Chemistry 24b Spring Quarter 2004 Instructor: Richard Roberts

Absorption or Emission Spectroscopy

Figure 11-1

$$B_{ab} = B_{ba} = \left(\frac{2}{3}\right) \left(\frac{\pi}{h^2}\right) \left| \int \phi_b^* \vec{\mu} \, \phi_a \, d\vec{r} \right|^2$$
where $\vec{\mu} = -|e|\vec{r}$ for an electron or $\vec{\mu} = \sum_i q_i \vec{x}_i^{\text{V}} = \sum_i z_i |e|\vec{x}_i^{\text{V}}$ for a molecule or $\int \rho(\vec{x}) \vec{x} \, dv$

The above result is from time-dependent quantum mechanics.

The integral
$$\int \phi_b^* \mu \phi_a d\nu$$
 is called the transition dipole.
= μ_{ab} or μ_{ba} for short

This is an important concept or quantity, because unless $\mu_{ba} \neq 0$, there is no transition induced by E^{**} of light, or no <u>electric dipole</u> transition.

Selection Rules for Simple Situations

a) Particle in a Box (1D)

Figure 11-2

$$\mu_{n \to m} = \mu_{nm} = \int_{0}^{a} \phi_{m}^{*}(x) \, \mu \, \phi_{n}(x) dx$$
$$= -|e| \left(\sqrt{\frac{2}{a}}\right)^{2} \int_{0}^{a} \sin \frac{m \, \pi x}{a} \cdot x \cdot \sin \frac{n \, \pi x}{a} \, dx$$

The integral vanishes unless $m = n \pm 1$, $n \pm 3$, $n \pm 5$, K K

It follows from the symmetry of the problem that:

x is an odd function if reflected about x = a/2 (middle of box); i.e., it changes sign.

 $\phi_n(x)$ is an even function for n odd (antisymmetric function).

 $\phi_n(x)$ is an odd function for *n* even (symmetric function).

 $\phi_m^*(x)\phi_n(x)$ is an odd function for $m=n\pm 1$, $n\pm 3$, $n\pm 5$, KK; it is an even function otherwise.

For the integral not to vanish,

integral $\phi_m^*(x) \cdot x \cdot \phi_n(x)$ must be an even function upon reflection about x = a/2,

or $\phi_m^*(x)\phi_n(x)$ must be an odd function to compensate for x being an odd function

or
$$m = n \pm 1$$
, $n \pm 3$, $n \pm 5$, K K

Selection rule for electric dipole transitions for a particle in a box.

Figure 11-3

(b) e In a Harmonic Potential or Harmonic Oscillator

Figure 11-4

Selection rules for electric dipole transitions: $\Delta n = \pm 1$ only.

Note $\Delta n \pm 3$, ± 5 transitions are allowed by symmetry, but the integrals all turn out to vanish.

(c) Anharmonic Oscillator with Cubic Anharmonicity

Figure 11-5

- $0 \rightarrow 1$ transition usually called "fundamental"
- $0 \rightarrow 2$ transition usually called "1st overture"
- $1 \rightarrow 2$ transition usually called "1st hot band"

(d) Anharmonic Oscillator with Quartic Anharmonicity

The problem again has symmetry.

Selection rules for electric dipole transitions: $\Delta n = \pm 1, \pm 3, \pm 5$ etc. as for a particle in a box.

(e) Hydrogen-like Atom

Quantum states are identified by quantum number n, l, m_l .

Selection rules for electric dipole transitions:

$$\Delta n = \pm 1, \pm 2, \text{ K K}$$
 no restriction
 $\Delta l = \pm 1$ only $s \leftrightarrow p, p \leftrightarrow d, d \leftrightarrow f$ transitions only
 $\Delta m_l = \pm 1, 0$

A More Complex Situation: Formaldehyde

Figure 11-6

2 C—H bonds are formed by carbon hybrid sp^2 orbital overlapping with hydrogen 1s. The third sp^2 orbital of carbon overlaps with O $2p_x$ orbital to form C—O sigma bond. C $2p_z$ and O $2p_z$ orbitals form π -bond (π -MO with 2 e⁻'s), and remaining two oxygen electrons are in 2 p_y orbital of the oxygen.

HOMO and LUMO's

HOMO — highest occupied MO's

LUMO — lowest unoccupied MO's

Figure 11-7

$\pi \rightarrow \pi^*$ Transition

$$\int \phi_{\pi^*}^* \overset{\mathsf{V}}{\mu} \phi_\pi \, d\overset{\mathsf{V}}{r} = \, \overset{\mathsf{V}}{i} \! \int \phi_{\pi^*}^* \, \mu_x \, \phi_\pi \, d\overset{\mathsf{V}}{r} + \, \overset{\mathsf{V}}{j} \! \int \phi_{\pi^*}^* \, \mu_y \, \phi_\pi \, d\overset{\mathsf{V}}{r} + \, \overset{\mathsf{V}}{k} \! \int \phi_{\pi^*}^* \, \mu_z \, \phi_\pi \, d\overset{\mathsf{V}}{r}$$

Only $\int \phi_{\pi^*}^* \mu_x \ \phi_{\pi} d^{\nabla}_r$ is <u>nonzero</u>; the others vanish by symmetry.

The result is a transition dipole along the C = O bond or intense absorption can only occur when E^* of the light wave is parallel to the C = O bond; i.e., the transition is polarized along the C = O bond.

$n \rightarrow \pi^*$ Transition

$$\int \phi_{\pi^*}^* \stackrel{\mathsf{V}}{\mu} \phi_n \, dr^{\mathsf{V}} = 0 \quad \text{for} \quad \mu_x, \, \mu_y, \text{ and } \mu_z$$

 $n \rightarrow \pi^*$ transition is symmetry forbidden; in practice it can be observable, but is extremely weak. Typically, $n \rightarrow \pi^*$ absorption has an intensity $\sim 1\%$ of the $\pi \rightarrow \pi^*$ transition.

Absorption Spectrum of Acetone

Figure 11-8

Biological Chromophores

Protein Chromophores

peptide bond

amino acid side chains (trp, tyr, phe)

prosthetic groups (hemes, flavins, blue coppers)

Nucleic Acid Chromophores — bases

Peptide Bond

Typical models:

Peptide bond

 $n \to \pi^*$ absorption 210-220 nm $\varepsilon_{\rm max} \sim 100~{
m weak}$ $\pi \to \pi^*$ 190 nm $\varepsilon_{\rm max} \sim 7000$

Amino Acid Side Chains

Table 11-1. Absorption of Amino Acid Side Chains									
Trp (tryptophan); not present in large amounts in proteins	240-290 nm	most intense	absorption complex (3 transitions of indole ring)						
Tyr (tyrosine)	274 nm	$\pi - \pi^* \ (\varepsilon_{\text{max}} \sim 1400)$	analogous to 271 nm absorption in phenol						
Phe (phenylalanine)	250 nm	weak $\pi - \pi^*$ symmetry forbidden	analagous to 256 nm absorption in benzene						

Prosthetic Groups

Table 11-2. Absorption of Prosthetic Groups							
Protein	Prosthetic Group	Longest λ Absorption λ_{max} (nm) $\varepsilon_{\text{max}} \times 10^{-4}$		2nd Longest λ Absorption λ_{max} (nm) $\varepsilon_{\text{max}} \times 10^{-4}$			
Amino acid oxidase (rat kidney)	FMN	455	1.27	358	1.07		
Azurin, P. fluorescene, plastocyanin, spinach stellacyanin	Cu ^{il} CH ₃ N N SCH ₂ -	781	0.32	625**	0.35		
Ceruloplasmin (human)	8 coppers type 1, 2, 3	794	2.2	610	1.13		
Cytochrome <i>c</i> (reduced) (human)	Fe ^{II} -heme	550	2.77				
Ferrodoxin	2Fe ^{III} -2S ⁻ cluster	421	0.98	330	1.33		
Flavodoxin (C. pasteurianium)	FMN	443	0.91	372	0.79		
pyruvate dehydrog- enase (E. coli)	FAD	460	1.27	438	1.46		
Rhodopsin (bovine)	retinal-lys	498	4.2	350	1.1		
Reubredoxin (M. aerogenes)	(Fe ^{III} ,4 Cys) tetrahedra	570	0.35	490	0.76		
Xanthine oxidase	Fe, Mo	550	2.2				
Threonine deaminase (E. coli)	4 pyridoxal phosphates	415	2.6				

^{*}blue copper

**Cu^{II} ←S − charge transfer

Other Protein Chromophores

retinal in bacteriorhodopsin

chlorophylls in reaction centers of cyanobacteria PS I and II

hemes and coppers in cytochrome oxidase (heme λ_{max} 420-600 nm; Cu λ_{max} 830 nm)

Nucleic Acid Bases

In DNA and RNA, absorption is dominated by nucleic acid bases (A, G, T/U, C).

NH2
NH2
240,
207 nm
Adenine (A)

Cytosine (C)

275 nm

$$T = \pi^*$$
 transition moments lie in plane of bases

Figure 11-9

Vibrational Spectroscopy / Rotational Spectroscopy

Absorption arises from the interaction of the dipole moment of a molecule with $\stackrel{\vee_*}{E}$ of the light wave.

dipole moment of molecule
$$= \stackrel{\text{V}}{\mu} \left(\stackrel{R}{R} \right)$$

 $= \stackrel{\text{V}}{\mu} \left(\stackrel{R}{R_0} \right) + \sum_{i} \left(\frac{\partial \stackrel{\text{V}}{\mu}}{\partial R_i} \right)_{R_0^i} \left(\stackrel{R}{R_i} - R_0^i \right) + K$

where $\mu \left(\begin{array}{c} V \\ R_0 \end{array} \right) =$ permanent dipole moment, responsible for pure rotational spectroscopy

$$\sum_{i} \left(\frac{\partial \overset{\mathbf{V}}{\mu}}{\partial R_{i}} \right)_{R_{0}^{i}} \left(R_{i} - R_{0}^{i} \right) = \text{dipole derivative, responsible for}$$
(a) vibrational - rotational spectroscopy of gases
(b) vibrational spectroscopy of liquids

For a Diatomioc Molecule

(a) Rotational Spectroscopy

No absorption unless $\mu \left(\begin{array}{c} \mathbf{R}_0 \\ \sim \end{array} \right) = \text{permanent dipole moment } \neq 0$

(b) Vibrational Spectroscopy

No vibrational excitation unless $\left(\frac{\partial \mu}{\partial R}\right)_{R_0} \neq 0$ (dipole derivative) e.g., H₂

Selection rule:
$$\Delta n = \pm 1$$
, $(\pm 2, K)$
strong weak

For a Linear Triatomic Molecule

 CO_2 No $\mu \left(R_0 \right)$ or permanent dipole moment.

Vibrations:

4 normal modes (normal coordinates Q_i)

symmetric stretch
$$\leftarrow O = C = O \rightarrow \left(\frac{\partial \mu}{\partial Q_i}\right)_0 = 0$$
asymmetric stretch $\overrightarrow{O} = \overrightarrow{C} = O \rightarrow \left(\frac{\partial \mu}{\partial Q_i}\right)_0 \neq 0$
bending
$$\begin{cases}
O = \overrightarrow{C} = O \\
\downarrow & \downarrow \\
O = C = O
\end{cases} \left(\frac{\partial \mu}{\partial Q_i}\right)_0 \neq 0$$

$$\begin{cases}
O = \overrightarrow{C} = O \\
\downarrow & \downarrow \\
O = C = O
\end{cases} \left(\frac{\partial \mu}{\partial Q_i}\right)_0 \neq 0$$

Accordingly,

symmetric stretch infrared inactive asymmetric stretch bending infrared active

For a Peptide Group

Table 11-3. Characteristics of Principal Infrared Absorption Bands

Vibration	$\left(\frac{\partial \mu}{\partial Q}\right)$	α-Hel	lix	<u>ded Forms</u> * <i>β</i> -S Frequency	heet Dichroism	Non-hydrogen Bonded Forms Frequency
N—H stretch	$\begin{array}{ccc} \leftarrow N - H \rightarrow \\ \leftrightarrow & \dagger \end{array}$	3290-3300 cm ⁻¹)	3280-3300 cm ⁻¹	Τ	~3400 cm ⁻¹
Amide I C=O stretch	$\begin{array}{c} \leftarrow O = C \rightarrow \\ \leftrightarrow & \dagger \\ {}_{\downarrow}H\uparrow \end{array}$	1650-1660 cm ⁻¹)	1630 cm ⁻¹	Т	1680-1700 cm ⁻¹
Amide II**	$\leftarrow C \longrightarrow N \longrightarrow$	1540-1550 †† cm ⁻¹	Τ	1520-1525 cm ⁻¹	II	<1520 cm ⁻¹

^{* &}lt;u>α-helix</u>:

N-H----O=C hydrogen bonds \parallel helix axis

β -sheet:

^{**} polarized near C—N bond or \bot N—H bond

[†] polarization vector