

The Chemists

Geoffrey Wilkinson

E. O. Fischer

Nobel Prize, chemistry, 1973

"For their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds"

18 e⁻ Rule for Transition Elements

- Consider Cr, a transition element: Chromium: [Ar] $(4s)^2 (3d)^4 \rightarrow 6$ valence e⁻
- Like most transition elements, Cr needs 18 e⁻ in its shell.

Dot structures <u>can</u> predict

molecules; if we are given

explain its existence, and

an exception, we can

figure out some of its

chemical properties.

Using the 18 e⁻ rule

- Given that $H_2Fe(CO)_x$ exists, what does x equal? Iron: [Ar] $(4s)^2 (3d)^6 \rightarrow 8$ valence e^- Hydrogen: $(1s)^1 \rightarrow 1$ valence e^-
- Fe wants to have 18 e⁻, because it's a transition element, but it only has 8. The H's give 2 e⁻, but we still need 8 electrons. Since each CO supplies 2 e⁻, there must be 4 CO's:

Dimer-Forming Transition Elements

- Given that $Mn(CO)_5$ exists, find its chemical properties: Manganese: [Ar] $(4s)^2 (3d)^5 \rightarrow 7$ valence e⁻
- 5 CO's provide 10 electrons to Mn, leaving Mn with 17 total e⁻; but Mn wants 18 electrons. So, Mn forms a dimer:

 Halides, like fluorine, also act this way, because they also need only one electron to fill their shell. There are other similarities between transition elements with 7 valence e⁻ and halides...

Transition Metals That Are Like Halides

- As we have seen, transition elements with 7 valence e⁻ (like Mn and Re) which are bonded to 2 e⁻ donors (like CO) form dimers, because they need only one extra e⁻.
- Another similarity is reactivity with light:

$$Br_2 \xrightarrow{hv} 2 Br$$

$$Mn_2(CO)_{10} \xrightarrow{hv} 2 Mn(CO)_5$$

• Another similarity is a phenomenon called "coupling":

Another Transition Element Structure

- Given that $Os_3(CO)_{12}$ exists, what is its structure? Osmium: [Xe] $(6s)^2 (5d)^6 \rightarrow 8$ valence e⁻
- By symmetry, there must be 4 CO's attached to every Os. That would give us 8 + 4(2) = <u>16 e⁻</u> for each Os. But each Os needs 2 more e⁻ to make 18. So the Os's can form a triangle, with each Os contributing 2 valence e⁻'s to the single bonds:

What's the Best Way to Count Things?

• 1 e⁻ donor: Anything that has one e⁻ that is not in a bond. Examples:

- 2 e⁻ donor: Anything that has two e⁻'s that are not in a bond (called a "lone pair"). Examples: н-й-н
 - **CO** (the one we have been using)
- 3 e⁻ donor: Anything having three e⁻'s to spare. Example:

The allyl radical:

Η•

This bond can donate two e⁻ to a metal; So this radical is either a 1 or a 3 e⁻ donor

•CH3

Radical: atom or molecule with an incomplete valence shell, making it very reactive

How Many e⁻ Do We Want Donated?

• It depends on the specific case. For example, allyl—Mn(CO)₅ \rightarrow Mn(CO)₅ has 17 e⁻, so we want 1 e⁻ donated

- The <u>hapticity</u> η of a molecule is the number of its atoms within bonding distance of the metal atom (from the Greek *haptein*, "to fasten").
- The value of η gives us an idea of how many electrons are being donated from the molecule to the metal atom.

More Electron Donors

• 4 electron donor:

Butadiene: can be used as a 2 or 4 electron donor.

Carbon Structure Shorthand:

In order to make drawing hydrocarbon structures simpler and more compact, repetitive information is left out.

C is implied at any corner
H are added to each C as necessary to satisfy the 8 e⁻ rule.

More Electron Donors

• 6 e⁻ donor: benzene

—can be a 2, 4, or 6 e⁻ donor

Another Transition Element Structure

• Given $(C_4H_4)Fe(CO)_x$ exists, what is the value of x?

-Butadiene (C₄H₄) donates 4 e⁻

—We need 6 more e⁻, so we use <u>three</u> CO's.

3 CO's donate 6 e⁻, making 18 e⁻ for Fe

Yet Another Structure

- Can we draw Fe₄(Cp)₄(CO)₄?
- By symmetry, each Fe
 gets a Cyclo-pentadienyl
 (Cp) and a CO
- —Cp donates 5 e⁻, so now we have 15 e⁻ for each Fe
- If we put the Fe's at the corners of a tetrahedron, then each Fe can share a single bond with three other Fe's; we end up with 18 e⁻ per Fe.

Industrial Homogeneous Catalytic Processes

Reactions/Products	Production/yr 10 ³ Metric tons (1990)
Olefin additions adiponitrile (for nylon)	420
Olefin polymerizations	12000
Carbonylations	
oxo alcohols acetic acid/anhydride	1818 1691
Olefin oxidation acetaldehyde propylene oxide	273 815
Alkane and arene oxidations	4800

