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The Person Behind The Science Erwin Schrödinger
1887-1961

In 1927 Schrödinger moved to University of 
Berlin as Planck's successor

Develops his wave equation in 1926

Moments in a Life

Highlights

Born and educated in Vienna

Received Nobel Prize in Physics with Paul
Dirac (1933)



The Schrödinger Equation

HΨ = EΨ

H is the Hamiltonian Operator; you can’t “cancel” the Ψ

— “Cancelling” the Ψ is like “cancelling” the x in f(x) = mx.  
You just can’t do it.

Our goal is to operate on Ψ (using the H Operator) and get 
an energy (E) multiplied by the same Ψ.



Deriving the Schrödinger Equation

Total Energy = Kinetic Energy + Potential Energy

E = KE + PE

This equation describes the energy of an electron:

Start with this classical equation.

Use classical and quantum mechanical relationships to 
find the Hamiltonian Operator (H).

Find values of Ψ that fit the Schrödinger Equation:

HΨ = EΨ.



∂f
∂ x

∂ f
∂ y

— If f(x,y,z) = x2+y3+z4,

Describing Kinetic Energy (KE)
Classically: Quantum Mechanically:

then         = 2x  and         = 3y2
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p = mv, so KE= p2

2m

Combining Equations:

(close enough for now!)
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Classically, PE = -e2

4πεo r
Quantum Mechanically, PE = -e2

Ψ

• So our final equation is:

• Now, we must find the special Ψ’s that are solutions to this 
equation and also satisfy the boundary conditions.

Including Potential Energy (PE)

• We will use the quantum mechanical definition of PE.

• From the previous slide, KE=
−h2

8mπ2 ∇2Ψ( )

4πεo r
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8mπ2 ∇2Ψ( ) − = EΨ

e2
Ψ4πεo r



A Solution to the Schrödinger Equation
We can prove that Ψ(r) = Be-αr is a solution, by plugging it
into Schrödinger’s equation (ignoring angular derivatives):

Now we take the derivatives:

multiplying through by  
−h2

8mπ2

 

 
  

 

 
  

−1

gives  us:

∂2Ψ
∂r2 =

∂2

∂r2 Be−αr = α2Be−αr∂Ψ
∂r

=
∂
∂r

Be−αr = −αBe−αr

−h2

8mπ2
∂2Ψ
∂r2 +

2
r

∂Ψ
∂r

 

 
 

 

 
 − = EΨ = EBe−αre2

Ψ4πεo r

∂2Ψ
∂r2 +

2
r

∂Ψ
∂r

 

 
  

 

 
  + =

−8mπ2

h2 EBe−αr8mπ2

h2
e2

Ψ4πεo r



Plug the derivatives into Schrödinger’s Equation:

Cancel Be-αr: 

These sum to zero for all r only if both terms are zero

Combining similar terms gives: 
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Set both terms to zero:

α2 +  8mπ2

h2 E = 0

E =
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•Now set α =
e2mπ
h2 =
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So, We Find One Solution

Ψ(r) = Be-αr is a solution to the Schrödinger Equation:

α = 1
a0

and

Because the probability of
finding the e- must be 1.0 if we
look over all space:

B  = 1
πa0

3

Other functions of the form  (Ar2–Br–C)e-αr also work:

where the order of the polynomial is (n+1).

Additional work is required to determine the time dependence
of any given solution to the Schrödinger equation

E =
−e2

a08πεo

E =
1

n2

−e2

a08πεo



Review

We can only speak of the probability of finding 
an electron somewhere
A collection of such probabilities, for an electron 
at a given energy, is called an orbital
Orbitals are described mathematically by
wavefunctions, Ψ(r,θ,φ,t)
Square Ψ to find the probability of observing the 
electron at a given point
Operate on Ψ (Schrödinger eqn, HΨ=ΕΨ) to find 
the energy of the electron in that orbital



Wavefunctions Cont’d

Fewer Nodes = Lower Energy
n = (total # of nodes + 1)
l = (# of angular nodes)
l=0 (s); l=1 (p); l=2 (d); l=3 (f)
m, the “index,” runs from -l to +l and tells us how 
many orbtials are needed to form a degenerate 
set in 3-dimensions
Bigger n; bigger orbital; same l, same shape
Know how to sketch the shapes of the various
orbitals



Now We Can Understand

Arrangement of the Periodic Table of Elements
Trends in Atomic Size
Trends in Ionization Energy
Trends in Electron Affinity
Trends in Electronegativity
Various Types of Chemical Bonds
Shapes of Molecules
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