
Part 2

Reading: Gray: (4-7)
OGN: (16.2)



MO-LCAO works great for diatomic molecules!

But...
What about largerlarger molecules?

The Story so far:

We can use hybridization of the central atom
and MO-LCAO together to describe small
polyatomic molecules.

Does hybridization / MO-LCAO enable us to 
describe more complicated molecules?



Watson and Crick’s Original DNA Model



We’ll take the challenge:

C2H6

From VSEPR and Lewis dot structures, we know it
looks like this:
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Look at the left C.

Notice it has a steric number of four:

What other molecule had a steric
number of four?   CH4

This suggests we should hybridize
our current C the same way.

Let’s analyze one C at a time.
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C2H6

sp3 hybridize the carbon:

Add 3 hydrogens (using MO-LCAO)
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tetrahedral 
shape.
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C2H6

Do the same to the other side:

Bring the two halves together:

Success!Success!
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C2H6

Notice that all the bonds formed are σ bonds.
Each is rotationally symmetrical about its axis.
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Let’s try another:

C2H4

From VSEPR and Lewis dot structures, we know it
looks like this:
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Look at the left C.

Notice it has a steric
number of three:

What other molecule had a 
steric number of three?   BH3

This suggests we should hybridize
our current C the same way.

Let’s analyze one C at a time.
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C2H4

sp2 hybridize the carbon:

Notice there is an extra p orbital 
that is not involved in hybridization:
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For now, we will de-emphasize the p orbital.
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Now bond the two C together:

Notice that the two sp2 orbitals form a σ orbital that 
is rotationally symmetric.
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C2H4
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Count the bonding e- around each carbon:
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But each C has 4 e-!  What do we do with the extras?
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C2H4
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Let’s re-emphasize the p orbitals:

The p orbitals can combine, forming a π bond:
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π bondsπ bonds

2pz

π*

πb

C C
2pz

node

Notice that π bonds are not rotationally symmetric.
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nodenode

(2 nodal planes)

The orbital changes sign every 180o

(1 nodal plane)



π bondsπ bonds
Notice that π bonds do not allow rotation.

When rotated around the axis, the bond is broken:
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π bondsπ bonds

BondNoπb
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Orientation of orbitals

Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds

BondNo

Orientation of orbitals
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds

BondNo

Orientation of orbitals
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds
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Orientation of orbitals
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



π bondsπ bonds
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Notice that π bonds do not allow rotation.
When rotated around the axis, the bond is broken:



C2H4

Because of the extra energy required to rotate the π
bond, the H’s are constrained to lie in a plane.
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Let’s try another:

C2H2

From VSEPR and Lewis dot structures, we know it
looks like this:

H HCC

C CH H



H HCC

Look at the left C.

Notice it has a steric
number of two:

What other molecule had a 
steric number of two?   BeH2

This suggests we should hybridize
our current C the same way.

Let’s analyze one C at a time.
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C2H2

sp hybridize the carbon:

Notice there are two extra p orbitals that 
are not involved in hybridization.
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For now, we will de-emphasize the p orbitals.

Add hydrogen: Do the same for the other C:
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Bond the two C together:

Notice that the two sp orbitals form a σ orbital that is 
rotationally symmetric.
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C2H2
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Count the e- around each carbon:
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But each C has 4 e-!  What do we do with the extras?
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Let’s re-emphasize the p orbitals:
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The p orbitals combine, forming π bonds:



C2H2
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Unlike a double bond (one π), a triple bond (two π) 
allows rotation. 

Because the π bonds occupy almost all the space 
around the carbons, the transition between a py-py π
bond and a py-px π bond is fairly smooth. 
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C2H2

Unlike a double bond (one π), a triple bond (two π) 
allows rotation. 
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H HCC



Let’s try another: C6H6

From VSEPR and Lewis dot structures, we know it
looks like this:
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Since they are all the 
same, pick any C.

Notice it has a steric
number of three:

What other molecule had a 
steric number of three?   BH3

This suggests we should hybridize
our current C the same way.

Let’s analyze one C at a time.
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C6H6

sp2 hybridize the carbon:

Just as in C2H4, there is an extra p orbital that is 
not involved in hybridization:
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For now, we will de-
emphasize the p orbital.
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plane, we will switch to a top view:
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Bond the six C together:
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Benzene in 1914



Faraday’s sample of benzene



HH

Let’s re-emphasize the p orbitals:
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C6H6
H

H
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HThe p orbitals act as a single, delocalized π bond.
Thus, the nodes in the antibonding orbitals 
also act over the entire molecule.
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C6H6
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Instead of 2 atomic orbitals combining to form 2 MO’s, 
we have 6 atomic orbitals combining to form 6 MO’s.
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Napthalene Phenanthrene

Benzo(a)pyrene (tar)

Benzene

Graphite (all sp2)



Non-Resonance in Cycloctatetrene

“COT”

COT goes non-planar!
but...COT2- and COT2+ are planar!

Bonding

Non-Bonding

Anti-Bonding



Another Look at Ethylene
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Bonding and Polymer Properties
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Bonding and Polymer Properties

C C HH C
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Bonding and Polymer Properties

H
p

H

p

H

H
p

H
p

p

H
H

p

H

H
p

H

p

H

H
p

H
p

p

H
H

p

H

πb

π*

+ +
+ +

+ +

+ -
+ -

+ -



Bonding and Polymer Properties
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Band Structure of Conducting Polymers
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Band Structure of Conducting Polymers

π*

πb

πn

Bonding MO’s

Antibonding MO’s

n p-orbitals
n electrons

n electrons



Energy Difference in Ethylene
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Bandwidth of Infinite Conjugated π System
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2000 Nobel Prize

Alan MacDiarmid Alan Heegar
“For the Discovery of Conducting Organic Polymers”, 1977



Aspects of Chemical Bonds
Bonding in Chem 1a

• Atomic Structure
• Explain Atomic Line Spectra, Galaxies, etc.
• Shapes of Orbitals in Atoms for Bonding
• Ionization Energies and Trends in Chemical 

Reactivity (e.g., Li+ vs Li)
• Which Molecules are Likely to Exist and Their 

Shapes and Reactivities (Ozone, Glo. Warm.)
• Magnetic and Bonding Properties of 

Molecules (Magnetic Tapes, Disks, etc.)
• Special Properties of Resonance Stabilization
• Directionality of Covalent Chemical Bonds
• Hydrogen Bonds



James Watson
Harvard

Nobel Prize in Physiology/Medicine, 1962

Francis Crick
Cambridge

Competed with Pauling
and Corey for alpha-helix 
structure of peptides

1951-1953 Proposes double helix
Of DNA
1954-1956 Caltech with A. Rich
Structure of RNA

Maurice Wilkins
King’s College
London

Demonstrates 
X-ray 
Diffraction 
Of DNA
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Watson and Crick’s Original DNA Model



Peptide Bonds



Beta Sheets from Peptides

Average length is 6 residues
Most sheets contain <6 strands

Secondary structure



Antiparallel Beta Sheets

Antiparallel is intrinsically more stable
due to optimal H-bond orientation

Thioredoxin



Parallel Beta Sheets

Overall macrodipole leaving an effective charge of
~ +1/15 unit elemental charge at the N-terminus and - 1/15
charge at the C-terminus of each strand of average length



Peptides form Alpha Helices
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