

VSEPR

Reading: Gray: (4-5) OGN: (3.7) and (3.8)

Bonding in Complex Molecules

Valence Shell Electron Pair Repulsion Theory (VSEPR)

- Predicts the shapes of molecules
- Works very well for octets and for "expanded octets" (2nd and 3rd row elements)
- Doesn't work at all for transition metal complexes--too many groups and electrons to allow the use of sterics alone

Valence Shell Electron Pair Repulsion Theory (VSEPR)

Ron Gillespie McMaster College, Canada 1957 Sir Ronald Nyholm University College London, 1957

Rules of VSEPR Theory

- 1) Draw the best Lewis dot structure of the molecule
- 2) Assign a steric number (SN) to the structure

SN = (# of <u>bonded atoms</u>) + (# of <u>lone pairs</u>)

- Place the atoms and lone pairs as far apart as possible (while still keeping them connected to the central atom)
- 4) Deduce the molecular geometry by ignoring the positions of the lone pairs
- 5) Remember, Ione pairs are FAT

Examples of VSEPR

SN = 3 So Geometry is <u>Trigonal Planar</u>

4 Atoms Bonded to A Central Atom

SN = 4 So Geometry is <u>Tetrahedral</u>

3 Atoms Bonded to A Central Atom

SN = 4 So Geometry is <u>Trigonal Pyramidal</u>

2 Atoms Bonded to a Central Atom

Lone Pairs are FAT (#2)

$$OH_2 \rightarrow H : \dot{O} : H$$

H-O-H Angle > H-S-H Angle

$$SH_2 \rightarrow H: \dot{S}: H$$

H-S-H Angle > H-Se-H Angle

$$SeH_2 \rightarrow H : Se: H$$

Bent

Bent

Bent

104.5°H

Н

END VSEPR

Reading: Gray: (4-5) OGN: (3.7) and (3.8)

