+D=uS®) , 1-p=
P(St+1)=dS(@®)

e u>1+r>d

Binomial Tree







Pricing Options with Mathematical
Models

11. Risk-neutral pricing

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Martingale property

* |nsurance pricing:
C(t) = E[e"T9C(T) ]

where E; is expectation given the information up to
time t.

e For a stock, this would mean:
e "tS(t) = E.Je "'S(T) ]

e If so,wesaythat M(t) = e "'S(t) isa
martingale process:

M(t) = E.[M(T) ]



Martingale probabilities (measures)

e Typically, the stock price process will not be a martingale
under the actual (physical) probabilities, but it may be a
martingale under some other probabilities.

* Those are called martingale, or risk-neutral, or pricing
probabilities.

* Such probabilities are typically denoted @, g;, sometimes
P*, p;.

e We write:
e "tS(t) = ES [e"TS(T) ],
or e "'S(t)=E/[e”™S(T)]



Risk-neutral pricing formula

 Thus, we expect to have, for some risk-neutral probability Q

Price of claim today
= expected value,under Q,of the claim’s discounted future payoff

or
C(t) =EZ [e " T-DC(T) ]

if C(T) is paid at T, and the continuously compounded risk-free rate r is constant.

e How to justify this formula?
e Which Q7 Are there any? How many?



Example: A Single Period Binomial model

e r=0.005, S(0)=100, s* = 101, s% = 99, that is, u=1.01, d=0.99.
 The payoff is an European Call Option, with payoff

max{S(1) — 100, 0}

* It will be S1 if the stock goes up and SO if the stock goes down.
Looking for the replicating portfolio, we solve

5,(1 + 0.005) + 8,101 = 1 ;
5,(1 + 0.005) + 8,99 = 0.

We get
09 = —49.254, 6,= 0.5



Example continued

¢ 80 — _4‘9254‘, 61= 0.5

 This means borrow 49.254, and buy one share of the stock. This costs

C(0) =0.5x100 —49.254 = 0.746
This is the no arbitrage price:

1) Suppose the price is higher, say 1.00. Sell the option for 1.00, invest
1-0.746 at the risk-free rate; use 0.746 to set up the replicating strategy;
have 1 if stock goes up, and O if it goes down, exactly what you need.
Arbitrage.

2) Suppose the price is lower, say 0.50. Buy the option for 0.50, sell short
half a share for 50, invest 49.254 at the risk-free rate; This leaves you
with extra 0.246 today. If stock goes up you make 1.00 from the option;
together with 49.254x1.005, this covers 101/2 to close your short
position. If stock goes down, use 49.254x1.005 to cover 99/2 when
closing your short position. Arbitrage.



Martingale pricing

 Suppose the discounted wealth process X is a martingale under Q,
and suppose it replicates C(T), so that X(T)=C(T). By the martingale

property,

X(t) = EZX(T) = EZC(T)

For example, if discounting is continuous at a constant rate 7, this
gives

X(t) =E[e7T=OC(T)]

This is the cost of replication at time t, therefore, for any such
probability Q,

the price/value of the claim at time t is equal to the expectation,
under Q, of the discounted future payoff of the claim.



Single Period Binomial model

e The future wealth value is
X(1)=6,(1+r)+ 6;5(1)

thus, when discounted,
X(1) =8, + 6§:S(1)

Therefore, if the discounted (non-dividend paying) stock is a martingale, so
ihs the discounted wealth. For the stock to be a Q-martingale, we need to
ave

S(1 1
S(O)=EQ15_1=1+r(q><s”+(1—q)><sd)

Solving for g, we get, with s* = S(0)u, s¢ = S(0)d,

_(1+1‘)—d1 u—(1+r)
- u—-d 1= —d

q



Example (the same as above)

s =100 x 1.01,s% =100 x 0.99,

(1+7r)—d 1.005-0.99

1=~ —d ~10i-099 _ 27>

Thus, the price of the call option is

_poC) _ 1 u _ d
C(0) =E 1+r——1+r(q><C +(1—q) xC?)
= 75 % (101 — 100 1—-0.75) x 0

=0.746 (the same as above)



Forwards

e Let D denote the process used for discounting, for
example

D(t) =e™ ™

* We want the forward price F(t) to be such that the value
of the forward contract zero at the initial time ¢:

0= EZ[{S(T) = F() } 31

Since DS is a Q-martingale, we have EQ[D(T)S(T)]
D(t)S(t), and we get

D(t)
F(t) =5(t
() = 5( )ES[Dm]
which, for the above D(t), is the same as

F(t) =S(t)e™ Y =S(t)B(¢t,T)
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12. Fundamental theorems of
asset pricing

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of
Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Risk-Neutral Pricing

FINANCIAL MARKETS

N

No Arbitrage = Risk-Neutral Measures Arbitrage = No Risk-Neutral Measures

ST~

Complete Markets = Incomplete Markets =
Unique Risk-Neutral Measure = Many Risk-Neutral Measures =
One Price, the Cost of Replication Many possible no-arbitrage prices

— \

Expected Value Solutionto a PDE



Equivalent martingale
measures (EMM’s)

Recall

(1+7r)—d u—(1+r)
q = ;1 — q=
u—d u—d
Thus, g and 1 — g are strictly between zero and one if
and only if

d<l+r<u

Then, the events of non-zero P probability also have non-
zero () probability, and vice-versa. We say that P and Q
are equivalent probability measures, and () is called an

equivalent martingale measure (EMM). Note also that Q
is the only EMM.



First fundamental theorem of
asset pricing

No arbitrage = existence of at least one EMM

Definition of arbitrage: there exists a strategy such that, for
some T,

X(0) =0,X(T) = 0 with probability one, and

P(X(T)>0)>0

One direction: suppose there exists an EMM (@, and a strategy
with X(T) as above. Then,

X(0) = EYX(T) > 0, so, no arbitrage.



Second fundamental theorem of asset
pricing

* Definition of completeness: a market (model) is complete if
every claim can be replicated by trading in the market.

Completeness and no arbitrage
= existence of exactly one EMM

* In a complete market, every claim has a unique price, eaual to
the cost of replication, also equal to the expectation under the
uniqgue EMM.

* Even in an incomplete market, one assumes that there is one
EII\/[I\/I (0 (among many), that the market chooses to price all the
claims.

e How to compute it?



Example: Binomial tree model is arbitrage free and
completeifd <1+r<u
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Models

13. Binomial tree pricing

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of
Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Binomial Tree (Cox-Ross-
Rubinstein) model

e p=P(St+1D)=uS®) |,
e 1—p=P(St+1)=dS())

e u>eldls(




Expectation formula

e CLAIM: Given a random variable X whose value will be known at time
T,process M(t) = E;[X] isa martingale. Indeed, for s < t,

Eg[M(t)] = EsE; [X] = Es[X] = M(s)
where the middle equality is the so- called law of iterated expectations.
* Since
e TC(t) = EtQ [e TC(T) ]
we conclude that e "tC(t) is a Q-martingale. Therefore,

e TC(t) = EP [ e TEHADC (¢ + At) ], and we get the expectation
formula

C(t) = EZ [ e T™AC(t + At)]
= e A gqxC¥(t + At) + (1 — q) xC(t + At)]



Pricing path-independent payoff g(S(T))

Backward Induction

suuu
g(suuu)
suud
g(suud)
S
C(0)

g(sudd)

wd
C(2)

g(sddd)




Example: a call option

European Option Price

121.0000
21.0000
10.0000
15.1088
100.0000 S(0) 100.0000 99.0000
1.1000 C(0) 10.8703 0.0000
0.9000
100.0000
0.0500
0.7564 90.0000
1.0000 0.0000
81.0000

0.0000



erAt —d

= = (0.7564
1 u—d

15.1088 = e ™A [g x 21+ (1 — q) XO0]

10.87 = e " g x 15.1088 + (1 — q) X0 ]



American options

. Con57i1der an American option that pays g(t)dollars if exercised at time
T 1.

* It can be shown that, in a complete market with discrete time and time
intervals of length At, its no-arbitrage price A(t)is given by

A(t) = max ES[e (g (1) ]

t<t<T

* The expectation formula is given by the dynamic programming
principle:

A(t) = max {g(t) ,E,? [e"Atg(t + At) ]}

or, in the binomial model,

A(t) = max[g(t), e TA{gqxA%(t + At) + (1 — q) xA%(t + At)}]



Backward Induction for American Options

Suuu

S
max|[A,g(s)]




Example: a put option

S(0)

=~ xQc

Delta t

100.0000
1.1000
0.9000

100.0000
0.0500

0.7564
1.0000

American Option Price

121.0000
0.0000
S(0) 99.0000
A(0) 1.0000
90.0000
10.0000
81.0000

19.0000



e‘rAt —d
= = (0.7564
1 u—d

10 = max{10,e ™[gx 1+ (1 —¢q) x 19] }
= max{10, 5.1229}

0.2318 = max{0,e ™ [gx 0+ (1—¢qg) x 1]}

2.4844 = max{0,e [ q x 0.2318 + (1 —q) x 10 ]}
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14. Brownian motion process

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



History

Brown, 1800's

Bachelier, 1900

Einstein 1905, 1906
Wiener, Levy, 1920's, 30's
Ito, 1940's

Samuelson, 1960's

Merton, Black, Scholes, 1970's



A short introduction to the Merton-
Black-Scholes model

e Risk-free asset
B(t) =e™
e Stock has a lognormal distributic1>n:
log S(t) = log S(0) + (u ——az)t + o/tz(t)
where z(t) is a standard normal random variable. Thus,
S(t) = S(0) e (,u——cf Yt+oVtz(t)
and it can be shown that

ES(t) = S(0) e, —Var [log =4t) ] = g*



Discretized Brownian motion

e W(0)=0
e W(tg41) = W(ty) +VAE z(ty,)

where z(t; ) are independent standard normal
random variables.

Thus,
e W(t;) — W(t,) = VAt Xzt z(t;)

is normally distributed, with zero mean and
variance (I — k)At = t;-t,,



Brownian motion definition

o (i) W(t)—W(s) is normally distributed with mean zero and variance t—s,
for s < {.

o (ii) The process W has independent increments: for any set of times
0 <t <ty <---<tp,, the random variables

Wi(ty) = W(t1),W(t3) = W(ta),...,W(t,) = W(t,_1)
are independent.
o (iii) W(0) = 0.

o (iv) The sample paths {W(t);t > 0} are continuous functions of t.



A simulated path of Brownian motion

Brownian Motion

W N 2 0O 2N W
| I R R R




Brownlan motion properties

e Not differentiable: E[W(z:gg(s)]Q = tis »o00 as (t—s) = 0.

e A Markovian process: the distribution of the future value W (t) given
information up to time s < t depends only on W(s) and not on the past
values.

e Martingale property:

because

EW(t) = EWOIW(s)] = EW(t) - W(s)[W(s)] + E[W(s)[W(s)]
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15. Stochastic Integral

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Stochastic Differential Equations

e Modeling a process in time with an Ordinary Differential Equation:

dX ()
dt

= pu(t, X (t))
which may be informally written as

dX (t) = p(t, X (t))dt

e We would like to have a Stochastic Differential Equation (SDE):

dX(t) = p(t, X (£))dt + o (t, X ())dW (1)

e We will define it in the integral form:

X (1) :X(O)+/O M(S,X(s))dsnL/o o(s, X(s))dW (s)



Stochastic integral, Ito integral

e Fix a process Y adapted to the information given by W, such that

E [/:Y2(u)du} < oc

e Construction: split interval |0,t] into n subintervals [¢;,t;11] and con-
sider
L(t) ==Y Y (t:)[W(tip1) — W(t:)]

[to showed that there is a limit I(t),
E[(I,(t) = I(t))*] — 0

and called the limit the stochastic integral.:

I(t) = /0 Y (s)dWV (s)



Stochastic integral properties

e Process I(t) = fg Y (u)dW (u) is a martingale with mean zero, or

E| /O Y(wdW(w)| = o

B, /O | Y(u)dW(u):

|
c\m
=
&
S
S

and the variance is

E _(/OtY(u)dW(u)> = E:/Oth(u)du:




Reasons why the martingale property

e We have

t

B, /O Y (w)dW(u) = E. /0 Y (w)dW (u) + E. f Y (w)dW (u)

S

:/OSY(u)dW(uHEs [Y(u)dW(U)

e We claim that ,
ES/ Y(u)dW(u) =0

For example, for ¢,41,%; > s,

Es|Y () (W (tj4+1) — W(t;))] EsEy Y (t5) (W (tj41) — W(E5))]
E{Y (t;) By [(W(tjr1) — W(t)))]}

= 0



Reasons why the variance

e We have, for example

E [Y?(t1)(W(t2) — W(t1))?] E By, {Y*(t1)(W(t2) — W(t1))*}]
= E|Y?(t1)E{(W(t2) — W(t1))*}]

= E[Y?(t1)(t2 — 1),

Here, we used the fact that

Ee {(W(t2) = W(t1))"} = E{(W(t2) — W(t1))"}

because (W (ty) — W(t1)) is independent of the information available up
to time tl.
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16. Ito’s rule, Ito’s lemma

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



1to’s rule

e Standard calculus:

d 0 0 d
(b (t) = o F( () + - f(t (1)) ()

e or, denoting partial derivatives with subscripts,

df (t,z(t)) = fe(t,x(t))dt + fo(t, x(t))dx ()

e In stochastic calculus, for

dX(t) = p(t)dt 4+ o(t)dW ()

(£, X(5)) = Filt, X(O)dt + F(0, X (D)X (1) + 507 Foa (1, X (1))t

1
df = ft+ﬂfx+§o-2fmm dt + o fzdW



Reason why — quadratic variation

Split interval |0, ¢] into pieces of length At.

Consider the sum of absolute increments to the p-th power

Qp(t, W) := Z W (tir1) — W(t:)|"

For p = 2, its limit is called quadratic variation and for Brownian
motion we have

Q2(t,W) =1, as At — 0
while Ql(t, W) — OQ.

For a differentiable function f,

i
O:(t, f) = / F(s)lds , and Qa(t, f) = 0



“Proof” of Ito’s rule

e Taylor expansion:

Ft+ At X(t+ A1) — f(t, X(1) = fiAt + f,AX

1
5 fon(AX)? higher order terms

e The second order term does not disappear:
(AX)? = (At + o AW)? = p* (A1) + 2uc AW AL + o*(AW)?
In the limit when At — 0 this gives

(dX)* = o°dt

o We get Ito’s rule: df = fidt + fr.dX + %fma2dt



More on |to’s rule

o We can write

1
df = fudt + fodX + 3 fuedX - dX

using the following informal rules:

e This gives

dt -dt =0, dt-dW =0,

dX - dX = (udt

odW) - (udt

dW - dW = dt

ocdW) = o*dt




Example: W4(t)

t
/ W(s)dW (s) =7
0
Consider function f(z) = z* , f'(z) = 2z , f”(x) = 2. Since
dW =0 xdt+ 1 x dW

we have, by Ito’s rule,
dW?2(t) = 2W (t)dW (t) + % X 2dt
which can be written as
W2(t) — W?(0) = /Ot 2W (s)dW (s) + /Ot ds

which gives

2/tW(s)dW(s) —WR(t) — t



Exponential of Brownian motion

e The process
Y(t) _ ea,W(t)-l—bt

is a function Y'(t) = f(t, W(t)) with

f(t,.ﬂl’)) — eax—l—bty ft(ta .’I)) — bf(t,l‘), f:c(ta .’L‘) — G,f(t, .’I}), fm:c(ta (L‘) — CLQf(t,.’L')

o Applying Ito’s rule we get

S
Y = |b+ 5a” | Ydi + aYdW
o If b=—72a? so that Y(t) = eV ()=39°t \we have a martingale:

dY = aYdW, and from F,|Y (t)] = Y(s) we get

E. [eaW(t)] _ ecﬂ/V(.s)—l—%a2 (t—s)



Two-dimensional Ito’s rule

Correlated Brownian motions:

EWx (t)Wy(t)] = pt, dWxdWy = pdt
Consider a model with two processes
dX = uxdt+oxdWx (t), dY = puydt+ oydWy (1)
Ito’s rule:
df (X(t),Y (1)) = fodX + f,dY + %fm(dxf + % Fuy(dY)? + fr,dXdY

1 1
= f.dX + f,dY + [ifmoi( + §fyya%/ + feypoxoyldt

Product Rule: d(XY) = XdY +YdX + poxoydt
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17. Black-Scholes-Merton pricing

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of
Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



The model

e The risk-free asset satisfies the ODE

dB(t) =rB(t)dt, B(0)=1
implying B(t) = €.
e The stock satisfies the SDE
dS(t) = puS(t)dt + oS (t)dW (t)

Using Ito’s rule we can check that

S(u) = S(t)er—20 ) (u=t)+o[W(w) =W (1))



Black-Scholes-Merton pricing: PDE approach

e We want to find the price of a European path-independent claim with
payoff C(T') = g(S(T)).

e It is reasonable to guess that the price will be a function C(t, S(t)) of the
current time and price of the underlying. If so, from Ito’s rule,

1
dC = |C, + 50252055 + 1uSCy | dt + o SCydW

e On the other hand, with 7(f) = amount invested in stock at time %, a
self-financing wealth process satisfies:

X (t) —m(t)
B(t)
dX = [rX + (u — r)w|dt + ondW

dX (1) = %dsu) |

dB(t)



Replication produces a PDE

If we want replication, C'(t) = X (t), we need the dt terms to be equal,
and the dW terms to be equal.

Comparing the dWW terms we get that the number of shares needs to be
equal to the so-called delta of the option

() _
7 = Calt5(0)

Using this and comparing the dt terms we get the Black-Scholes PDE:
L 55
Ct—|—§c7 s“Css +1(sCs —C)=0

subject to the boundary condition,

C(T,s) = g(s)



The bottom line

e |f the PDE has a unique solution C(t, s), it
means we can replicate the option by holding
delta shares at each time. The option price at
time t when the stock price is equal to s is
given by C(t,s), and the option delta is the
derivative of the option price with respect to

the underlying.

e The PDE and the option price do not depend
on the mean return rate u of the underlying!



Black-Scholes formula

e For an European call option ¢g(s) = (s — K)™, the solution of the PDE is
given by the Black-Scholes formula:

C(t,S(t)) = St)N(dy) — Ke " T~ N (dy)

where

N(x):= PlZ < x| = %/_x e_§dy

dy = e log(S(t)/K) + (r + 0*/2)(T ~ 1)
b = —=—llog(S()/K) + (r = 0*/2)(T ~ )

— dl—O'\/T—t



Graphs of the PDE solutions

Call Option Put Option

0 25 50 75 100 125 || 0 25 50 75 100
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18. Risk-neutral pricing: Black-Scholes-Merton
model

Some of the content of these slides is based on material from the
book Introduction to the Economics and Mathematics of
Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Risk-neutral probability in B-S-M
model

Let us find the dynamics of S under the risk-neutral probability ().
Denote by W< the Brownian motion under Q.

We claim that if we replace p by r, that is, if the stock satisfies

dS(t) _
S0 rdt + cdWe(t)

then the discounted stock price is a ()-martingale.

Indeed, this is because Ito’s rule then gives
d(e”"S(t)) = e "dS(t) + S(t)d(e ")

= e " rS(t)dt + oS(t)dWC ()] — S(t)re "tdt = 0 x dt + oS(t)dW 9 (t)



Girsanov theorem

e In order to have the above dynamics and also

%(tt)) = pdt + odW (t),

we need to have

W) = Wi(t)+ 2" ¢

O

e The famous Girsanov theorem tells us that this is possible: there exists
a unique probability QQ under which so-defined W< is a Brownian motion.

e The discounted wealth process is also a (J-martingale:
dle™" X)) =e " (u—r)r(t)dt + e "or(t)dW (1)

= e "on(t)dW 9 (t)



Black-Scholes formula as an expected value

e Option prices can then be computed taking expected values under ().

e To do that, we note that we can write

S(T) = §(0)e” (M- 100

¢ We have to compute
E¢e™™(S(T) - K)*]

= B S(T)1(s(r)>xy] — Ke ™ E°[Lis(r)> 10}



Computing the expected values

e For the second term we compute the price of a Digital (Binary) option:

ECe ™ 1s5r)sky =€ Q(S(T) > K)

QAS(T) > K) = Q(S()elro"/ATHw ) 5 k)
Cower)
= Q5> )
= N(d2)

where the middle equality follows by taking logs and re-arranging.

e The first term is computed using the formula

b)) s




where

Reminder: Black-Scholes formula

C(t,S(t)) = S(t)N(d1) — Ke "I N(d)

N(z):=PlZ <=z

| 1/3: 54
= — e 2
SRRV, =) SN
1

o T —t
1

oV —t
dl—O'\/T—t

log(S(t)/K) + (r +0°/2)(T — t)]

log(S(t)/K) + (r — o= /2)(T — t)]




Another way to get the PDE

e Under risk-neutral probability (), by Ito’s rule

dO(t, (1)) = [C; + rS(H)C, + 30252 ()C.]dt + aCS(#)dW(t)

Then, discounting,

d(e~"C (L, (1))
e [(C, + rS(H)C, + %(725’2(75)033 o C)\dt
+e "o CyS(t)dW @

e This has to be a () martingale, which means that the dt term has to be
zero, resulting in the Black-Scholes PDE.



Implied volatility

e It is the value of ¢ that matches the theoretical Black-Scholes price of the
option with the observed market price of the option

\/ Volatility Smile

A
Implied volatility

Strike price

e In the Black - Scholes model, volatility is the same for all options on the
same underlying

e However, this is not the case for implied volatilities: volatility smile
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19. Variations on Black-Scholes-Merton

Some of the content of these slides is based on material from the book Introduction to the
Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Dividends paid continuously

Assume the stock pays a dividend at a continuous rate q. Total value of
holding one share of stock is

G(t) :=S(t) + /0’5 qS(u)du

Therefore, the wealth process of investing in this stock and the bank ac-
count 1s

dX = (X — 7)dB/B + ndG/S
dX (t) = [rX(t) +7(t)(n+q—r)]dt + 7 (t)odW (t)

To get the discounted wealth process to be a martingale, that is,
dX (t) = rX(t)dt + 7 (t)odW<(t)

we need to have

WeHt)=W@)+t(u+qg—r)/o



e This makes the stock dynamics
dS(t) = S(t)[(r — q)dt + cdW 9 (t)]

and the pricing PDE is

1
Ci + 50282083 +(r—q)sCs —rC =0

e The solution, for the European call option, is obtained by replacing the
underlying price s with se=9(T—1):

C(t,s) = se 1 T=IN(d)) — Ke " T=YN(dy)

where

d = log(s/K) + (r—q+0%/2)(T — t)]

Q
~
|

dy = log(s/K) + (r —q—0/2)(T — ),

Q
~
|



Dividends paid discretely

e Assume the stock pays deterministic dividends, and denote the process of
discounted dividends by D(t).

e Assume that the process

satisfies

dSa = S¢ [,udt OdW(t)]
Then, the option price is obtained by replacing s = S(t) by S(t) — D(¢).




Options on futures

e Since F(t) = e"T=YS(t),

dF = F(u —r)dt + FodW

e With W®(t) = W(t) +t(n—r)/o, we get

dF = FodW®

e Thus, the PDE for path independent options is

1
C: + §J2f20ff —rC =0



e The solution for the call option is

Ot f) = e TD[N(dy) — KN(dy)
b= — V;_tuogu/mw%/z
b = ———log(f/K) - (632
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20. Currency options

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Currency options in the B-S-M model

e Consider the payoff, evaluated in the domestic currency, equal to
(R(T) - K)*

where R(T') is the exchange rate, the time T" domestic value of one unit
of foreign currency.

e Assume that the exchange rate process is given by

dR(t) — R(t) [MRdt + O'RdW(t)]

e The pricing formula is the same as in the case of a dividend-paying un-
derlying, but with ¢ replaced by r, the foreign risk-iree rate.



Reasons why

We trade in the domestic and foreign risk-free accounts.

The dollar value of one unit of the foreign account is
R*(t) := R(t)e™ "
dR* = R* |(ur + r¢)dt + opdW|

The wealth dynamics (in domestic currency) of a portfolio of = dollars in
the foreign account and the rest in the domestic account are

X — 70

dX = B dB R*dR*:[’r'X m(pur +rf—1r)|dt + TordW

This is exactly the same as for dividends with ¢ replaced by 7.

We(t) =W(t)+tlur — (r —14))/oR



Call option formula

e The dollar value of the call option is

¢(t,R) = Re " T-UN(dy) — Ke "T=Y[N(dy)]

where
= —log(R/K) + (r =y + k)T -]
dy = ———[log(R/K) + (r — rf — 0% /2)(T — )] = dy — op/T — 1




Example: Quanto options

e - 5(t): a domestic equity index

- Payoff: S(T) — F units of foreign currency; quanto forward

e As in the previous slide, we have
WE(t) = W(t) +t(ur — (r —7y))/or

and thus
dR(t) = R(t)|[(r —r¢)dt + ordW 4 (t)]

e Assume

dS(t) = S(t)[rdt + 0gdZ%(t)]
where BMP Z€ has instantaneous correlation p with W®. We have

d(S(t)R(t)) = SO)R()[(2r — r¢ + pogog)dt + oprdW®(t) + 05dZ(t)]



S(T) — F units of foreign currency is the same as (S(T) — F)R(T) units
of domestic currency. The domestic value is

e”" (E°[S(T)R(T)] - FE®[R(T)))

To make it equal to zero

We have
EC[S(T)R(T)] = S(0)R(0)e'?" s Htrosom)T

EQ[R(T)] = R(O)e" "

We get
F = S(O)e(HPJSGR)T



o If
dX = aXdt +bXdW + cXdZ

then

e This is because
d(EX(t)) =a x (EX(t))dt

and the solution to this ODE, that has initial value X (0), is the one above.
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21. EXotic options

Some of the content of these slides Is based on material from
the book Introduction to the Economics and Mathematics of
Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Most popular exotic options

e Barrier options: they pay a call/put payoff only if the
underlying price reaches a given level (barrier) before
maturity. Thus, they depend on the maximum or the
minimum price of the underlying during the life of
the option.

e Asian options: a call/put written on the average stock
price until maturity. Useful when the price of the
underlying may be very volatile.

* Compound options: the underlying is another option.
Call on a call:

ELe ™ BS(T)) — K4]7



Example: a forward start option

e A call with the strike price S(t1), t; > 0. Note that

S5(T)

é;((l)f;(tl)

= 5(0) exp{a(WQ(T) — WQ(ZH)) +(r—0o?/2)(T —t1)}

e We first compute the value at ¢;:

i
Eg e—T(T—h)(S(T) . S(tl))—l-] — Eg e—‘r‘(T—h) ‘S;((tol)) (S(‘g)(i()T) B S(O))
_ St
50 BT~ 11.50)

e Today’s value

S(t1)
5(0)

S(t1)
5(0)

EY {e_rtl BS(T—tl,S(O))} = BS(T—t1,5(0))EY {e_""tl } = BS(T—t1,5(0))



Example: a chooser option

e The holder can decide at time t; whether the payoff will be a call or a
put, with the same strike price and maturity. Thus, the value at time t;
1S, using put-call parity,

max(c(t1), p(t1)) = max(c(tr), e(t) + Ke "7~ — §(1;))

= ¢(t1) + max(0, Ke ") — §(t,))

e It is a package of a call option with maturity T" and strike price K, and a

put option with maturity ¢; and strike price Ke "(T—t1),
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22. Pricing options on more underlyings

Some of the content of these slides i1s based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Two risky assets

d81 — Sl [/Jth T Uldwl]
dSQ — SQ [ugdt T JQdWQ]

Equivalently,

dSl = 81 :Mldﬁ T O'ldBl]
dS; = 5 :Mgdt + 09pdB1 + 09 \/1 — p2dB2]

This is because, given two independent Brownian Motions By and By, we can
set

leBl, WQZpB1+\/1—p2B2



Wealth process

dB .

™1 9 X—(ﬂ'l ‘|—7T2)
dX = —dS1 + —dS5s 4
g, 1T g, B

This gives
dX — [’I“X ‘|—7T1(y,1 — ’I") +7T2(M2 — T)]dt+7T101dW1 ‘|—7T20'2dW2 .

For the discounted wealth process to be a martingale under the risk-neutral
probability (), we need to have

dX = rXdt + moq dWlQ + 7T20'2dW2Q

for some ()-Brownian Motions W?;Q with correlation p. For that to be the
case, we must have

W2 (t) = Wi(t) + t(us — 1) /o

(2



The pricing PDE with two factors

e Suppose C(T') = g(S1(T), S2(T). Using the two-dimensional Ito’s rule

1
—0'382208232 + p0'10'2818208132 dt

0%5%08181 + 9

1
dC = |:Ot -+ 7"81031 + ?"SQCSQ + 5

+ 015104, AW + 028,C,, dW

Comparing the dt term with the wealth equation, or making the drift of
the discounted C' equal to zero,

1 1

Cy+— 0'18105181—|—2

5 028208282 +po1095152C5, s, +7(51Cs, +52Cs,—C) =0 .

C(T, s1,82) = g(s1, $2)

7 9
S1 HS,



Example: exchange option

The payoft is
g(S1(T), S2(T)) = (S2(T) — S1(T))* = max(S2(T) — 51(T),0)

Since we have

it is reasonable to expect that the option price will be of the form
C(t,s1,82) = s1D(t, 2)

for some function D and a new variable z = s5/s1. After some computations,
we can show that D has to satisty

1
Dy + 5(0% + 05 —2p0102)2°D,, =0, D(T,z)=(2—1)"



Example: exchange option (continued)

This is the Black-Scholes PDE corresponding to the European call option
with strike price K = 1, interest rate r = 0, and volatility

OF = \/J% + 0% — 2poi09 .
Using the Black-Scholes formula for D, and the fact that C' = 51D, we get

C(thl,Sg) = SQN(dl) — SlN(dg) y

= ——flog(sa/s1) + (73/2)(T ~ )
dy = ——— flog(sy/s1) — (6%/2)(T — )] = dy — oxVT —1 .

O'E\/T—t






Pricing Options with Mathematical Models

23. Stochastic volatility

Some of the content of these slides is based on material from the book Introduction
to the Economics and Mathematics of Financial Markets by Jaksa Cvitanic and
Fernando Zapatero.



Complete markets

dS(t) = St)[r(t, St))dt + o(t, S(t))dW < (t)]
e We have
S(T) = S(t)e [ r(w,S(u)—20*(u,S(u))ldut [," o(u,S(u))dW< (u)

The PDE for the value of the payoff ¢(S(T)) is
1
Cy + 502(75, s)Css +1(t,s)|[sCs —C| =0
Constant Elasticity of Variance, CEV model, with 0 < 8 < 1.

o
o(t,s) = 3



Complete markets (continued)

o Ifr(t) and o(t) are deterministic functions of time, random variable | tT o(u)dW (u)

e . T
has normal distribution with zero mean and variance [, o*(u)du.

o For a payoff g(S(T)), the value at time ¢ is obtained by replacing o x (T —t)
with ftT 0*(u)du and replacing r x (T —t) with [ tT r(u)du.



Incomplete markets

Consider two independent BMP’s W, and W5, and

dS(t) = S)[u)dt +o1(t,V())dWi(l) + oa(t, V(t))dWa(l)]
dV(t) = at)dt +~y(t)dWa(t)

Denote by x(t) any (adapted) stochastic process. For each, there is a
risk-neutral measure (.. In particular, for any such process x we can set

AW () = dW,(t) - Jll(t) () — 1 (t) — (B ()]t
AWEs(t) = dWa(t) + k(t)dt

It can be checked that discounted S is then a ().-martingale and

dV (t) = la(t) — k(t)y(t)]dt + ~(t)dWy™ (1)



Incomplete markets (continued)

e For constant x and constant patrameters, the PDE becomes

Ci

1
505382 (O'%

7,

)

1

- 2
9 o’

+  sCsyo9 +1(sCs — C) + Cy(a — ky) =0

e The parameters are calibrated to the market, that is, chosen so that the
market prices of liquidly traded options are matched to the model prices

as well as possible.



Examples

Heston’s model:

dS(t) = S(t)[rdt + /V (t)dW®(t)]

dV (t) = A(B =V (t))dt +v+/V (t)dZ°(t)

for some other risk-neutral Brownian motion Z havmg correlation p with
W®. Price is a function C(t, s,v) satisfying

1
0=0C,; + 50[32035 + 42 Clyy] + 7(sCs — C) + A(B — v)C, + pyvsCl,

SABR model:

dS(t) = S(B)[rdt + o(t )SBL()dW@( \

do(t) = ao(t)dZ9(t)
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24. Jump-diffusion models

Some of the content of these slides i1s based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Merton’s jump-ditffusion model

Suppose the jumps arrive according to a Poisson process, that is, at inde-
pendent exponentially distributed intervals.

The number N(t) of jumps up to time ¢ is given by Poisson distribution:

oy (AR
PIN(t) =k] = (k!)

The stock price satisfies the following dynamics:
dS(t) = S(t)[r — Am]dt + S(t)acdW<(t) +dJ(t) ,

where m is such that the discounted stock price is a ()-martingale, and d.J
is the actual jump size.



Merton’s jump-ditffusion model
(continued)

e More precisely, dJ(t) = 0 if there is no jump at time ¢, and dJ(t) =
S(t)X; — S(t) if the i-th jump occurs at time ¢, where X; are iid random
variables. Therefore,

S(t) — S(O) - Xl : X2 C XN(t) . e(r—gz/Z—)\m)t+ng(t)

e The price of payoff ¢(S(T)) is

C0) = 3 B9 | y(S(T) | M(T) = k| QV(T) =B
k=0

which is equal to

ATk

oo —r r—o?/2—Am oW« —
v - EQ [e T, (S(O)Xl-...Xk-e( /2=Am)T+oW (T))} w T -



Merton’s jump-diffusion model
(continued)

o If X,’s are lognormally distributed, the price of the option can be repre-
sented as

VAL
C(0) :Ze—”( k') BS;
k=0 '

for A = M1+ m) and BSy, is the Black and Scholes formula with appro-
priately chosen r = r;, and 0 = 0y,.
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25. Static hedging with futures

Some of the content of these slides is based on material from the book Introduction to the
Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Perfect hedge with futures

 There is a futures contract that trades:
e exactly the asset we want to hedge.
e with the exact maturity we want to hedge.

e Otherwise, “asset mismatch” or “maturity
mismatch”. Then, the solution is
“crosshedging”.



Crosshedging

e Hedging payoff S{(T') with futures F5 maturing at U > T: the unknown
quantity X, called basis is, with 0 the number of futures conttracts,

X = 8,(T) — 6 Fy(T,U)

e The risk is measured as

Var: X] = VarySi(T)] + 8*Var,[F»(T,U)] — 26Cov[S1(T), F»(T,U)]

e If we want to minimize the variance, taking the derivative with respect to
0 and setting it equal to zero gives us the optimal o:

_ Cou[S1(T), Fr(T\U)]  os
- VarFy(T,U)] _pap ’

0

where p is the correlation between S1(T) and Fy(T,U), and 0%, o% are

their variances.



Crosshedging (continued)

e The minimal variance is

Covi[S1(T), F>(T,U)]

Var: X] = VarS,(T)] — Var Fo(T,U)|]

e In the case of perfect hedge, S; = 59, and U = T, we have S1(T) =
Fi(T) = F5(T,U). Then, § = 1, and, using the fact that Cov[S, S| =
Var|S], we see that Var;|X| = 0 and there is no basis risk involved.



Example

Consider a U.S. firm that will receive 1 million of currency A, six months
from now. The firm will hedge by shorting 0 units of six-month futures
contracts on a highly correlated currency B.

Suppose that the exchange rates are Q4 = 0.1 dollar/A and Q2 = 0.2
dollar/B. The exchange rate A/B has to be Q = Q4/Qp = 0.5. However,

this does not mean that the company should short 0.5 million of B futures.

Suppose historical data gives us o0g, = 0.03, and og, = 0.02, and that
the correlation between the two is 0.9. Thus, the covariance is equal to
0.9-0.02-0.03 = 0.00054. We get

6 = 0.00054/0.0004 = 1.35

Therefore, for each unit of A the U.S. company should short an amount
of B equivalent to 1.35 of A, thus 1,000,000 -1.35/2 = 675,000 of B.

The minimal variance (per unit of currency) is 0.000171, quite a bit smaller
than the variance of the dollar/A exchange rate, equal to O'(%A = 0.0009.



Rolling the hedge forward: the story
of Metallgesellschaft

e [n early 1990s, MG sold huge volume of long-term fixed price
forward-type contracts to deliver oil.

 Hedging: rolling over short-term future contracts to receive
oil.

* Oil price went down: good for fixed price contracts.
e Bad for futures: large margin calls.

* All contracts closed out at a huge loss.
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26. Static hedging with bonds

Some of the content of these slides is based on material from the book Introduction to the
Economics and Mathematics of Financial Markets by Jaksa Cvitanic and Fernando Zapatero.



Duration

Suppose the bond price is given by

T

Ci
P:;(lﬁy)i

The sensitivity of the price with respect to yield is

9P A 1 C
@——Z%(Hy)m— 1+yZZP(1+y)@'

1=1

(Macaulay) duration is defined as

1 C;
D= ;ZP (14 y)*

It is an average of the coupon payment times, weighted by the relative
size of the coupons; it is equal to maturity 7' for the zero-coupon bond.



Bond immunization

e A second order measure of yield risk, the convexity, is defined as

1 0P

C:P8y2

e Duration is a static version of the delta of an option, and convexity is a
static version of the gamma of an option.

¢ Hedging future cash payments that have to be delivered at specified
times: use a portfolio of bonds with the same duration and the same
convexity as the cash payments. This is called immunization. It is
based on then following approximation:

D 1
AP~ ——— PAy+ —CP(Ay)?
T y+20 (Ay)
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2'(. Perfect hedging - replication

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Replication in binomial trees

Consider a call with S(0) = 55.5625,0 = 0.32,r = 0, K = 55,7 = 0.08,

S = 5(0)e’VIt = 55.5625¢e"32V098 = 60.826
St = 5(0)e VIt = 55.5625¢52V0-08 — 50 7544

Option payofl is either 60.826 — 55 = 5.826 or zero. To replicate it, we
solve

0p + 60.8260; = 5.826
09 + 50.75440, =0

Suppose S(T") = 68.8125. Then, the final profit /loss is
01(68.8125 — 55.5625) + 55 — 68.8125 = —6.1479

In general, the number 0; of shares of the underlying is given by

Cu_cfd
Su_Sd

5 =



Replication in the B-S-M model

¢ In the B-S-M model the delta of payoff C(T) = g(S(T)) is the derivative
of its price with respect to the underlying,

oC(t, s)
Ao = ’
¢ 0s
e For the European call it is
Ac = N(dy)

e For the perfect (theoretical) hedge, re-balancing must take place continu-
ously. This requires that the model and its parameters are exactly correct.



A real data example

A call option on Microsoft stock 20 consecutive days in year 2000, T' =

20/252 = 0.08 years.

Daily data: Y (z) =logS(i + 1) — log S(7)

Sample standard deviation = _1 > (Y

Annual st dev o = 0.019978 x /252 =
K =55,5(0) = 55.5625. We set r = 0.

0.317139

Y;)2 = 0.019978



A real data example (continued)

o Using B-S-M, C(0) = 2.2715, A(0) = 0.5629
e Borrow A(0)S(0) — C(0)

o Next day: S(1) = 55.3750, T — 1 = 19/252
e Portfolio value: X (0) = C(0) and

X (1) = X(0) + A(0)[S(1) — S(0)] = 2.166

e A(1)=0.5483, sell A(0) — A(1) shares
e X(2)=X(1)+A(1)[S(2) — S(1)] = 2.2003



Replication Experiment

Time Stock Price Call Price Delta Wealth
0] 55.5625 2.2715 0.5629 2.2715
1 55.3750 2.1176 0.5483 2.1660
2 55.4375 2.1009 0.5539 2.2003
3 56.5625 2.7256 0.6481 2.8235
4 59.1250 4.5831 0.8268 4.4841
5 60.3125 5.5702 0.8899 5.4659
6 61.3125 6.4562 0.9313 6.3558
7 60.6250 5.7970 0.9166 5.7155
8 62.6875 7.7346 0.9724 7.6060
9 61.2500 6.3360 0.9507 6.2082
10 63.2500 8.2681 0.9873 8.1095
11 64.1875 9.1933 0.9953 9.0351
12 64.2500 9.2531 0.9972 9.0973
13 65.0000 10.0007 0.9992 9.8452
14 63.0000 8.0025 0.9974 7.8467
15 64.1875 9.1877 0.9997 9.0310
16 65.8125 10.8125 1.0000 10.6556
17 68.2500 13.2500 1.0000 13.0931
18 68.1250 13.1250 1.0000 12.9681
19 68.8125 13.8125 1.0000 13.6556




A real data example (continued)

Loss 1n option:
S(T)— K =5(T) — 55 =13.8125

Portfolio value: X (T') = 13.6556

Loss with hedging: 13.8125 — 13.6556 = 0.1569
Loss without hedging: 13.8125 — C(0) = 11.5410
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28. Hedging portfolio sensitivities

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial Markets by
Jaksa Cvitanic and Fernando Zapatero.



Option sensitivities

e In general, a portfolio value X is sensitive to changes in values of all
parameters.

e Partial derivatives of the portfolio value with respect to parameters are
called greeks

- Delta: A = %X

. 0
- Gamma: I = g—;X
- Vega: V = %X

- tho: p= %X



Approximation by Taylor expansion

e From Taylor’s expansion,

X(t+ At, s+ As) = X(t, ) 1 8Xc(§t’ ) AS 8Xc{§i’3) At
S
194X (t,s) 194X (t, s) 0% X (t, s)
- I AS? 4+ = LAt 4 ZASAL + - -
T B0 Ty AU T T AR

where

AS = S(t+ At) — S(t)
e Approximation:

X(t+At,s+As)%X(t,s)Jr/\-/\SJr@-AtJr%F-ASQ




Approximation by Taylor expansion (continued)

e If the portfolio is delta-neutral, that is, its A is zero, then

AX ~ OAt + %FASQ

o If I' is strictly positive, any change in the value of the underlying tends to
increase the value of the portfolio.

e If o0 and r are stochastic:

X(t+ At,s+ As,0 + Ao, r + Ar))

0X 0X 0X 0X
= X(t,s,0,7) I As A 80AJ e Ar A P At
2 2 2
_|_18_XA52 | 18XAO-2_|_18_XA7~2_|_...

2 52 2 o2 2 Or2



Example

e Denote by I' the gamma of portfolio X, and by I'c the gamma of a con-
tingent claim C. We want to buy/sell n contracts of C' in order to make
the portfolio gamma neutral, that is,

I'+nl'c=0

o This implies
I'

n:—%

e However, taking this additional position in C' will change the delta of the
portfolio. We then buy/sell some shares of the underlying asset in order
to make the portfolio delta-neutral. This does not change the gamma,
because the underlying asset S has zero gamma. (Why?).



Example (continued)

e As an example, let’s say a delta-neutral portfolio X has a gamma I' =
—5,000. A traded option has A¢ = 0.4 and I'c = 2. We buy n =
5,000/2 = 2,500 option contracts, making the portfolio gamma-neutral.
This makes the delta of the portfolio equal to

Ax =2.500-0.4=1,000 .

o Thus, we have to sell 1,000 shares of the underlying asset to keep the
portfolio delta-neutral.



Example (continued)

e If we want to make a portiolio vega-neutral, in addition to delta-neutral
and gamma-neutral, then it is necessary to hold two different contingent
claims written on the underlying asset. In this case we want to have

F+n1F1 —I_nQFQ =(

V+niV) +n2Ve =0,

where n;,I';, V; are the number of contracts, the gamma and the vega of
claim «.

e This is a system of two equations with two unknowns which can typically
be solved. At the end, we still have to adjust the number of shares in the
new portfolio in order to make it delta-neutral, similarly as above.



Portfolio insurance

Idea: A put option with our portfolio as the underlying protects against
portfolio losses

Problem: such options are not traded.
Solution: a synthetic put - replicating the put payoit by trading.

However, it led to large losses in the crash of October 1987, due to loss of
liquidity.



The Story of Long Term Capital Management

* Merton and Scholes were partners

* Anticipated spreads between various rates to
become narrower

e “Russian crisis” pushed the spreads even wider

 LTCM was highly leveraged — margin calls forced it
to start selling assets, others also did, their prices
went even lower, losses huge in 1998

e Bailed out by government effort

 The reasons: high leverage and unprecedented
extreme market moves






Pricing Options with Mathematical Models

29. Introduction to Interest rate
models

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Bond price as expected value

e We assume that the price of a security is the expected value of the dis-
counted payoff under some risk-neutral probability, now denoted P, not

Q.

e For a pure discount bond paying $1.00 at maturity, in discrete time, with
maturity in n periods,

P(t,n) = E; [H?’Ol (11 + ?"@)]

e In continuous time, with maturity 7T,

P(t,T) = E; {e— ftTr(U)du}



Price of bond option as expected value

e For a European call on the bond, with call’s maturity at 7, and t < 7 < 71"

e In discrete time, (where 7 is equal to m periods)

- - +
1 1
C(t) =F E — K
o= H?oluw( | EE ) )

Ct) = By |~ 17 i (B, [T r] _ ) +




InNnterest Rate Tree

Fuuu

P(0,3)

rdd
P(1,3)
rddd
P(2,3)\;



Example

One-year interest rate today is 4%, one year from now it can go up to 5%
or go down to 3%.

A two-year zero-coupon bond with nominal value $100 trades at $92.278.

We want to price an European call option on the bond, with T = 1,
K = 96.

One year from now, the price of the bond will be, if r = 5%,

100
—— = 95.238
1.05
and if r = 3%,
1
1Y 97.087

1.03



Example (continued)

e By no-arbitrage, if p is the risk-neutral probability that the interest rate
will be 5% one year from now, we necessarily have

1
92.278 = 7 (p~ 95.238 + (1 — p) - 97.087)

e Then p = 0.605 and we can now price the call option:
1
i (p(95.238 — 96) T + (1 — p)(97.087 — 96) ")

1
o7 (1 —0.605)1.087 = 0.413
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30. Continuous-time interest rate models

Some of the content of these slides iIs based on material from the
book Introduction to the Economics and Mathematics of Financial
Markets by Jaksa Cvitanic and Fernando Zapatero.



Modeling the short rate

e Historically, the first approach was to model the dynamics of r, the short
rate, using an SDE of the type

dr(t) = p(t,r(t))dt + o(t,r(t))dW(t)

o It is typically modeled directly under the risk-neutral probability, that is,
W now denotes W<.

e The models of the short rate with just one Brownian motion are called
one-factor models.



Vasicek model

The interest rate satisfies
dr = a(b—r)dt + odW
where a,b and o are constant.
This is a well-known Ornstein-Uhlenbeck process in stochastic calculus.
It 1s a mean-reverting process.

Interest rate has normal distribution and can become negative.

It results in closed-form solutions for bond and option prices.



Cox-Ingersoll-Ross (CIR) model

The interest rate satisfies
dr = a(b—r)dt + o/rdW
where a,b and o are constant.

The interest rate cannot become negative.

The volatility of the interest rate is stochastic, as a function of the interest
rate level.

It also results in closed-form solutions for bond prices.



More one-factor models

e Ho-Lee model:

dr = b(t)dt + ocdW
Hull-White model:

dr = |b(t) — ar|dt + cdW

Black-Derman-Toy model:

dr = rla(t)dt + odW]

e The pricing PDE for the option value with payoff g(r(T)) is

1
Ct + 50-207“7“ + JU/OT —rC = 07 C(Ta T) — g(’l")



Affine models of the term structure

e We wish the price of the bond to be of the form, for deterministic functions
A? B7
P(t,T) _ GA(t,T)—B(t,T)r(t)
e Since P(T,T) =1, we need to have
AT, T)=0, B(T,T)=0
e The pricing PDE for the bond price is

1
P, + 5021% +uP. —rP =0, P(T,T)=1



Affine models (continued)

o If we assume affine dynamics

w(t,r) =at)r+pt), o*(t,r) =~t)r+6(t)
the PDE becomes

1 | 1 ]
At—5B+§5B2—T’ l*l—Bt‘l—OfB—§’)/B2 :O

e Both terms have to be zero, which yields two ODE’s
[ 1o
Bt+OéB—§’)/B :—1, At:BB—§6B

that have explicit solutions in the Vasicek and Cox-Ingersoll-Ross models.
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31. Forward rate models

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial Markets by
Jaksa Cvitanic and Fernando Zapatero.



Forward rates

Forward rate investment: At time ¢, ¢t < S < T, sell short one S-bond,
buy P(t,S)/P(t,T) T-bonds. At time S pay 1 and get P(t,S)/P(t,T) at
time 7. Continuous rate R:

| . R(EST)(T-S) _ P(t,S)

P(t,T)
log P(t,T) — log P(t, S)
R(t:5.T) =
(4:5,T) T — S
Instantaneous forward rate:
Olog P(t,T)
t.T) =

P(ta T) =3 ftT f(t,u)du



Heath-Jarrow-Morton (HJM) model

The objective is to model simultaneously the whole term structure, not
just the short-term rate, which is usetul for calibration purposes.

The price of a zero-coupon bond is

P(t,T) — B, [6_ I r(u)du] — e [ ftu)du

HJM model is a model for forward rates:

df (t,T) = a(t, T)dt + o " (¢, T)dW (t)

Here, ™ denotes “transpose” of a matrix,in case W is multidimensional.



HJM model (continued)

No arbitrage implies that the drift of the bond price is r(t)P(t)dt.

After some algebra, this implies:
T
a(t.T) = o7 (¢, T) / o (¢, u)du
t
so that the term structure of the drift is uniquely determined by the term
structure of volatility:.

In calibration, we use the fact that

0log P(0,T)
oT

f(0,T) =

Then, a model for volatility needs to be chosen.



HJM example

e [lat term structure:
o(t,T)

o

T
a(t,T)=0 | odu
t

o?(T —t)

Theretfore,

df (t,T) = o*(T — t)dt + cdW (t)
ft,T) = f(0,T)+ o*t(T —t/2) + oW (t)
r(t) = f(t,t) = f(0,t) + c*t*/2 + oW (t)

dr(t) = _a% £0.8) + 02| dt + odW (1)




BGM market model

e The forward LIBOR rate:

1-[1+ATL(t,T;)] = Pf(’t(’tTfZ‘)l)
P(t, T;—1) 1

Lt T) = ATP(t,T)) AT

e We want to consider it under probability P?¢, called T}-forward measure,
under which discounting by 7T;—bond results in a martingale:

dL(t,T;) = L(t,T;)(t, T;)dW " (t)



Pricing a caplet in the market model

e Caplet payoft:
(L(T;-1,T;) — Re) ™

The value is given by
P(t,T,)E, " [(L(T;—1,T;) — Rc)™]
Black caplet formula: volatility determined from

1 11
2 2
_ T))d




A general way to price a caplet

e Denote by P = P(T;_1,T;), and recall that LAT = 1/P — 1. Thus, the
caplet payoff at time 7T} is given by

1 T 14+ RAAT 1 +
)= [ = — (1 AT)| = P
(%) (P (L+Re )) P (1+R0AT )

1
1+Rc AT

e Denoting K = the payoft is

C(T) = (K — P)?



A general way to price a caplet (continued)

e Note that this payoff is paid at time T, but it is known at time 7;_1.
e The price at moment T; 1 of payoff C(T;) paid at T; is P x C. Why?
e This means that the payoff C'(T;) at time T; is equivalent to the payoff

1
PxC(T})) = =(K - P)*
K
at time T;_1, equivalent to 1/K put options on the bond maturing at T,

with option maturity equal to 7;_1, and strike price equal to K.
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32. Change of numeraire method

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial Markets by
Jaksa Cvitanic and Fernando Zapatero.



Other pricing probabilities

e Suppose C/S is a martingale under probability P, where S is a numeraire
security, and C is any other security. Then

E;[C(T)/S(T)] = C(1)/S(t)

e This is true for any payoff C'(T'), and the price is

C(t) = S(t)E;[C(T)/S(T)]



Example

C(t) = S(E;[C(T)/S(T)]

Compute
D(t) = EZle "I S(T) 1 5(1)> k3]

Change to P~:

r(T—T) o (T=T)

D(t) = SO Ls(ry-10) = SOPY(S@) > K) = SOP (S < “— )

T‘(T_t) L] L]
e S
S s a P~ -martingale, we have

Since M (t) :=

dM (t) = —a M (t)dW?(t)
M(T) = M(t)e= 27 (T=0)=o[W(T)=W=(#)]

It is now easy to compute P (M(T) < 1/K)



Black-Scholes-Merton formula for bond options

e Consider zero-coupon bond prices P(t,T) and an asset price process S
such that F'(t) = S(t)/P(t,T) has deterministic volatility oz(t). Then,
the FEuropean call price is

C(0) = S(0)N(dy) — KP(0,T)N(ds)

where
I 50) 1,
=S (log KP(0.T) §EF(T)>
I S 1.,
2= 5 (o ez~ 27HD)
S (T) = \/ /0 o2 (u)du



Bond option example

e Call option price in the Vasicek model. Consider a call option with
maturity 77, on a To—bond, T7 < T5. The process F'(t) = P(t,15)/P(t,T})
is of the form

F(t) — eA(t’TQ)_A(taTl)_(B(taTQ)—B(t,Tﬂ)T(t)

for some deterministic functions A and B, and
op(t) = —0o|B(t,Ty) — B(t,T1)

Thus, it is deterministic, and we can use the formula.
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33. Introduction to credit risk models

Some of the content of these slides Is based on material from the
book Introduction to the Economics and Mathematics of Financial Markets by
Jaksa Cvitanic and Fernando Zapatero.



Structural models

e Denote by V the “value of the firm”. We assume the B-S-M model for it:

dV = (r — 6)Vdt + oy VdW

e Denote by E the value of equity, by 71" the maturity of the debt and by
D the nominal value of debt. The value of equity is a call option on the

value of the firm:
E(T) =max(V(T)— D,0)

e Bondholders receive

min(V (T), D) = D — max(D — V(T),0)



Structural models (continued)

e Firm value V(0) not observable. However,
E(0) = BS(V(0),0v)

O'EE(O) — N(dl(VO, Jv))V(O)O'V

where the second equality comes from equating the volatilities of £ and
the call option on V.



Reduced-form, intensity models

e The simplest case: the probability distribution of default is exponential,

with intensity A.

e Denote by A the event that default has not occurred by time T

e Price of a contingent claim with payoff C'(T) (independent of default

event):
C(0)=E[e ™ C(T)14] = Ele ™ C(
= Ele7™C(
:e—frTO«(

|
&S

T
T
T

)
)

)

B
P

1 4]
Al

— AT

€



Reduced-form, intensity models (continued)

e Thus, the price of a defaultable claim is obtained by discounting at a
higher rate r + A:

C(0) = E [e—<"‘+>‘)TC(T)]
e If the interest rate is stochastic and the intensity a function of time,

C(0) = E [e— fOT[r<u)+A<u>]duC(T)]

e Empirically, implied default probability is much larger than the historical
default probability.
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