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a b s t r a c t

Recent studies in adult humans have reported correlations between individual differences

in people’s Social Network Index (SNI) and gray matter volume (GMV) across multiple re-

gions of the brain. However, the cortical and subcortical loci identified are inconsistent

across studies. These discrepancies might arise because different regions of interest were

hypothesized and tested in different studies without controlling for multiple comparisons,

and/or from insufficiently large sample sizes to fully protect against statistically unreliable

findings. Here we took a data-driven approach in a pre-registered study to comprehen-

sively investigate the relationship between SNI and GMV in every cortical and subcortical

region, using three predictive modeling frameworks. We also included psychological pre-

dictors such as cognitive and emotional intelligence, personality, and mood. In a sample of

healthy adults (n ¼ 92), neither multivariate frameworks (e.g., ridge regression with cross-

validation) nor univariate frameworks (e.g., univariate linear regression with cross-

validation) showed a significant association between SNI and any GMV or psychological

feature after multiple comparison corrections (all R-squared values " .1). These results

emphasize the importance of large sample sizes and hypothesis-driven studies to derive

statistically reliable conclusions, and suggest that future meta-analyses will be needed to

more accurately estimate the true effect sizes in this field.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

It has been well-documented that neocortex volume is posi-
tively correlated with social group size across multiple

primate species (Dunbar, 1998; Dunbar & Shultz, 2007), an
intriguing finding that has motivated a number of subsequent
studies in humans (see below). It is important to keep in mind
that social group size is of course not the only factor in the
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evolution of large brains: it is merely one variable amongst

many interacting variables that determines fitness. For
instance, diet and other ecological variables are also associ-
ated with brain size (Barton, 1999). Nonetheless, across the
many variables that contribute to brain size (or to gray matter
volume of specific structures), social group size remains as
one of the most robust when studies examine this question
across species (Dunbar & Shultz, 2017).

While the correlation between brain volume and social
group size is robust across species, it has also been suggested
that a similar association might obtain across individuals
within a species: some individuals are embedded in larger or

smaller social groups, and one might expect this variation in
social behavior to be related to the brain. In particular, one
might expect the variation to be related to brain structures
implicated in social cognition. A number of studies have
examined this within-species hypothesis in humans (Table 1)
by correlating GMV of structures such as amygdala with
various social network metrics, in particular self-reports of
the number of people one has contactedwithin a given period,
such as the social network index or SNI, a metric we also used
in the present study.

A study in macaques even suggests the causal hypothesis

that social group size could cause changes in brain size (Sallet
et al., 2011): macaques randomly assigned to live in larger
groups showed increased GMV in certain brain structures
thought to underlie social cognition. Whether on the time-
scale of evolution or of the life of an individual, the above
varied findings raise the hypothesis that social network met-
rics in humans might be correlated with GMV in specific brain
structures.

However, characterizing social networks in humans is
fundamentally different from quantifying social group size in
other primates due to the greater complexity and variability of

human social relationships (Dunbar, 1998). Previous studies
attempting to test the within-species hypothesis in humans
(Table 1) have employed various metrics of social networks,
such as the number of people one had seen or talked to at least
once every two weeks (Bickart, Wright, Dautoff, Dickerson, &
Barrett, 2011; Bickart, Hollenbeck, Barrett, & Dickerson, 2012;
Bickart et al., 2011), the number of people one had contacted
over the last 12months, 30 days, or 7 days (Kwak, Joo, Youm,&
Chey, 2018; Lewis, Rezaie, Brown, Roberts, & Dunbar, 2011;
Noonan, Mars, Sallet, Dunbar, & Fellows, 2018; Powell, Lewis
Penelope, Roberts, Garcı́a-Fi~nana, & Dunbar, 2012), or the
number of friends one had on social media (Kanai, Bahrami,

Roylance, & Rees, 2012). While all those metrics can fluc-
tuate over months, weeks, and even days for an individual,
GMV of brain structures are relatively stable over time in
healthy adults. This makes at least some metrics of social
networks in humans, such as the SNI, prima facie implausible
candidates for being correlated with variability in structural
brain measures, raising some caution about how to interpret
any putative findings.

Indeed, previous studies in humans investigating the
relationship between social network metrics and GMV have
produced inconsistent results (Table 1). For instance, while

some studies showed that bilateral amygdala volume was
positively correlated with SNI (Bickart et al., 2011), others
failed to replicate these relationships (Spagna et al., 2018). In

addition, the different regions of interest hypothesized, and

different methods for correcting for multiple comparisons
used in past research might also contribute to the discrepant
findings (Kanai et al., 2012; Lewis et al., 2011; Noonan et al.,
2018).

Here, we took a purely data-driven approach to examine
the relationship between SNI and GMV, with the aim of
uncovering any relationships with specific brain regions. We
did not hypothesize SNI to correlate with GMV of any specific
brain region, and instead comprehensively tested the effect of
every cortical and subcortical volume to see if an agnostic
approach would discover (or reproduce) any candidates. We

examined these relationships using three different predictive
modeling frameworks, which capitalized on the strengths of
both multivariate analyses and univariate analyses, explored
the prediction performance with or without feature selection,
and implemented cross-validation to increase the generaliz-
ability of our results. To handle multiple comparisons, all ef-
fects within a framework was corrected for false discovery
rate (FDR). Since previous studies have also reported that
various psychological measures such as personality and
perceived stress were linked to individual differences in social
networks (Asendorpf & Wilpers, 1998; Nabi, Prestin, & So,

2013), we also included a list of psychological measures in
our frameworks. All hypotheses and measures were prereg-
istered and can be accessed at https://osf.io/mpjkz/?view_
only=7fd32ce53d434f4b8dbd0339579a8efa.

2. Material and methods

2.1. Participants

Ninety-two healthy participants [41 females, Age (M ¼ 29.64,
SD ¼ 6.30, ranged from 18 to 47)] were recruited from the Los
Angeles metropolitan area by the Caltech Conte Center for
Social Decision-Making (P50 MH094258). All participants were
fluent in English, had normal or corrected-to-normal vision
and hearing, had Full Scale Intelligence Quotient greater than

or equal to 90, had no first degree relative with schizophrenia
or autism spectrum disorder, and had no history of develop-
mental, psychiatric, or neurological disease. All participants
provided written informed consent approved by the Institu-
tional Review Board of the California Institute of Technology.

2.2. Magnetic resonance imaging

All MRI data was acquired using a 3T whole-body system

(MagnetomTIMTrio, SiemensMedical Solutions, Malvern, PA)
with a 32 channel receive head array at the Caltech Brain
Imaging Center. Structural imaging data was acquired by the
Imaging Core of the Caltech Conte Center for Social and De-
cision Neuroscience as part of a larger, multi-group con-
sortium and analyzed retrospectively for this project.
Structural images were acquired with one of two imaging
protocols, corresponding to the first and second phases of the
Caltech Conte Center (61 participants from Phase 1 and 31
participants from Phase 2). The Phase 1 protocol included two
independent MP-RAGE acquisitions with TR/TE/TI ¼ 1500/2.9/

800 msec, flip angle ¼ 10#, 1 mm isotropic voxels, 176 slab
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Table 1 e Summary of previous studies in humans on the correlations between social network metrics and GMV of cortical and subcortical structures of the brain.

Literature Hypothesized Regions
(ROIs)

Social Network Metrics Sample Size Age
Range

Correction for Multiple
Comparisons

Significant Regions

Bickart et al. (2011) 1) amygdala
2) hippocampus
3) exploratory

analysis of all
other subcortical
regions

4) exploratory
analysis of all
cortical thickness

2 subscales of SNI: the
number of people in
social network,
the number of embedded
networks

N ¼ 58 19e83 For 1) and 2): linear
regressions, uncorrected
For 3): linear regressions,
Bonferroni correction for
testing multiple regions,
but not for multiple SNIs
For 4): general linear
regressions, uncorrected

L amygdala
R amygdala
If uncorrected for
multiple comparison
(p < .01), also:
R subgenual ACC
L caudal SFG
L caudal ITS

Lewis et al. (2011) 1) mPFC
2) TPJ
3) STS
4) frontal pole

Dunbar’s number:
the number of people
contacted in previous
30 days

N ¼ 45 18e50 p < .001 uncorrected
with an extent
threshold of >5 voxels
within ROIs
*survived small
volume correction
at p ¼ .05 with 8 mm
radius spheres

*Ventromedial frontal gyrus
Medial orbitofrontal gyrus

Kanai et al. (2012) 1) amygdala
2) posterior STS
3) TPJ
4) mPFC
5) precuneus
6) medial temporal lobe

Online social
network size:
the number of
Facebook friends

Sample 1
N ¼ 125
Sample 2
N ¼ 40

Sample 1
23 ± 4
Sample 2
22 ± 3

Sample 1
p < .05 family-wise
error corrected
for the whole-brain
volume
*only survived correction
for small
volumes of 10 mm spheres
around ROIs
Sample 2
p < .05 uncorrected for testing
multiple loci identified in Sample 1

R posterior STS
R entorhinal
L middle temporal gyrus
*L amygdala
*R amygdala

Bickart et al. (2012) 1) amygdala,
controlling for
network connectivity

All three subscales of SNI N ¼ 29 19e32 Linear regressions, uncorrected Amygdala

Powell, Lewis
Penelope,
Roberts,
Marta, and
Dunbar (2012)

1) orbital PFC
2) dorsal PFC

The number of people
contacted
in previous 7 days

N ¼ 40 18e47 Path analysis, uncorrected Orbital PFC

(continued on next page)
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Table 1 e (continued )

Literature Hypothesized Regions
(ROIs)

Social Network Metrics Sample Size Age
Range

Correction for Multiple
Comparisons

Significant Regions

Von Der Heide,
Vyas, and
Olson (2014)

1) amygdala
2) R subgenual ACC
3) L posterior ITS
4) L posterior SFG
5) posterior STS
6) middle temporal gyrus
7) entorhinal
8) OFC

3 measures: the number
of Facebook
friends, Dunbar’s
number, Norbeck
Social Support

N ¼ 40 females 12e30 p < .05 family-wise error corrected
for small volumes of 10 mm radius
spheres around the ROIs;
uncorrected for testing
multiple measures

L amygdala,
R amygdala,
L posterior ITS
L posterior SFG
L entorhinal
R entorhinal
L OFC
R OFC

Noonan et al. (2018) 1) ACC 2 measures: the number of
people contacted in previous
7 days, the number of people
contacted in previous 30 days

N ¼ 18 52 ± 15 Whole brain approach only reporting
regions that bilaterally survive (p < .0001)
with an extent threshold of >40 voxels
ROI approach p < .05 family-wise error
corrected for small volumes
of all voxels in the ROI

Subcallosal parts of vmPFC
Anterior temporal cortex
The border of posterior
cingulate cortex and
precuneus

Spagna et al. (2018) 1) AIC
2) amygdala
3) exploratory

analysis of all
other cortical
thickness

A composite measure
of all three
subscales of SNI

Sample 1
N ¼ 50
Sample 2
N ¼ 100

Sample 1
19e37
Sample 2
18e29

For 1) and 2): p < .05 with
contiguous-voxel
extent thresholds estimated
using AlphaSim
For 3): p < .05 family-wise error corrected
for the whole-brain volume

L AIC in Sample 1
R AIC in Sample 2 and
when both samples
were combined

Kwak et al. (2018) 1) amygdala
2) OFC
3) dorsal mPFC
4) TPJ
5) precuneus

The number of
people discussed
things with in the
last 12 months

N ¼ 68 59e84 p < .05 family-wise error corrected
with a cluster defining threshold of p < .001 estimated
by the Gaussian random field

R OFC dorsal mPFC

Abbreviations: L left, R right, ITS inferior temporal sulcus, SFG superior frontal gyrus, ACC anterior cingulate cortex, mPFC medial prefrontal cortex, TPJ temporoparietal junction, STS superior
temporal sulcus, OFC orbitofrontal cortex, AIC anterior insular cortex.
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partitions, no in-plane GRAPPA, for a total imaging time of

12 min 52 sec. The Phase 2 protocol included a single multi-
echo MP-RAGE (MEMP-RAGE) acquisition with TR/TE/
TI ¼ 2530/1.6 to 7.2/1100 msec, flip angle ¼ 7#, .9 mm isotropic
voxels, 208 slab partitions, in-plane GRAPPA R ¼ 2, for a total
imaging time of 6 min 3 sec. Both protocols generated T1-
weighted structural images with comparable tissue contrast,
SNR (following image or echo averaging) and voxel
dimensions.

2.3. Estimation of cortical and subcortical volumes

Individual structural images were segmented and the cortical
gray matter ribbon parcellated using the recon-all pipeline
from Freesurfer v6.0.0 (Fischl, 2012). The pipeline initially
registered and averaged the two separate T1-weighted images
from the Phase 1 protocol prior to subsequent processing.
Images from Phase 1 and Phase 2 protocols were processed
independently and all images were resampled isotropically to
1 mm voxels prior to RF bias field correction and tissue seg-
mentation. One hundred and forty-eight cortical gray matter

parcel volumes (74 parcellations per hemisphere) corre-
sponding to the Destrieux 2009 atlas (Destrieux, Fischl, Dale,&
Halgren, 2010), seventeen subcortical region volumes, and
estimated total intracranial volumes were compiled from the
Freesurfer output for subsequent analysis in R. All cortical and
subcortical volumes were normalized with respect to esti-
mated total intracranial volume.

2.4. Social network index

The social network metric used in the present study is a
subscale of the social network index, or SNI (Cohen, Doyle,

Skoner, Rabin, & Gwaltney, 1997). This metric is a self-report

questionnaire that quantifies the number of people partici-
pants saw or talked to at least once every two weeks in 12
different social relationships (e.g., spouse, children, relative,
friend, neighbor, workmate). Participants from Phase 1 and
Phase 2 did not differ inmean SNI (t¼ .93, p¼ .355; two-sample
two-sided t-test). In addition to the SNI, we also asked par-
ticipants to provide the modes of communication (e.g., face-
to-face conversation, text, voice/video chat, social media)
and types of support (e.g., emotional support, physical assis-
tance, advice/information, companionship) used in those so-
cial relationships. Those variables were measured for the

purpose of exploring whether SNI might be also associated
with individual differences in modes of communication and
types of support, as preregistered (see Appendix A).

2.5. Psychological measures

The cognitive ability of participants was measured with the
Wechsler Abbreviated Scales of Intelligence-II (Wechsler,
2011), deriving two scores, verbal comprehension

(M¼ 109.20, SD¼ 10.02) and perceptual reasoning (M ¼ 104.80,
SD¼ 10.86). The emotional intelligence (EI) of participants was
measured with the Mayer-Salovey-Caruso Emotional Intelli-
gence Test (Mayer, Salovey, & Caruso, 2002), deriving two sub-
scores, experiential EI (M ¼ 103.60, SD ¼ 14.48) and strategic EI
(M ¼ 99.49, SD ¼ 10.54). The empathy level of participants was
measured with the Empathy Quotient (Baron-Cohen &

Wheelwright, 2004) [M ¼ 50.84, SD ¼ 12.05]. The personality
of participants was measured with the Sixteen Personality
Factor Questionnaire (Cattell, Eber, & Tatsuoka, 1970; Russell,
Karol, & Institute for Personality and Ability Testing, 2002),

deriving five global scores, extraversion (M ¼ 5.62, SD ¼ 1.85),

Fig. 1 e Illustration of three predictive modeling frameworks. (A) Framework 1 performed ridge regression with cross-
validation using selected features. Features were selected within the cross-validation loop based on univariate correlations.
The hyperparameter of ridge regression was tuned using a nested cross-validation loop. (B) Framework 2 performed ridge
regression with cross-validation using all features. (C) Framework 3 performed univariate ordinary least-squares linear
regression between each feature and SNI within the cross-validation loop.
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independence (M ¼ 6.14, SD ¼ 1.67), tough-mindedness

(M ¼ 4.35, SD ¼ 1.60), self-control (M ¼ 4.35, SD ¼ 1.38), and
anxiety (M ¼ 5.65, SD ¼ 1.85). The affect of participants was
measured with the Positive and Negative Affect Schedule
(Watson, Clark, & Carey, 1988), deriving two scores, positive
affect (M ¼ 31.68, SD ¼ 8.43) and negative affect (M ¼ 12.53,
SD ¼ 4.03). The stress level of participants was measured with
the Perceived Stress Scale (Cohen, Kamarck, & Mermelstein,
1983) [M ¼ 12.36, SD ¼ 6.52]. The depression severity of par-
ticipantswasmeasuredwith the Beck Depression Inventory-II
(Beck, Steer, & Brown, 1996) [M ¼ 5.08, SD ¼ 5.60]. The trait
anxiety of participants was measured with the State-Trait

Anxiety Inventory (Speilberger, Gorusch, Lushene, Vagg, &

Jacobs, 1983) [M ¼ 34.96, SD ¼ 9.31].

2.6. Predictive modeling framework

To comprehensively understand the relationship between SNI
and GMV, we carried out three independent analyses using
three different predictive modeling frameworks (Fig. 1).
Framework 1 follows our pre-registered analysis plan and

performed multivariate analysis (ridge regression) with cross-
validation and feature selection. As recommended by recent
research (Finn et al., 2015), we used univariate Pearson’s cor-
relation between each feature and SNI as a criterion for
feature selection. Specifically, we had an outer cross-
validation loop that randomly split the data into training
(80%) and test (20%) sets for 2000 iterations; in each outer loop
iteration, the univariate Pearson’s correlation between each
feature and SNI was assessed using the training data, and
features that showed significant correlations with SNI (p < .05)
were selected to construct a ridge regression model to predict

SNI; the prediction accuracy of the model was then assessed
using the test data. The hyperparameter (regularization pen-
alty) of ridge regression was tuned using a nested cross-

validation loop: the training data from the outer cross-

validation loop were further randomly split into inner-
training (80%) and inner-test (20%) for 20 iterations, and the
optimal hyperparameter value was selected among 20 values
in the interval of [1, 10,000] across the 20 iterations.

To address the concern that the feature selection proced-
ure might have omitted some features that did have associa-
tions with SNI, Framework 2 performed ridge regression with
cross-validation without feature selection: the same proced-
ures as in Framework 1were used to construct the outer cross-
validation loop and to tune the hyperparameter of ridge
regression, except that the ridge regression model was fitted

with all features in each iteration instead of selected features.
To address the concern that the weights produced by multi-
variatemodels such as ridge regression could bemisleading in
the presence of correlated noise (Haufe et al., 2014;
Kriegeskorte & Douglas, 2019), Framework 3 performed uni-
variate linear regressions between every feature and SNI with
cross-validation; cross-validation was constructed following
the same procedures as in the first two frameworks for the
outer cross-validation loop.

The prediction accuracy of each framework was assessed
with two measures, Pearson’s r and prediction R2. Pearson’s r

assessed the correlation between observed and predicted
values of SNI in the test data. Prediction R2 measured the
improvement of predicting SNI with our frameworks over the
observed mean of SNI in the test data. The final reported pre-
diction accuracy for each framework was averaged over the
2000 (outer loop) cross-validation splits. The p-values of pre-
diction accuracies andmodel coefficients were calculated from
permutations, where the null distributions were generated by
randomly permuting the SNI labels across the sample for 10,000
iterations and in each iteration repeating all the analysis steps
of a predictive framework. We handled multiple comparisons

by correcting for false discovery rate (q < .05), which was

Table 2 e Results from univariate analyses of Framework 3. Model coefficients and prediction accuracies (with SDs, and p-
values corrected for FDR) of the top ten features with the largest positive and negative effect sizes.

Features coeff coeff-SD coeff-p r r-SD r-p R2 R2-SD R2-p

16 PF_Extraversion .36 .04 .13 .35 .18 .78 .10 .13 .77
16 PF_Independence .31 .05 .44 .29 .23 .78 .06 .16 .77
L-Accumbens-area .23 .05 .89 .23 .20 .78 .03 .09 .77
Empathy Quotient .22 .05 .89 .20 .22 .78 .02 .10 .77
PANAS-Positive .20 .04 .89 .19 .18 .78 .02 .08 .77
L-Middle-temporal-G .19 .05 .89 .17 .19 .78 .01 .08 .77
L-Planum-temporale-superior-temporal-G .18 .06 .89 .17 .25 .78 .00 .10 .77
R-Caudate .17 .06 .89 .17 .23 .78 .00 .09 .77
L-Anterior-circular-S-insula .17 .06 .89 .12 .25 .78 $.02 .09 .77
L-Caudate .15 .06 .89 .15 .23 .78 $.01 .08 .77
L-Calcarine-S $.18 .05 .89 .18 .20 .78 .01 .08 .77
L-Inferior-circular-S-insula $.18 .04 .89 .18 .17 .78 .02 .06 .77
R-Cuneus $.19 .05 .89 .19 .19 .78 .02 .08 .77
L-Anterior-transverse-collateral-S $.21 .06 .89 .20 .23 .78 .01 .11 .77
Perceived Stress $.22 .04 .89 .22 .18 .78 .03 .08 .77
L-Temporal-pole $.24 .05 .89 .24 .19 .78 .04 .10 .77
STAI-Trait $.26 .04 .79 .25 .18 .78 .05 .10 .77
L-Paracentral-lobule&S $.29 .05 .44 .29 .19 .78 .07 .12 .77
R-Lingual-medial-occipitotemporal-G $.30 .04 .44 .31 .17 .78 .08 .10 .77
L-Inferior-occipital-G&S $.35 .04 .13 .34 .18 .78 .10 .13 .77

Abbreviations: L left, R right, G gyrus/gyri, S sulcus/sulci, coeff coefficient.
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applied when multiple features were tested for associations
with SNI independently (i.e., univariate correlations in Frame-
work 3) as well as when they were tested jointly (i.e., model
coefficients in Frameworks 1 and 2). We handled the only bi-
nary feature, gender, by both removing the feature (which
generated the results we reported here) and stratification (i.e.,
the training and test sets in cross-validation had approximately

equal number ofmales and females); results from stratification
corroborated those reported in the present paper. All analysis
codes can be accessed at the Open Science Framework https://
osf.io/zumwt/?view_only=4f11ca10ed5947c1be1ecdea57cfdff3.

3. Results

As preregistered, we first analyzed whether individual differ-
ences in SNI could be predicted by demographic characteristics

and psychological measures alone. An exploratory factor
analysis showed that a six-dimensional structure underlies the
common variance of these eighteen psychological/de-
mographic features (negative affect, cognitive control, extra-
version, emotional intelligence, education, age and gender, see
Appendix B). Analyses across all three frameworks consis-
tently indicated that these eighteen psychological/de-

mographic features alone did not predict SNI (see Appendix C).
Next, we inspected whether cortical and subcortical GMV

together with psychological/demographic features could pre-
dict individual differences in SNI. Analyses from Framework 3
showed that the effect size of every feature was weak, and
none of the features alone predicted SNI after correcting for
multiple comparisons (Table 2; see Appendix D for results of
every feature). While univariate analyses generated model
coefficients that were straightforward to interpret, they left
open the question of whether multiple features combined

Fig. 2 e Predicting SNI with all GMV and psychological/demographic features. (A) Results from analyses of Framework 1. The
selection frequency (blue bars) of the top (most frequently selected) eighteen features over the 2000 iterations of the outer
cross-validation loop (left) and the mean prediction accuracy (red vertical line, assessed with Pearson’s r) averaged over the
2000 outer cross-validation iterations compared to the null distribution generated with permutation (right). The mean
prediction accuracy assessed with prediction R2 ¼ .060, p ¼ .136. (B) Results from analyses of Framework 2. Model
coefficients (blue dots) and standard deviations (black bars) of the top eighteen features (left) and the mean prediction
accuracy (red vertical line, assessed with Pearson’s r) averaged over the 2000 outer cross-validation iterations compared to
the null distribution generated with permutation (right). Themean prediction accuracy assessed with prediction R2 ¼¡.023,
p ¼ .404.
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might predict SNI. Analyses from Framework 1 and 2 showed
that features in their entirety did not predict SNI either (Fig. 2).

While our study used a predictive framework (using cross-
validation), we also recognize the value of descriptive effect
sizes in providing results that could be used to formulate hy-
potheses to be tested in future studies. To that end, we also
show, for every cortical and subcortical region over the brain,
the univariate effect size of the correlation between SNI and
GMV estimated using all data (Fig. 3, Appendix E).

4. Discussion

Following our preregistration, we applied a data-driven

approach to comprehensively examine the relationship be-
tween SNI and demographic, psychological, cortical and
subcortical GMV features, using three different predictive
modeling frameworks (Fig. 1). In our sample of healthy adult
humans, no evidence was found that any feature was signif-
icantly associated with SNI after multiple comparison cor-
rections (Fig. 2 and Table 2). These null findings echo recent
failed replications of various previously reported associations
between structural brain measures and behavioral measures,
including those between GMV and social network metrics
(Boekel et al., 2015; Kharabian Masouleh, Eickhoff,

Hoffstaedter, Genon, & Alzheimer’s Disease Neuroimaging
Initiative, 2019; Masouleh, Eickhoff, & Genon, 2020). It is

important to note that whether a given effect will be detected
as significant or not is of course highly dependent on the
sample size (i.e., the larger the sample size, the easier it is to
detect a given effect size); similarly, estimated effect sizes and
their statistical significance will vary depending on the anal-
ysis frameworks (e.g., methods for model construction and
multiple comparison corrections). Our study used a compar-
atively large sample, tested three different predictive
modeling frameworks, and included pre-registration to verify

the degrees of freedom in our analyses and to facilitate
sharing of data and codes. Regardless of statistical signifi-
cance, we note that the estimated effect size of most features,
in particular 159 of the 165 cortical and subcortical GMV fea-
tures, were very weak, even when assessed with the simplest
univariate correlation method (absolute values less than .20;
see Fig. 3 and Appendix E). These findings do not demonstrate
that there is no association between GMV and SNI, but they do
urge caution in interpreting prior reports of such associations.
We suggest that additional studies are needed on this topic,
and that a future meta-analysis based on all studies will be
required to obtain a more accurate estimate of the true effect

sizes on this topic.
Three features reported in previous studies (Table 1;

Asendorpf & Wilpers, 1998) to have a significant positive as-
sociation with social network metricsdextraversion, left
middle temporal gyrus GMV, and left anterior insula
GMVdand one feature reported in previous studies (Nabi

Fig. 3 e Descriptive effect sizes between SNI and every cortical GMV. The descriptive effect size of the univariate
associations between all cortical regions and SNI are shown to provide background for future studies that could test
hypotheses based on these results. Six renderings of the univariate Pearson correlations (uncorrected) between individual
cortical regions and SNI are projected on the pial surface for (A) the lateral view of the left hemisphere, (B) the superior view
of both hemispheres, (C) the lateral view of the right hemisphere, (D) the medial view of the left hemisphere, (E) the inferior
view of both hemispheres, and (F) the medial view of the right hemisphere. These effect sizes provide recommendations for
the sample sizes required to test associations between specific cortical regions and SNI, shown in Appendix E.
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et al., 2013) to have a significant negative association with

social network metricsdperceived stressdindeed showed
relatively larger effect sizes in expected directions among the
features in our sample (Table 2). However, those effect sizes
were still very weak andwere not significant in our study after
multiple comparison corrections. The left temporal pole GMV
has also been reported to positively correlate with social
network metrics (Table 1); though this region showed a rela-
tively larger effect size among our features (Table 2), it was in
the opposite direction from what has been reported previ-
ously (negative). Previously unreported regions in the left oc-
cipital cortex also showed a relatively larger negative effect

among the features. We do not have an explanation for these
negative effects and suggest that theymaywell be statistically
unreliable effects that turned up by chance given that we
sampled all brain regionsdindeed, these negative effectswere
not significant after multiple comparison corrections. None-
theless, the specific GMV regions discussed in this section
should serve as predictors in future hypothesis-driven studies
that could focus on one or several of these features.

We previously noted the reliable positive correlation be-
tween neocortex volume and social group size found across
species (Dunbar, 1998; Dunbar & Shultz, 2007), and that this

finding might suggest the possibility that such a relationship
would also exist across individuals within a single species
such as humans. However, any reliable relationship between
social network metrics for a specific individual and GMV is
less plausible once we consider that social network metrics
such as SNI in individual humans is quite changeable, fluc-
tuating as people move to new locations, get a new job, or
encounter other common transitions in their lives. Our failure
to replicate previously reported effects of GMV fit with this
picture, and raise the possibility that many prior findings
might be false positives. Measures other than the SNI that

could obtain more temporally stable metrics related to social
network size would seem better suited for investigating as-
sociations with GMV. Alternatively, more dynamic measures
of brain function, rather than structure, would seem better
suited for exploring associations with SNI. We would expect
that functional measures (or possibly others, such as from
diffusion MRI) might well yield associations with SNI (Bickart
et al., 2012; Dziura & Thompson, 2014; Hampton, Unger, Von
Der Heide, & Olson, 2016; Pillemer, Holtzer, & Blumen, 2017).

The non-significant effects of many previously reported
regions that we found in the present study might be related to
several limitations of our study, and of course do not demon-

strate that there is no effect. First, compared to the seminal
study that reported a correlation between amygdala volume
and SNI (Bickart et al., 2011), our sample has a narrower age
range, which might result in less variability in amygdala vol-
ume and therefore lower power to detect an association be-
tween amygdala volume and SNI. Second, all cortical and
subcortical GMV used in the present study were measured
based on automated segmentations from FreeSurfer without
any manual correction (although we did carry out manual
checks on a subset of the segmentation results to verify their
quality). This procedure has been shown to be no less accurate

thanmanual labeling (Bickart et al., 2011; Fischl et al., 2002), yet
potential errors in segmentation might have also reduced
power to find a relationship between SNI and GMV.

We conclude with three recommendations for future

research. First, studies attempting to test the relationship
between social network metrics and structural brain mea-
sures in humans should first ensure that their respective sets
of measures are approximately matched in terms of temporal
stability (e.g., using structural MRI predictors for temporally
stable network measures, but functional MRI predictors for
metrics such as the SNI). Second, given concerns about false
positives when testing for associations between multiple re-
gions and social network metrics, future studies should try to
preregister their hypothesesdand in particular, methods of
correcting for multiple comparisonsdbefore conducting the

analyses (Boekel et al., 2015; Kharabian Masouleh et al., 2019;
Masouleh et al., 2020; Nosek, Ebersole, DeHaven, & Mellor,
2018). Such preregistered studies, if focused on specific
neuroanatomical regions, should include sample sizes suffi-
ciently large to detect the hypothesized associations
(Appendix E). Aswell, it is essential for studies to share all data
and codes (e.g., throughOSF) so that futuremeta-analyses can
capitalize on all accumulated findings. Third, future studies
should focus on understanding the mechanisms that might
explain any association between social network metrics and
GMV of some regions in the brain. For example, some studies

have suggested that mentalizing might mediate such associ-
ations (Powell, Lewis, Roberts, Garcı́a-Fi~nana,&Dunbar, 2012).
This hypothesis could be tested with a more formal structural
equationmodel, namely, that GMV in brain regions thought to
subserve mentalizing causes individual differences in actual
mentalizing ability in real life, which in turn has a causal ef-
fect on how many people an individual associates with in
social networks. Future studies employing longitudinal de-
signs (e.g., repeatedly measuring social network metrics and
GMV over years), mediation analyses, and meta-analyses
would shed new light on the mechanisms underlying the

relationship between social network metrics and structural
brain measures.
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