Hybridization

Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2) The story so far:

MO-LCAO works great for diatomic molecules!

But...

What about other numbers of atoms? Will MO-LCAO work for polyatomic molecules?

Let's try BeH₂

We know:

• BeH₂ is a linear molecule, by VSEPR.

Bond angle: 180°

• The electron configuration of BeH₂ is

Make MO's:

First bond **H** and **Be** to form **BeH**

Next bond **H** and **BeH** to form **BeH**₂

The MO's for BeH₂ are complicated and hard to work with.

Attempt to make a graphical model of BeH_2 : Be: 1s² 2s² H: 1s¹ H: 1s¹ **+** +1s 1s 2s $2p_z$ 1s н Be Η 1s 1s Be ++B 1s e 2s 2s $2p_z$ 1s 1s 2p_z

Are any of these models reasonable?

Attempt to make a graphical model of BeH_2 : Be: 1s² 2s² H: 1s¹ H: 1s¹ 4 +1s 1s 2s $2p_z$ 1s Н Be Η 1s 1s +Be +Be 1s 2s 2s $2p_z$ **1**s 1s $2p_z$ These two are no good:

One orbital can't hold four electrons

This one is no good: According to VSEPR, the bond angle should be 180°.

Unfortunately, none of these models make sense.

hybridized the orbitals... Maybe if we blended the orbitals together...

Hybridization in terms of electron configuration:

Hybridization in terms of electron configuration:

Hybridized

Bonding with a Hybrid Orbital:

The sp hybrids act individually to form MO's with each hydrogen atom:

Bonding with a Hybrid Orbital:

The sp hybrids act individually to form MO's with each hydrogen atom: _____

Rules for Hybridization Example: BeH₂

- 1) Assign Geometry Using VSEPR Theory BeH₂ SN = 2 Geometry: Linear
- 2) Write electronic configuration of the atom to be hybridized

Be: (1s)² (2s)² (2p)⁰

3) Draw energy diagram for said atom and "decouple" paired electrons

Rules for Hybridization Example: BeH₂

- 4) Take linear combinations of the atomic orbitals participating in the bond to make hybrid orbitals
- 5) Combine hybrid orbitals with other atom's orbitals using diatomic MO theory

Make **BH**₃:

We know:

• The geometry, from VSEPR:

Trigonal Planar

Bond angle: 120°

• The electron configurations:

B: 1s² 2s² 2p¹ H: 1s¹

Make **BH**₃:

What does this look like in terms of orbitals?

Possibilities:

WRONG: These shapes don't match those predicted by VSEPR.

Use what we learned about hybrids: BH₃

1) Assign Geometry Using VSEPR:

 BH_3 SN = 3 Geometry: Trigonal planar

2) Write electron configuration of atom to be hybridized:
 B: 1s² 2s² 2p¹

3) Draw energy diagram for the atom and decouple paired electrons:

4) <u>Take linear combinations of the atomic</u> orbitals participating in the bond to make <u>hybrid orbitals:</u>

We know that if we start with three orbitals, we must finish with three orbitals. Thus, they will be 120° apart:

The orbitals are centered at the node between the green and red lobes, so the orbitals overlap.

B

2p

4') <u>Take linear combinations of the atomic orbitals</u> participating in the bond to make hybrid orbitals:

5) <u>Combine hybrid orbitals with other atoms' orbitals</u> using diatomic MO theory:

Make CH₄:

We know:

• The geometry, from VSEPR:

Bond angle: 109.5°

• The electron configurations:

C:
$$1s^2 2s^2 2p^2$$

H: $1s^1$
 $2p \uparrow \uparrow \uparrow$
 $2s \uparrow \downarrow$
 $1s \uparrow \downarrow$

Make CH₄:

What does this look like in terms of orbitals?

WRONG: This shape doesn't match the one predicted by VSEPR.

Use what we learned about hybrids: CH_4

1) Assign Geometry Using VSEPR:

CH₄ SN = 4 Geometry: Tetraheadral

2) Write electron configuration of atom to be hybridized:
 C: 1s² 2s² 2p²

3) Draw energy diagram for atom and decouple paired electrons:

4) <u>Take linear combinations of participating</u> <u>atomic orbitals to make hybrid orbitals:</u>

We know that if we start with four orbitals, we must finish with four orbitals. Thus, they will be 109.5° apart:

The orbitals are centered at the node between the green and red lobes, so the orbitals overlap.

4) <u>Take linear combinations of participating</u> <u>atomic orbitals to make hybrid orbitals:</u>

$$+$$
 $+$ $+$ $+$ $+$ $+$ $+$ $+$

1/2	+	1/2	+ 1/2 + 1/2
1/2	÷	1/2	- 1/2 + 1/2
1/2	-	1/2	+ 1/2 - 1/2
1/2	+	1/2	- 1/2 - 1/2

4) <u>Take linear combinations of participating</u> <u>atomic orbitals to make hybrid orbitals:</u>

Notice the tetrahedron formed by the sp³ hybrid orbitals.

This is the shape predicted for CH₄ by VSEPR.

5) <u>Combine hybrid orbitals with other atoms' orbitals</u> using diatomic MO theory:

- •All the angles are correct.
- •All the orbitals have the same energy.

Make NH₃: We know:

- It has one lone pair.
- The geometry, from VSEPR:

Bond angle: <109.5°

• The electron configurations:

N: 1s² 2s² 2p³ H: 1s¹

2s 1

1s

Make NH₃:

What does this look like in terms of orbitals?

Possibilities:

WRONG: The shapes don't match those predicted by VSEPR.

Make NH_3 : NH₃ has a steric number of 4.

This suggests we should use sp³ hybridization

Make H₂O: We know:

- The molecule has two lone pairs.
- The geometry, from VSEPR:

1s 1

Bond angle: <109.5° (104.5°)

• The electron configurations:

O: 1s² 2s² 2p⁴ H: 1s¹

$$2p \stackrel{1}{\longrightarrow} \stackrel{1}{\frown} \stackrel{1}{\frown}$$

$$2s \stackrel{1}{\longrightarrow}$$

Make H₂O:

What does this look like in terms of orbitals?

Possibilities:

WRONG: These shapes don't match those predicted by VSEPR.

Make H_2O : H_2O has a steric number of 4.

This suggests we should use sp³ hybridization

Reading: Gray: (4-1), (4-2), and (4-4) OGN: (16.2)