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A Timeline of the Atom
400 BC 0 1800

400      B.C. Democritus:  idea of an atom
1808    John Dalton introduces his atomic theory. 
1820    Faraday: charge/mass ratio of protons 
1885    E. Goldstein: discovers a positively charged sub-atomic particle 
1898    J. J. Thompson finds a negatively charged particle called an electron.
1909    Robert Millikan experiments to find the charge and mass of the electron. 
1911    Ernest Rutherford discovers the nucleus of an atom. 
1913    Neils Bohr introduces his atomic theory.
1919    The positively charged particle identified by Goldstein is found to be a proton. 
1920s  Heisenberg, de Broglie, and Schrödinger.
1932    James Chadwick finds the neutron. 
1964    The Up, Down, and Strange quark are discovered. 
1974    The Charm quark is discovered. 
1977    The Bottom quark is discovered. 
1995    The Top (and final) quark is discovered.

1850 1900 1950.............



The Person Behind The Science Werner Heisenberg
1901-1976

With his help, the Max Planck Institute for 
Physics is founded (1948)

Publishes his theory on quantum mechanics 
(1925, at the age of 23!)

Moments in a Life

Highlights

Studied under Max Born, James Franck, 
and Niels Bohr

Received Nobel Prize in Physics (1932) for 
“for the creation of quantum mechanics…”
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The Bohr model violates
the uncertainty principle!

The Modern Picture of the Hydrogen Atom
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The uncertainty in an electron’s
position is comparable to the 

diameter of the atom itself.

Bohr Model Current Model

∆x = 0; ∆p = 0
so ∆x ∆p = 0 <      !
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Uncertainty in Electron Momentum and Position
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We want ∆x ≈ 10-11 m (i.e., 0.1 Å)

∆p ∆x ≥           so    ∆p ≥

= 5.3x10– 24 kg m s-1

How big is this uncertainty?

Suppose we look for the electron again after only 1x10-14 s: 

h
4π

h
4π • ∆x

∆p = me • ∆v    so     ∆v =
∆p
me

∆v ≈
10−23 kg • m • s−1

10−30 kg
= 107 m• s−1

∆x = (107 m • s−1 ) • (10 −14 s) = 10 −7 m = 1000Å!

∆p ≥
6.6 × 10−34J ⋅ s
12.6 × 10−11m



The Modern Picture of an Atom

The best we can do is say what the 
probability of finding an electron is at any 
given point for any individual observation
Such information is described by a function 
with properties of a wave, hence the name 
WAVEFUNCTION
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Waves in 1–D

A

d
For this example, But f also varies with time

The function is called the Wavefunction:  
Ψ(x,t)

0

y= f(x) = A sin (πx
d ) y = f(x,t) = A sin           cos (ωt)(πx

d )



Allowed Standing Wave

Ends are fixed at Ψ = 0 always

Not an Allowed Wave

Ends not Tied Down

Not Even a Standing Wave

Boundary Conditions to Define Allowed Waves:  
1)  Tie the Ends Down
2)  Find a Standing Wave in the Box

A Traveling Wave



Nodes 

There are no points  for which Ψ = 0 at all times

(The ends were fixed by the boundary conditions 
and therefore don’t count as nodes)

This Ψ has No Nodes



Other Allowed Standing Waves
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More Nodes = Higher Energy

No nodes
Lowest Energy Next Lowest Energy
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Quantization

Only certain wavefunctions are allowed solutions
The “Quantum Number” defines each 
wavefunction and its energy
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Waves in 2-D

No Nodes--Lowest Energy



Chladni Patterns



Waves in 2-D
Node Node

Node Node



Waves in 2-D: A Degenerate Set

Each has one node:
These are higher in
energy than the Ψ
with no nodes.

Both are equal in energy and
are  related by symmetry.
Both are needed to complete the
solution set.



Other Solutions with 1 Node



The Last Pair is “Redundant”
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Solutions with 2 Nodes

Another Degenerate Set
This set has a higher energy than the set with one node.



Review

Allowed Waves are Limited by Physical Boundary
Conditions: Tie Down Ends, Stay inside Box, etc.

Higher Number of Nodes means Higher Energy

In 2-D (and 3-D), Degenerate Sets are Found



Waves in 33--DD

Boundary Conditions:
Ψ → 0 as r → ∞ (the electron is on the atom!)
Solutions Must be Standing Waves

θ

Azimuthal angle 0 ≤ φ  ≤ 2π
(longitude)

polar angle 0≤ θ ≤ π
(latitude)

Ψ (x,y,z,t) is represented as Ψ (r,θ,φ,t)

φr



Radially Symmetric Solutions 
Ψ is Independent of Angle

r
r

Ψ - r/aoeΨ      ∝(1s)  
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The 1s Orbital

Ψ2Ψ

r (Å)
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The 2s Orbital

The 2s Orbital has One Radial Node (Nodal Sphere)
E(2s) > E(1s)

Nodal Sphere (Radial Node)



The 3s Orbital

Nodal Spheres (Radial Nodes)
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Other s Orbitals
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Ψ
Ψ2
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Zero  e– probability

Ψ
Ψ2

Ψ2, Not Ψ, is Related to the 
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3s3s
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Allowed Wavefunctions that are 
Not Radially Symmetric

Functions with 1 Angular Node

The angular dependence
of 2pz at a fixed radius2pz orbital

z

y

x
Nodal plane

Ψ

0 θ
π

Node



Other Ψ’s with 1 Angular Node

The 2p orbitals have 1 Nodal Surface, like the 2s Orbitals.
So for H atoms, E(2p) ≈ E(2s) > E(1s)
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Naming Orbitals

n = principal quantum number 
n = (total # of nodes) + 1

l = number of angular nodes
l = 0 (no angular nodes) implies an “s” orbital
l = 1 (1 angular node) implies a “p” orbital
l = 2 ⇒ a “d” orbital
l = 3 ⇒ an “f” orbital
l = 4 ⇒ “g”
l = 5 ⇒ “h”
and so on as needed...



Naming Orbitals Cont’d

Q: Name an orbital with no angular nodes, but two total 
nodes:

l = (# of angular nodes) = 0 = s, 
n = (total # of nodes ) + 1 = 2 + 1 = 3
Answer: The 3s orbital

Q: Name an orbital with one angular node and no radial
nodes:

l = (# of angular nodes) = 1 = p

n = (total #  of nodes) + 1 = 1 + 1 = 2

Answer: A 2p orbital



The 3p Orbitals

nodal sphere
nodal plane

The 3p orbitals have both radial nodes (nodal spheres) 
and angular nodes (nodal planes).
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Naming Orbitals (Cont’d Again)

n = principal quantum number 
n = (total # of nodes) + 1

l = # of angular nodes

m cannot be associated directly with our 
“real space” orbitals, but it tells us how many
orbitals with a given value of l are needed to
complete a degenerate set

m = an integer “index” running from -l to +l
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