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1887-1961

Highlights
® Born and educated in Vienna

® Received Nobel Prize in Physics with Paul
Dirac (1933)

Moments in a Life

® In 1927 Schrodinger moved to University of
Berlin as Planck's successor

® Develops his wave equation in 1926




The Schrodinger Equation

HY = EY

H is the Hamiltonian Operator; you can’t “cancel” the ¥

— “Cancelling” the Y is like “cancelling” the x in f(x) = mx.
You just can't do it.

« Our goal is to operate on ¥ (using the H Operator) and get
an energy (E) multiplied by the same Y.




Deriving the Schrodinger Equation

-This equation describes the energy of an electron:

Total Energy = Kinetic Energy + Potential Energy

E=KE + PE

-Start with this classical equation.

- Use classical and quantum mechanical relationships to
find the Hamiltonian Operator (H).

- Find values of ¥ that fit the Schrodinger Equation:

HY = EY.



Describing Kinetic Energy (KE)

Classically:

KE= 1 mv?
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Quantum Mechanically:

. —|ha‘{’
X 271; 8X

of

then Ox - 2xX and =
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( V is a form of mathematical
shorthand notation )




Including Potential Energy (PE)

-V : -V
Quantum Mechanically, PE =
dre 1 dre,r

Classically, PE = v

* We will use the quantum mechanical definition of PE.
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* From the previous slide, KE= 5 (V LP)

« So our final equation is:
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* Now, we must find the special ¥’s that are solutions to this
equation and also satisfy the boundary conditions.



A Solution to the Schrodinger Equation
We can prove that ¥(r) = Be ' is a solution, by plugging it
into Schrodinger’s equation (ignoring angular derivatives):
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-Plug the derivatives into Schrodinger’'s Equation:
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-Combining similar terms gives:
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These sum to zero for all r only if both terms are zero




«Set both terms to zero:
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So, We Find One Solution

*¥(r) = Be is a solution to the Schrodinger Equation:
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-Because the probability of 1
finding the e- must be 1.0 if we B = | 9.3
0

look over all space:

-Other functions of the form (Ar>—Br—C)e-*" also work:
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where the order of the polynomial is (n+1).

-Additional work is required to determine the time dependence
of any given solution to the Schrodinger equation



Review

We can only speak of the probability of finding
an electron somewhere

A collection of such probabilities, for an electron
at a given energy, is called an orbital

Orbitals are described mathematically by
wavefunctions, ¥(r,0,¢,t)

Square ¥ to find the probability of observing the
electron at a given point

Operate on ¥ (Schrodinger eqn, HY=EVY) to find
the energy of the electron in that orbital




Wavefunctions Cont’d

Fewer Nodes = Lower Energy
n = (total # of nodes + 1)
¢ = (# of angular nodes)
(=0 (s); £=1 (p); ¢=2 (d); ¢=3 (f)

m, the “index,” runs from -/ to +/ and tells us how
many orbtials are needed to form a degenerate
set in 3-dimensions

Bigger n; bigger orbital; same /, same shape

Know how to sketch the shapes of the various
orbitals




Now We Can Understand

- Arrangement of the Periodic Table of Elements
- Trends in Atomic Size

- Trends in lonization Energy

- Trends in Electron Affinity

- Trends in Electronegativity

- Various Types of Chemical Bonds

- Shapes of Molecules
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