
  
 
Chemistry 24b Lecture 3&4 
Spring Quarter 2004 Date:  April 2 & 5 
Instructor:  Richard Roberts 
 

Passive Transport Across Membranes 

Neutral Solutes 

membrane

µk  + ∆µk µk
CkCk  + ∆Ck

∆x
= δ

 

Figure 2-1 

General Equation 

Jk = −λkCk
1

NA

� 
� 
� � 

� 
� dµ k

dx
  moles / cm2 / sec

where   λ ≡  mobility
 

Take an imaginary boundary inside a membrane.   

x 0  

Figure 2-2 
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We may write: 

Jk
m(x) = −λ k

mCk
m(x)

1
NA

dµk
m (x)
dx

 ≡  flux of species k at point x in the membrane

= −λ k
mCk

m(x)
1

NA
RT

1
Ck

m
dCk

m (x)
dx

= −λ k
mkBT

dCk
m (x)
dx

 

Invoke the steady state approximation and assume that there is no accumulation of solute 
at each boundary.  Then Jk

m(x)  = constant for every point x in the membrane, and if λ k
m  

is independent of x, 
dCk

m (x)
dx

 must be constant across the membrane as well for each 

species. 

We shall of course assume that the concentrations all remained outside the membrane so 
that 

Ck(x = 0)   and  Ck (x + ∆x)   are   Ck  and  Ck + ∆Ck  

on the right and left boundaries, respectively. 

Define the partition coefficient such that  

Ck
m =  kk

pCk

where    kk
p ≡  partition coefficient for kth species

≡  equilibrium distribution coefficient  

Then at the two membrane boundaries 

Ck
m (x = 0)   =  kk

pCk(x = 0)

Ck
m (x + ∆x) =  kk

pCk(x + ∆x) =  kk
pCk(x = 0) + kk

p∆Ck
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Substituting into the flux equation: 

Jk
m(x) = −λ k

mkBT
dCk

m (x)
dx

  

= −λ k
mkBT

∆Ck
m

∆x

= −λ k
mkBT

Ck
m (x = ∆x) − Ck

m (x = 0)
∆x

= −λ k
mkBT  kk

p ∆Ck
∆x

= −λ k
mkBT  kk

p 1
δ

∆Ck

= −pk
m∆Ck

 

where   pk
m ≡  permeability coefficient of species k  

x = ∆x

CL

CR

pkk   =1

m

0

 

Figure 2-3 
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Water Transport Across Membranes  

(This has been an active field in biophysics for many years!) 

You have to worry about a difference in the hydrostatic pressure across the membrane, in 
addition to the activity difference, i.e., 

∆P
∆x

  in addition to  
∆lnxs

∆x
 

membrane

P  + ∆P P

CA  ,CA  + ∆CA

∆x

A   ≡ solute which reduces
activity of solvent

 

Figure 2-4 

Start with the Magic Formula 

Js
m =  water flux across the membrane

= −λ s
mCs

m 1
NA

dµ s
m

dx

 

As before, assume the driving force is constant across each imaginary boundary within 
the membrane. 

Then 

Js
m = −λ s

mCs
m 1

NA

µs
m (x = ∆x) − µ s

m (x = 0)
δ  

Now 
µ s

m(x = 0)   =  µ s (x = 0)    =  µ s
0 (P) + RT ln xs     and

µ s
m(x = ∆x) =  µ s (x = ∆x ) =  µ s

0(P + ∆P) + RT ln ′ x s
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Therefore 

µ s
m(x = ∆x) − µ s

m(x = 0) =  µ s
0 (P + ∆P) − µ s

0 (P) + RT ln ′ x s − RT ln xs

=
∂µ s

0

∂P
� 
� 
� � 

� 
∆P + RT ∆ ln xs

= V s
*∆P − RTV s

* ∆CA ,    V s
* =  average molar volume

                                              of solvent

 

Therefore 

Js
m = −λ s

mCs
m 1

NA

1
δ

V s
*∆P − RTV s

* ∆CA( )
≅ −λ s

mks
pC s

1
NAδ

V s
* ∆P − RT ∆CA( )

≅ −λ s
mks

p 1
NAδ

∆P − RT ∆CA( )       as   C V s
* ≅ 1   for dilute solutions

 

Note at equilibrium Js
m = 0  so that ∆P = RT ∆CA = π   as expected. 

Electrodiffusion (Diffusion of Ions Across Membranes) 

  

Jk
m(x) = −λ k

mCk
m(x)

1
NA

dµ km (x)
dx

where    µ k
m (x) = µ k

0 m + RT ln Ck
m (x) + zkFΦ m (x) 

Now 

  

dµ k (x)
dx

=
RT
Ck

m
dCk

m

dx
+ zkF

dΦ m (x )
dx  

Assume a steady state with: 

(1) linear concentration gradient 

(2) constant potential gradient 

over the region of the membrane (∆x). 
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Then 
dCk

m (x)
dx

= kk
p dCk

dx
= kk

p ∆Ck
∆x

     and

dΦ m (x)
dx

=
∆Φ
∆x

 

so that 

  

Jk
m (x ) = −λ k

mCk
m kBT

Ck
m kk

p ∆Ck
∆x

+ zkF
NA

∆Φ
∆x

� 

� 
� � 

� 
� 

= −
λ k

mkk
pkBT
δ

∆Ck +
zkF
RT

C k∆Φ� 
� 

� 
� 

where       
λ k

mkk
pkBT
δ

= Pk
m     and     C k =  center of membrane

 

for each ionic species. 

Consider Two Types of Membranes 

(1) If a membrane is permeable to only one ionic species, say k, then without any 
external electrical connection, no electric current can flow (hence no flux in this 
case).  Thus, Jk = 0  and we can solve for ∆Φ . 

  

∆Φ =
−RT
zkF

∆Ck
C k

� 

� � 
� 

� � 
     or more exactly

−RT
zkF

ln CL
CR

 =  ΦL − ΦR   (Gibbs - Donnan potential)
 

(2) If, on the other hand, a membrane is permeable to a variety of ions present, each with 
its own permeability coefficient, then the condition of no net electric current flow 
gives the following 

zk Jk
m

k=1

n

� = 0 ,     for all ions
 

 In this case, ionic fluxes are possible,  
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or   − zkPk
m

k=1

n

� ∆Ck − F
RT

zk
2Pk

mC k
k =1

n

� ∆Φ =  0

       or   ∆Φ = −
RT
F

zkPk
m

k=1

n

� ∆Ck

zk
2Pk

mC k
k=1

n

�

     (steady state potential) 

 This is the approximate Goldman equation. 

Biological Membranes 

For biological membranes, the ionic permeability of many ions is small, so a few ions 
dominate.  Therefore, you need to sum over the principal ions whose permeabilities and 
conductances across the membrane are significant . 

Resting Nerve 

Only the permeability of K+ is significant, so ∆Φ ≈  Gibbs-Donnan potential applied to 
K+. 

− −

+ +

K+
i K+

o [K+]i   > [K+]o

(−) ∆Φ  ≈ 80-100 mV
 

Figure 2-5 

Excited Nerve 

The permeabilities of K+ and Na+ are significant.  During impulse transmission, changes 
occur in the membrane so that the conductances of both K+ and Na+ are important.  A 
transient point is reached where the Na+ permeability coefficient or conductance is much 
greater than that for K+. 


