Lecture 3&4
Date: April 2 & 5

Passive Transport Across Membranes

Neutral Solutes

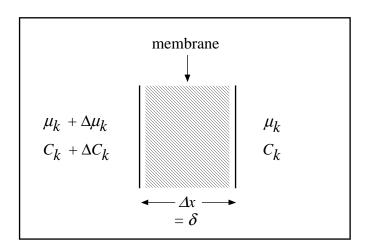


Figure 2-1

General Equation

$$J_k = -\lambda_k C_k \left(\frac{1}{N_A}\right) \frac{d\mu_k}{dx}$$
 moles / cm² / sec

where $\lambda \equiv$ mobility

Take an imaginary boundary inside a membrane.

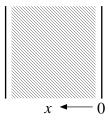


Figure 2-2

We may write:

$$J_k^m(x) = -\lambda_k^m C_k^m(x) \frac{1}{N_A} \frac{d\mu_k^m(x)}{dx} \equiv \text{flux of species } k \text{ at point } x \text{ in the membrane}$$

$$= -\lambda_k^m C_k^m(x) \frac{1}{N_A} RT \frac{1}{C_k^m} \frac{dC_k^m(x)}{dx}$$

$$= -\lambda_k^m k_B T \frac{dC_k^m(x)}{dx}$$

Invoke the steady state approximation and assume that there is no accumulation of solute at each boundary. Then $J_k^m(x) = \text{constant for every point } x$ in the membrane, and if λ_k^m is independent of x, $\frac{dC_k^m(x)}{dx}$ must be constant across the membrane as well for each species.

We shall of course assume that the concentrations all remained outside the membrane so that

$$C_k(x=0)$$
 and $C_k(x+\Delta x)$ are C_k and $C_k+\Delta C_k$

on the right and left boundaries, respectively.

Define the partition coefficient such that

$$C_k^m = k_k^p C_k$$

where $k_k^p \equiv$ partition coefficient for kth species \equiv equilibrium distribution coefficient

Then at the two membrane boundaries

$$C_k^m(x=0) = k_k^p C_k(x=0)$$

$$C_k^m(x+\Delta x) = k_k^p C_k(x+\Delta x) = k_k^p C_k(x=0) + k_k^p \Delta C_k$$

Substituting into the flux equation:

$$J_k^m(x) = -\lambda_k^m k_B T \frac{dC_k^m(x)}{dx}$$

$$= -\lambda_k^m k_B T \frac{\Delta C_k^m}{\Delta x}$$

$$= -\lambda_k^m k_B T \frac{C_k^m(x = \Delta x) - C_k^m(x = 0)}{\Delta x}$$

$$= -\lambda_k^m k_B T k_k^p \frac{\Delta C_k}{\Delta x}$$

$$= -\lambda_k^m k_B T k_k^p \frac{1}{\delta} \Delta C_k$$

$$= -p_k^m \Delta C_k$$

where $p_k^m \equiv$ permeability coefficient of species k

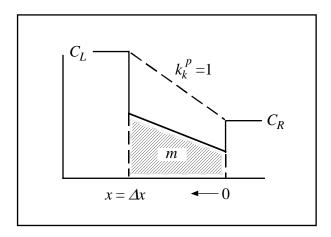


Figure 2-3

Water Transport Across Membranes

(This has been an active field in biophysics for many years!)

You have to worry about a difference in the hydrostatic pressure across the membrane, in addition to the activity difference, i.e.,

$$\frac{\Delta P}{\Delta x}$$
 in addition to $\frac{\Delta \ln x_s}{\Delta x}$

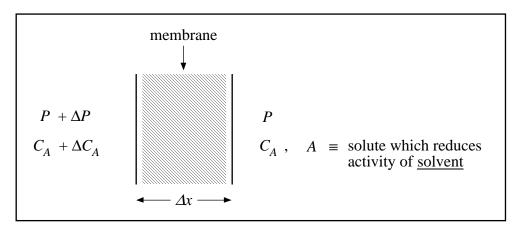


Figure 2-4

Start with the Magic Formula

 J_s^m = water flux across the membrane

$$= -\lambda_s^m C_s^m \frac{1}{N_A} \frac{d\mu_s^m}{dx}$$

As before, assume the driving force is constant across each imaginary boundary within the membrane.

Then

$$J_{s}^{m} = -\lambda_{s}^{m} C_{s}^{m} \frac{1}{N_{A}} \frac{\mu_{s}^{m} (x = \Delta x) - \mu_{s}^{m} (x = 0)}{\delta}$$

Now

$$\mu_s^m(x=0) = \mu_s(x=0) = \mu_s^0(P) + RT \ln x_s$$
 and
 $\mu_s^m(x=\Delta x) = \mu_s(x=\Delta x) = \mu_s^0(P+\Delta P) + RT \ln x_s'$

Therefore

$$\mu_s^m(x = \Delta x) - \mu_s^m(x = 0) = \mu_s^0(P + \Delta P) - \mu_s^0(P) + RT \ln x_s' - RT \ln x_s$$

$$= \left(\frac{\partial \mu_s^0}{\partial P}\right) \Delta P + RT \Delta \ln x_s$$

$$= \overline{V}_s^* \Delta P - RT \overline{V}_s^* \Delta C_A, \quad \overline{V}_s^* = \text{average molar volume}$$
of solvent

Therefore

$$J_{s}^{m} = -\lambda_{s}^{m} C_{s}^{m} \frac{1}{N_{A}} \frac{1}{\delta} \left(\overline{V}_{s}^{*} \Delta P - R T \overline{V}_{s}^{*} \Delta C_{A} \right)$$

$$\cong -\lambda_{s}^{m} k_{s}^{p} \overline{C}_{s} \frac{1}{N_{A} \delta} \overline{V}_{s}^{*} \left(\Delta P - R T \Delta C_{A} \right)$$

$$\cong -\lambda_{s}^{m} k_{s}^{p} \frac{1}{N_{A} \delta} \left(\Delta P - R T \Delta C_{A} \right) \quad \text{as} \quad \overline{C} \overline{V}_{s}^{*} \cong 1 \quad \text{for dilute solutions}$$

Note at equilibrium $J_s^m = 0$ so that $\Delta P = RT \Delta C_A = \pi$ as expected.

Electrodiffusion (Diffusion of Ions Across Membranes)

$$J_k^m(x) = -\lambda_k^m C_k^m(x) \frac{1}{N_A} \frac{d\overline{\mu}_k^m(x)}{dx}$$
where $\overline{\mu}_k^m(x) = \overline{\mu}_k^{0m} + RT \ln C_k^m(x) + z_k F \Phi^m(x)$

Now

$$\frac{d\overline{\mu}_k(x)}{dx} = \frac{RT}{C_k^m} \frac{dC_k^m}{dx} + z_k F \frac{d\boldsymbol{\Phi}^m(x)}{dx}$$

Assume a steady state with:

- (1) linear concentration gradient
- (2) constant potential gradient

over the region of the membrane (Δx).

Then

$$\frac{dC_k^m(x)}{dx} = k_k^p \frac{dC_k}{dx} = k_k^p \frac{\Delta C_k}{\Delta x} \quad \text{and} \quad \frac{d\boldsymbol{\Phi}^m(x)}{dx} = \frac{\Delta \boldsymbol{\Phi}}{\Delta x}$$

so that

$$\begin{split} J_k^m(x) &= -\lambda_k^m C_k^m \bigg(\frac{k_B T}{C_k^m} \, k_k^p \, \frac{\Delta C_k}{\Delta x} + \frac{z_k F}{N_A} \, \frac{\Delta \varPhi}{\Delta x} \bigg) \\ &= -\frac{\lambda_k^m k_k^p k_B T}{\delta} \bigg(\Delta C_k + \frac{z_k F}{R T} \, \overline{C}_k \Delta \varPhi \bigg) \\ \text{where} \qquad \frac{\lambda_k^m k_k^p k_B T}{\delta} &= P_k^m \quad \text{and} \quad \overline{C}_k = \text{ center of membrane} \end{split}$$

for each ionic species.

Consider Two Types of Membranes

(1) If a membrane is permeable to only one ionic species, say k, then without any external electrical connection, no electric current can flow (hence no flux in this case). Thus, $J_k = 0$ and we can solve for $\Delta \Phi$.

$$\Delta \Phi = \frac{-RT}{z_k F} \left[\frac{\Delta C_k}{\overline{C}_k} \right] \quad \text{or more exactly}$$

$$\frac{-RT}{z_k F} \ln \frac{C_L}{C_R} = \Phi_L - \Phi_R \quad \text{(Gibbs - Donnan potential)}$$

(2) If, on the other hand, a membrane is permeable to a variety of ions present, each with its own permeability coefficient, then the condition of no <u>net</u> electric current flow gives the following

$$\sum_{k=1}^{n} z_k J_k^m = 0 , \quad \text{for all ions}$$

In this case, ionic fluxes are possible,

or
$$-\sum_{k=1}^{n} z_{k} P_{k}^{m} \Delta C_{k} - \frac{F}{RT} \sum_{k=1}^{n} z_{k}^{2} P_{k}^{m} \overline{C}_{k} \Delta \Phi = 0$$
or
$$\Delta \Phi = -\frac{RT}{F} \frac{\sum_{k=1}^{n} z_{k} P_{k}^{m} \Delta C_{k}}{\sum_{k=1}^{n} z_{k}^{2} P_{k}^{m} \overline{C}_{k}}$$
 (steady state potential)

This is the approximate Goldman equation.

Biological Membranes

For biological membranes, the ionic permeability of many ions is small, so a few ions dominate. Therefore, you need to sum over the principal ions whose permeabilities and conductances across the membrane are significant.

Resting Nerve

Only the permeability of K^+ is significant, so $\Delta \Phi \approx$ Gibbs-Donnan potential applied to K^+ .

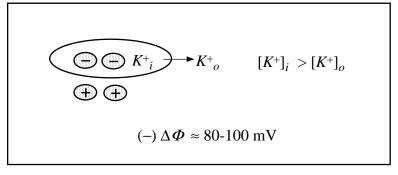


Figure 2-5

Excited Nerve

The permeabilities of K^+ and Na^+ are significant. During impulse transmission, changes occur in the membrane so that the conductances of both K^+ and Na^+ are important. A transient point is reached where the Na^+ permeability coefficient or conductance is much greater than that for K^+ .