Quantum Mechanics

Reading: Gray: (1–8) to (1–12) OGN: (15.5)

A Timeline of the Atom

← 400 BC 0	1800	1850	1900	1950

- 400 B.C. Democritus: idea of an atom
- 1808 John Dalton introduces his atomic theory.
- **1820** Faraday: charge/mass ratio of protons
- 1885 E. Goldstein: discovers a positively charged sub-atomic particle
- **1898** J. J. Thompson finds a negatively charged particle called an electron.
- **1909** Robert Millikan experiments to find the charge and mass of the electron.
- **1911** Ernest Rutherford discovers the nucleus of an atom.
- **1913** Neils Bohr introduces his atomic theory.
- 1919 The positively charged particle identified by Goldstein is found to be a proton.
- **1920s** Heisenberg, de Broglie, and Schrödinger.
- 1932 James Chadwick finds the neutron.
- 1964 The Up, Down, and Strange quark are discovered.
- 1974 The Charm quark is discovered.
- 1977 The Bottom quark is discovered.
- 1995 The Top (and final) quark is discovered.

1901-1976

Highlights

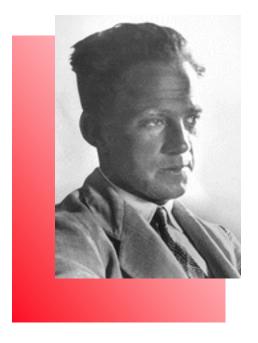
 Studied under Max Born, James Franck, and Niels Bohr

The Person Behind The Science

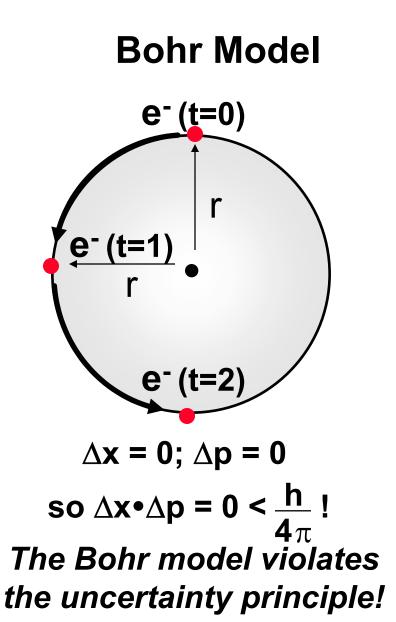
 Received Nobel Prize in Physics (1932) for *"for the creation of quantum mechanics…"*

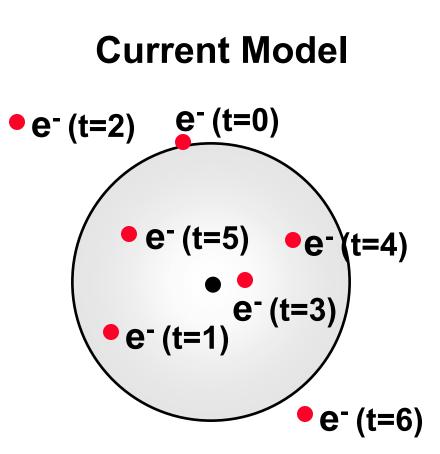
Moments in a Life

- With his help, the Max Planck Institute for Physics is founded (1948)
- Publishes his theory on quantum mechanics (1925, at the age of 23!)



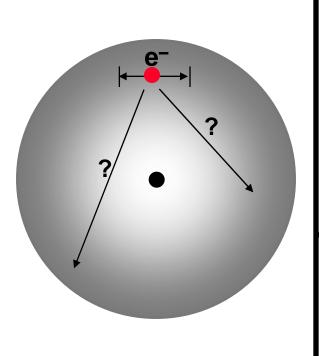
The Modern Picture of the Hydrogen Atom





The uncertainty in an electron's position is comparable to the diameter of the atom itself.

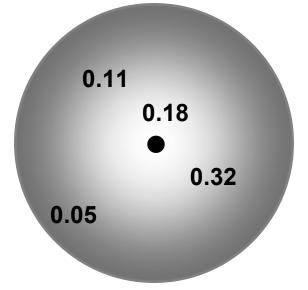
Uncertainty in Electron Momentum and Position



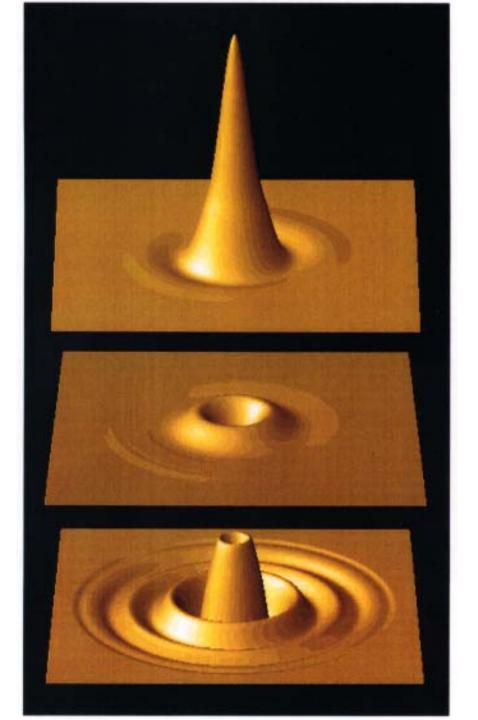
We want
$$\Delta x \approx 10^{-11}$$
 m (i.e., 0.1 Å)
 $\Delta p \cdot \Delta x \ge \frac{h}{4\pi}$ so $\Delta p \ge \frac{h}{4\pi \cdot \Delta x}$
 $p \ge \frac{6.6 \times 10^{-34} \text{ J} \cdot \text{s}}{12.6 \times 10^{-11} \text{ m}} = 5.3 \times 10^{-24} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$
How big is this uncertainty?
 $\Delta p = m_e \cdot \Delta v$ so $\Delta v = \frac{\Delta p}{m_e}$
 $\Delta v \approx \frac{10^{-23} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}}{10^{-30} \text{ kg}} = 10^7 \text{ m} \cdot \text{s}^{-1}$

Suppose we look for the electron again after only $1x10^{-14}$ s: $\Delta x = (10^7 \text{ m} \cdot \text{s}^{-1}) \cdot (10^{-14} \text{ s}) = 10^{-7} \text{ m} = 1000 \text{ Å}!$

The Modern Picture of an Atom



- The best we can do is say what the probability of finding an electron is at any given point for any individual observation
- Such information is described by a function with properties of a wave, hence the name WAVEFUNCTION





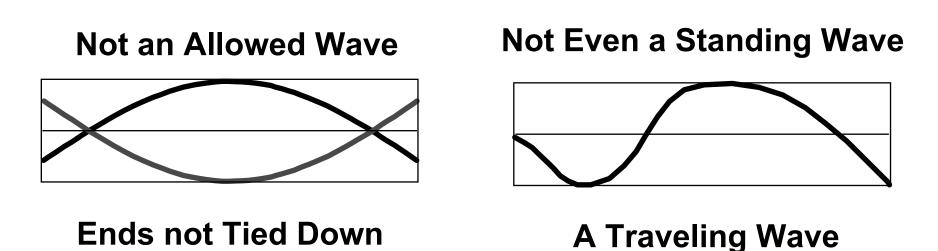
The function is called the <u>Wavefunction</u>: $\Psi(\mathbf{x}, \mathbf{t})$

Boundary Conditions to Define Allowed Waves: 1) Tie the Ends Down

2) Find a Standing Wave in the Box

Allowed Standing Wave

Ends are fixed at Ψ = 0 <u>always</u>



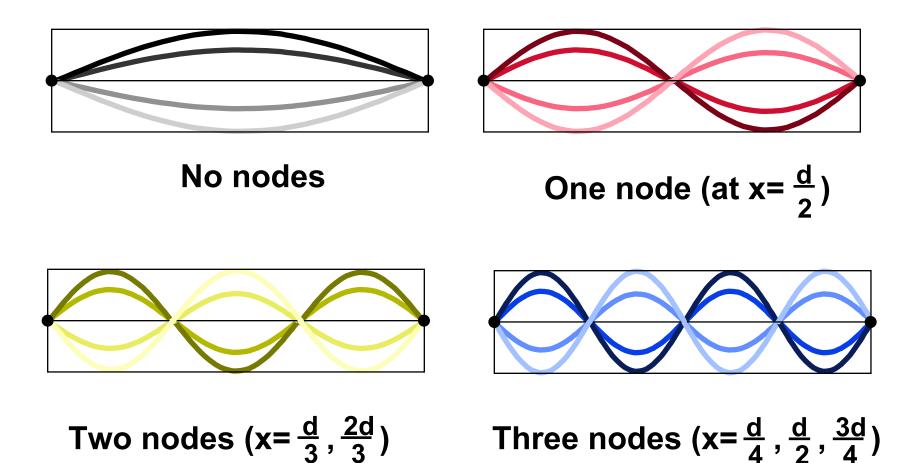
Nodes

This Ψ has No Nodes

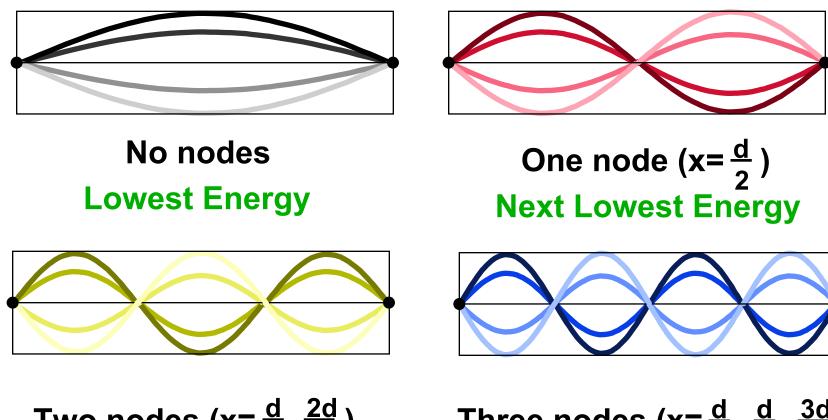
There are no points for which $\Psi = 0$ at all times

(The ends were fixed by the boundary conditions and therefore don't count as nodes)

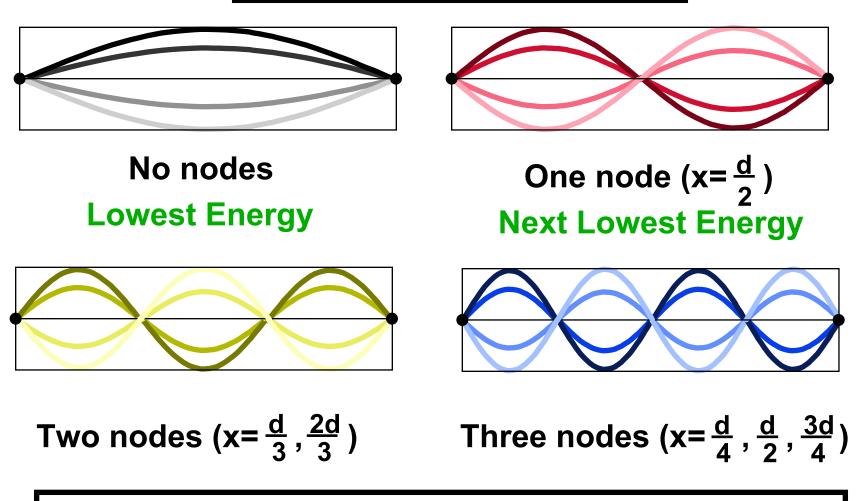
Other Allowed Standing Waves



More Nodes = Higher Energy

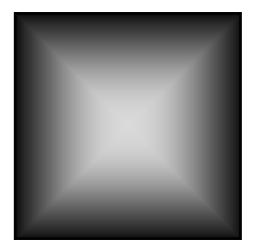


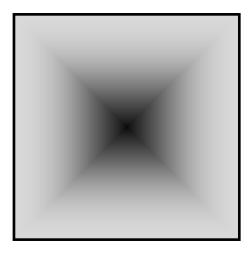
Two nodes $(x=\frac{d}{3},\frac{2d}{3})$ Higher Energy Three nodes $(x=\frac{d}{4}, \frac{d}{2}, \frac{3d}{4})$ Even Higher Energy Quantization



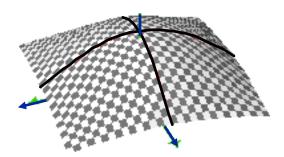
- Only certain wavefunctions are allowed solutions
- The "Quantum Number" defines each wavefunction and its energy

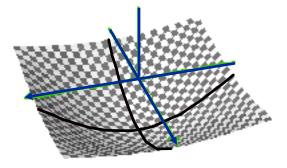
Waves in 2-D



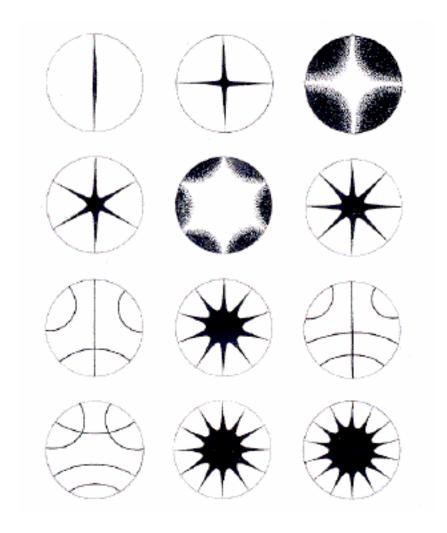


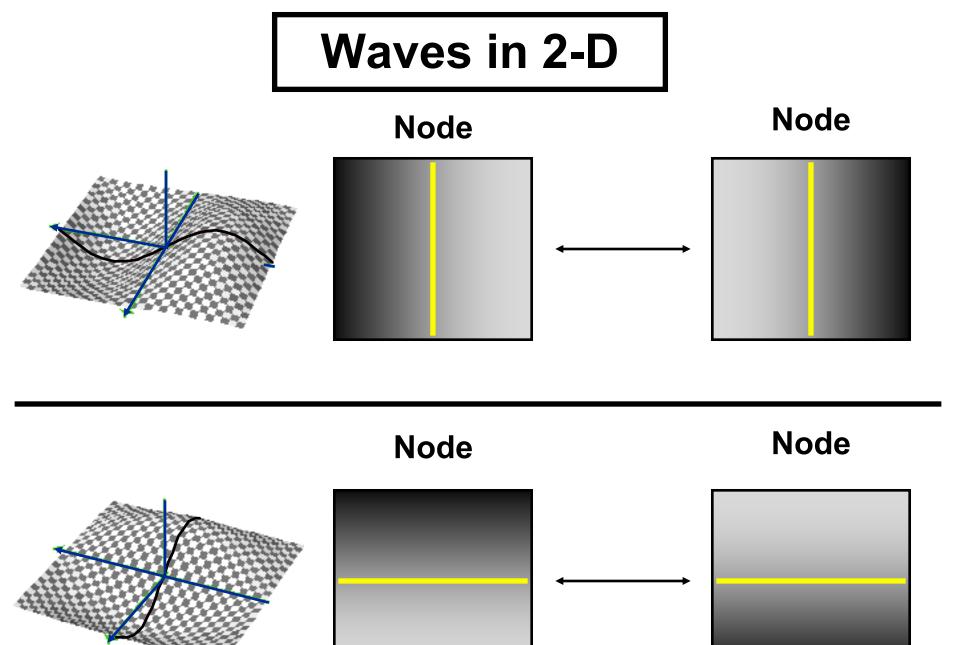
No Nodes--Lowest Energy



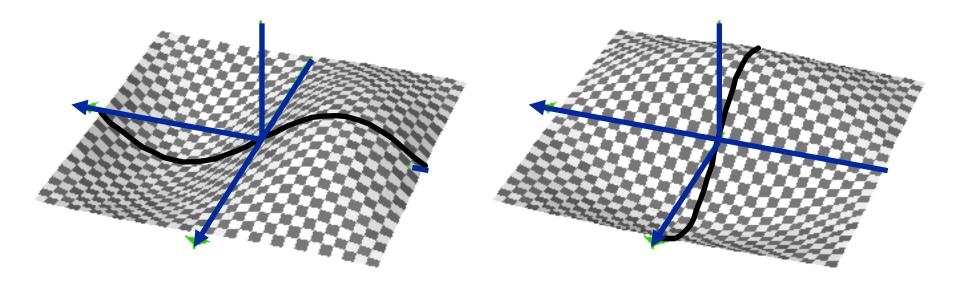


Chladni Patterns





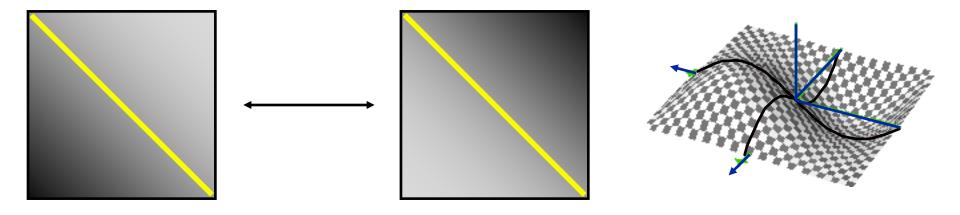
Waves in 2-D: A Degenerate Set

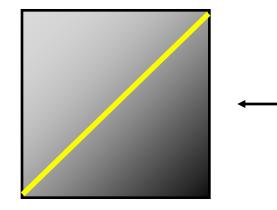


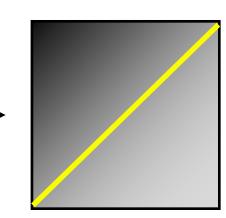
Each has one node: These are higher in energy than the Ψ with no nodes.

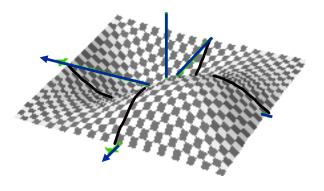
Both are equal in energy and are related by symmetry. Both are needed to complete the solution set.

Other Solutions with 1 Node

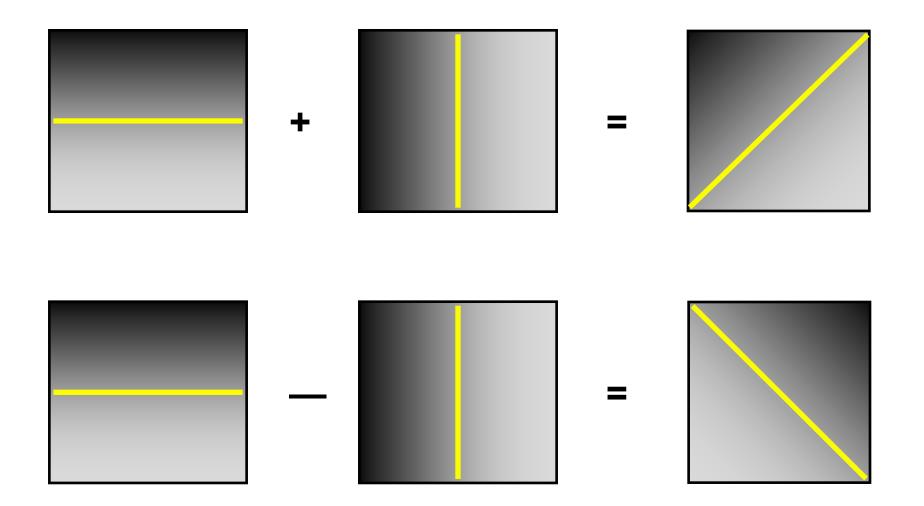




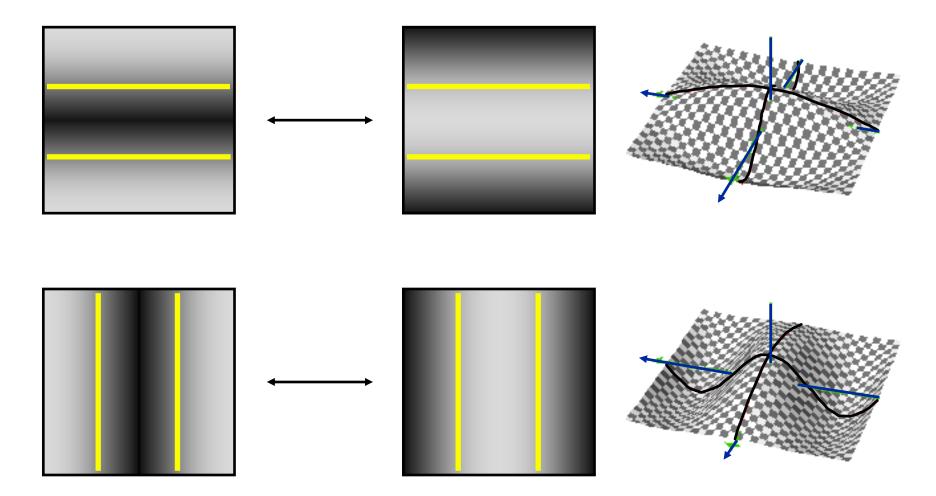




The Last Pair is "Redundant"



Solutions with 2 Nodes

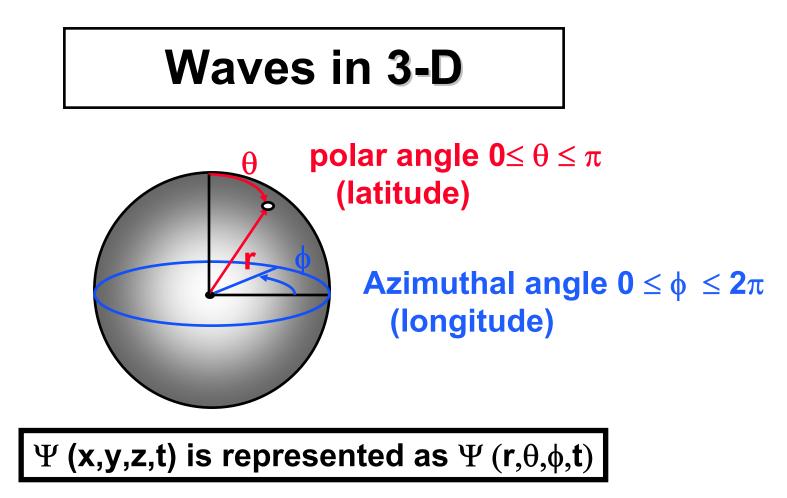


Another Degenerate Set

This set has a higher energy than the set with one node.

Review

- Allowed Waves are Limited by Physical Boundary Conditions: Tie Down Ends, Stay inside Box, etc.
- Higher Number of Nodes means Higher Energy
- In 2-D (and 3-D), Degenerate Sets are Found



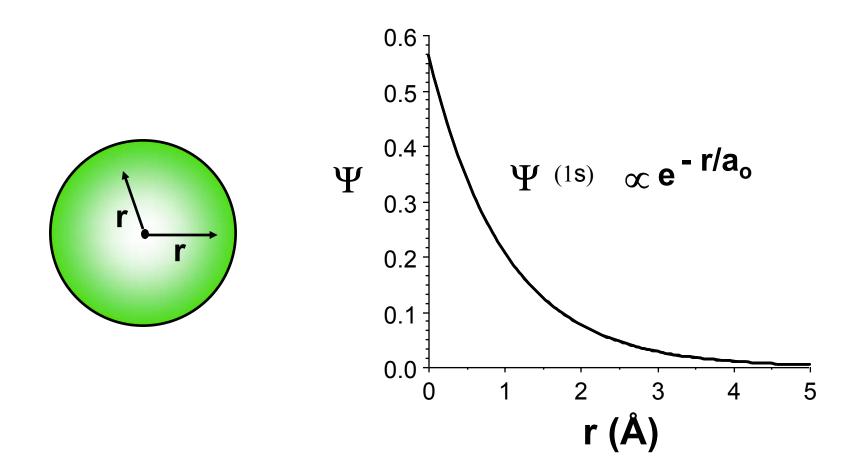
Boundary Conditions:

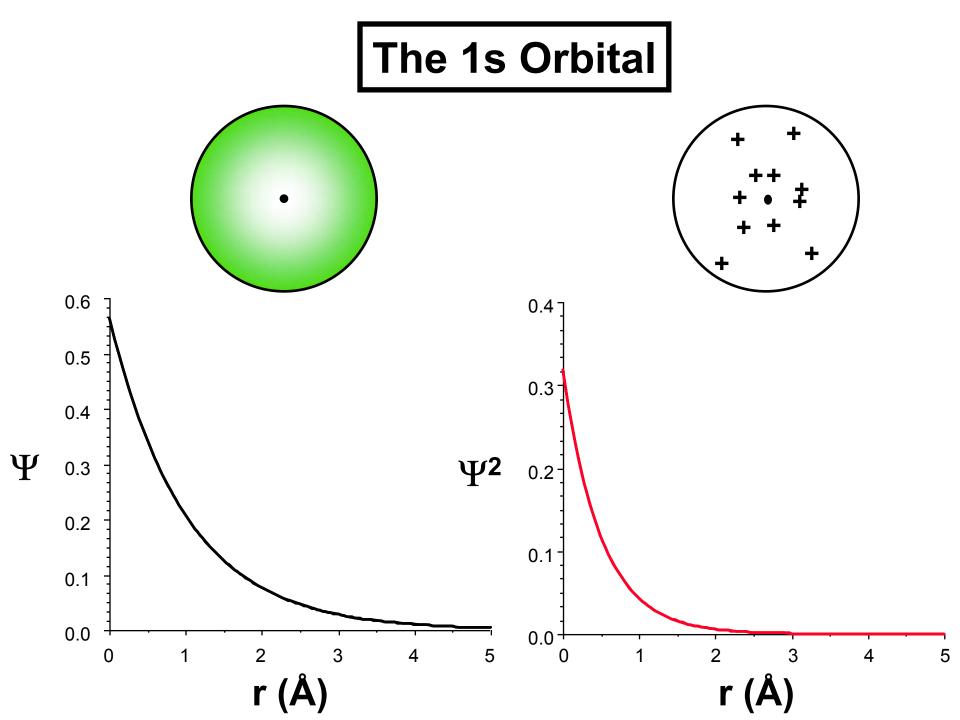
 $\Psi \rightarrow 0$ as $r \rightarrow \infty$ (the electron is on the atom!)

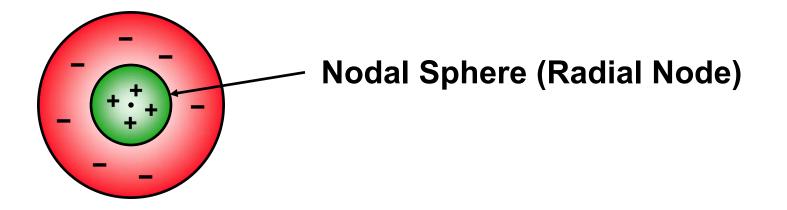
Solutions Must be Standing Waves

Radially Symmetric Solutions

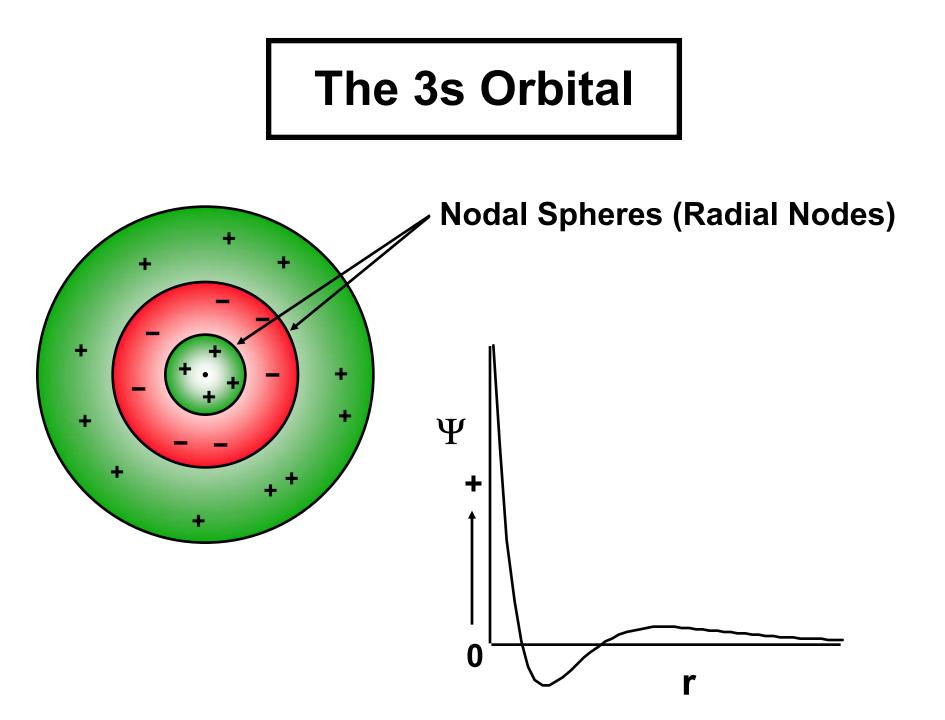
Ψ is Independent of Angle

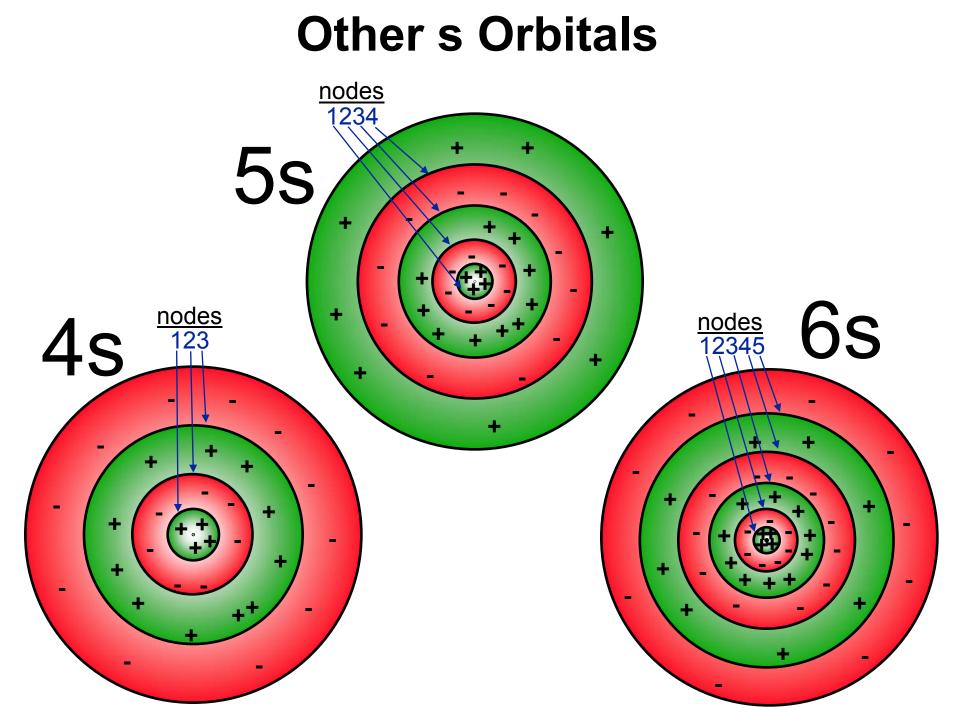




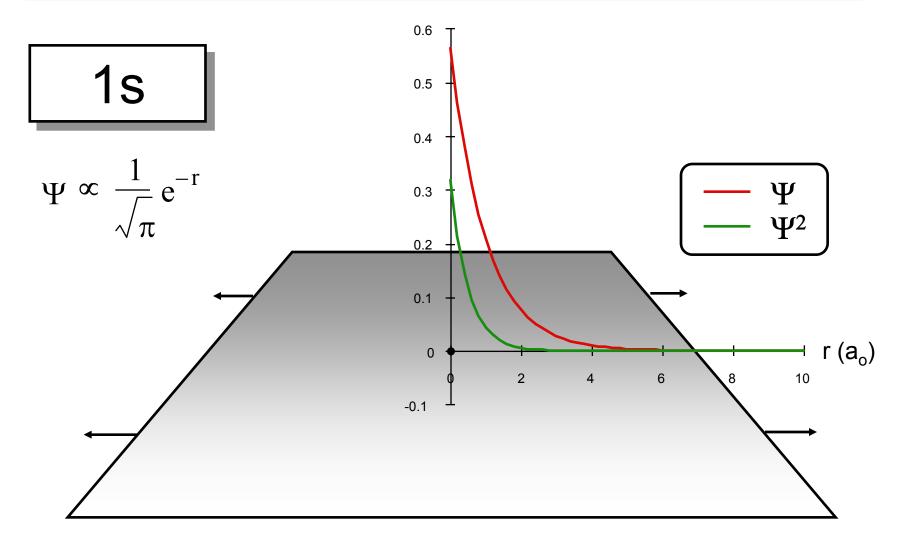


The 2s Orbital has One Radial Node (Nodal Sphere) E(2s) > E(1s)

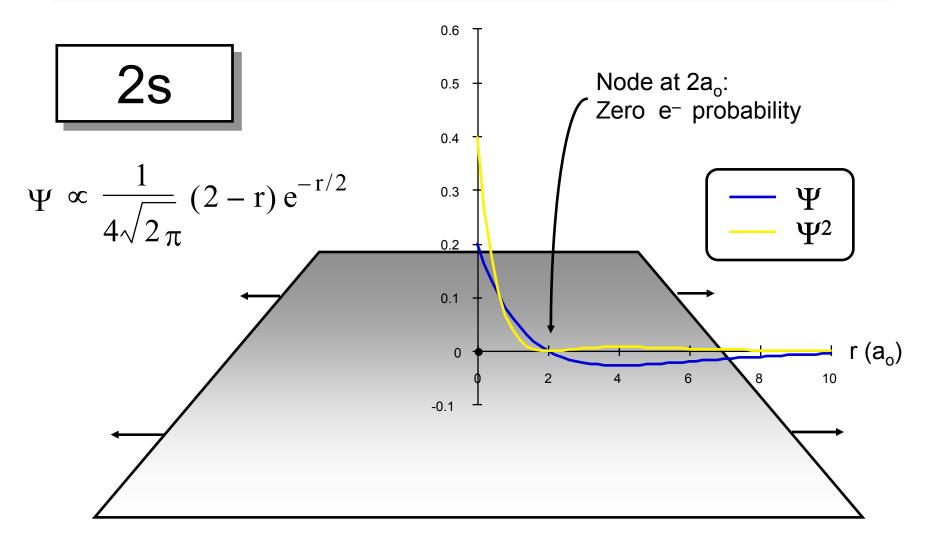


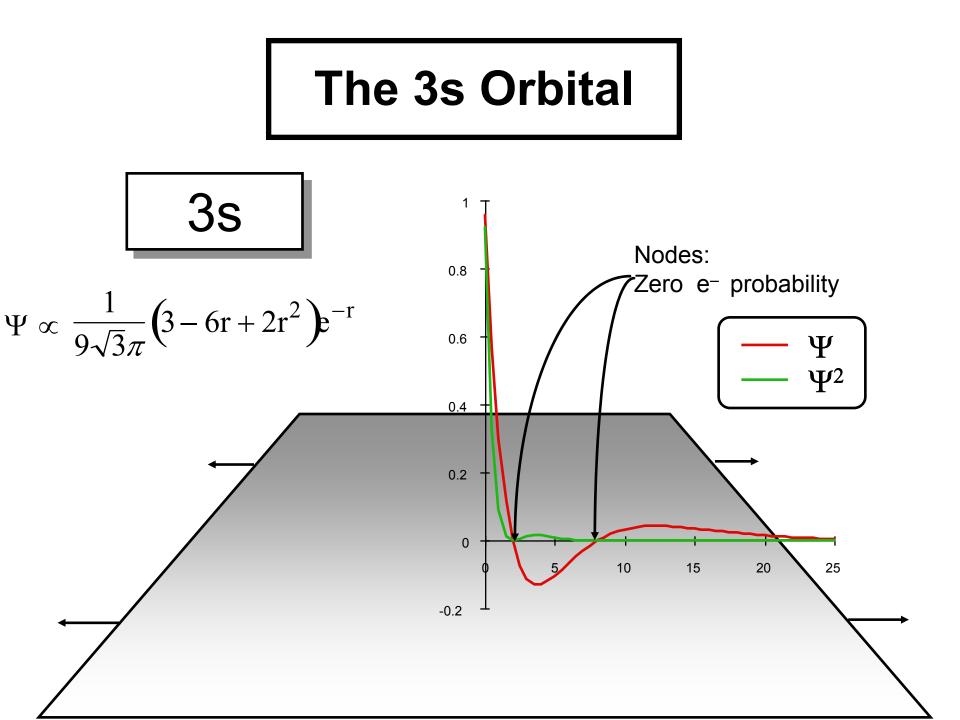


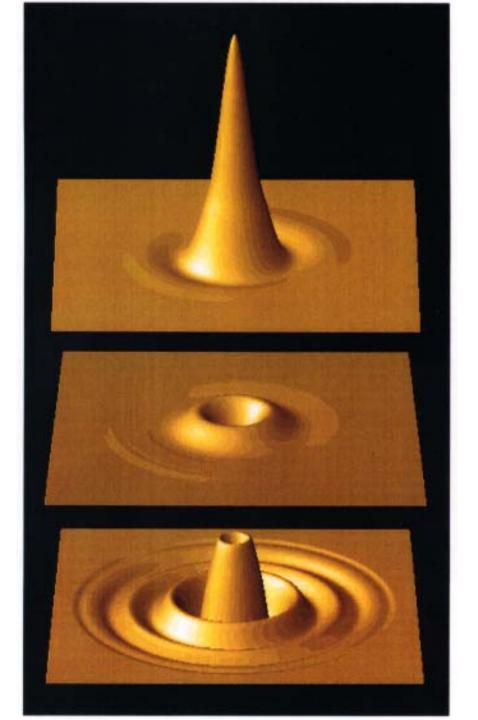
Ψ^2 , Not Ψ , is Related to the Probability of Finding an Electron



Ψ^2 , Not Ψ , is Related to the Probability of Finding an Electron

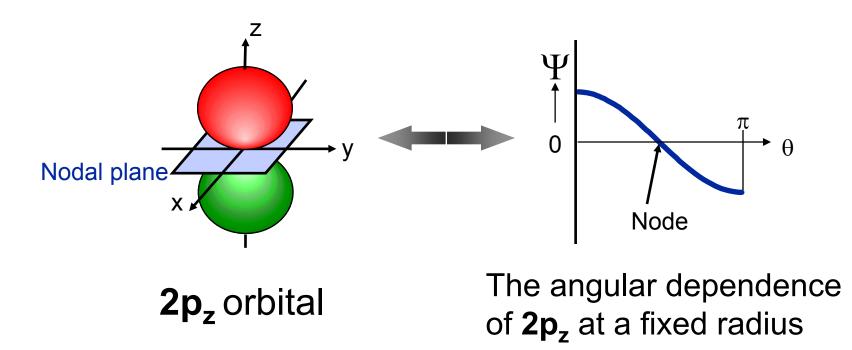




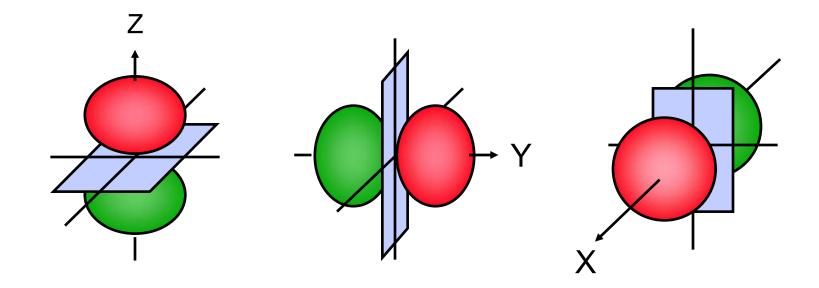


Allowed Wavefunctions that are Not Radially Symmetric

Functions with 1 Angular Node



Other Ψ 's with 1 Angular Node



The 2p orbitals have 1 Nodal Surface, like the 2s Orbitals. So for H atoms, E(2p) ≈ E(2s) > E(1s)

Naming Orbitals

n = principal quantum number

n = (total # of nodes) + 1

 ℓ = number of angular nodes ℓ = 0 (no angular nodes) implies an "s" orbital ℓ = 1 (1 angular node) implies a "p" orbital ℓ = 2 \Rightarrow a "d" orbital ℓ = 3 \Rightarrow an "f" orbital ℓ = 4 \Rightarrow "g" ℓ = 5 \Rightarrow "h" and so on as needed...

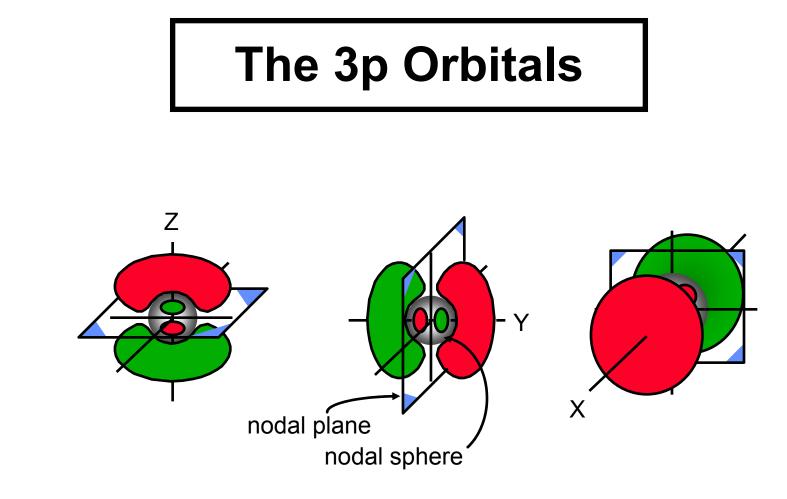
Naming Orbitals Cont'd

- Q: Name an orbital with no angular nodes, but two total nodes:
- ℓ = (# of angular nodes) = 0 = <u>s</u>,
- n = (total # of nodes) + 1 = 2 + 1 = 3

Answer: The 3s orbital

- Q: Name an orbital with one angular node and no radial nodes:
- ℓ = (# of angular nodes) = 1 = **p**
- n = (total # of nodes) + 1 = 1 + 1 = 2

Answer: A 2p orbital



The **3p** orbitals have both radial nodes (nodal spheres) and angular nodes (nodal planes).

Naming Orbitals (Cont'd Again)

n = principal quantum number

n = (total # of nodes) + 1

 ℓ = # of angular nodes

m = an integer "index" running from $-\ell$ to $+\ell$

m cannot be associated directly with our "real space" orbitals, but it tells us how many orbitals with a given value of ℓ are needed to complete a degenerate set

Reading: Gray: (1–8) to (1–12) OGN: (15.5)