
  
 
Chemistry 24b Lecture 19 & 20 
Spring Quarter 2004   
Instructor:  Richard Roberts 
 

 

1946:  Harvard (F(ω)) vs. Stanford (S(t)) experiment 

Continuous Wave Experiment 

A “CW” NMR spectrum is obtained by sweeping the rf frequency or the magnetic field 
through resonance slowly.  In this experiment rf is on continuously.  However, B1 is 
small, so that only one resonance is excited at a time. 
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Figure 10-1 

In a frame rotating with angular velocity ω , the “effective field” is given by  
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At or near resonance     
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F(ω) ≡ NMR spectrum in frequency domain. 

Fourier Transform NMR 

Same information in F(ω) and S(t). 

In fact 
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Advantage of S(t):  it takes  T2 to acquire  T2 ≈  20 – 100 msec  for small protons  
 T1  per experiment  T1  ≈  1 sec  

so in the time it takes to do a CW experiment, say 250 sec, you can do 250 Fourier 
transform experiments. 

S
N

  improvement     N1/ 2 =  250( )1/ 2  =  16 

Another important difference is that in FT NMR experiments, all spins are affected 
simultaneously by rf, and all contribute to detected signal simultaneously. 

FT NMR experiments are typically shown as timing diagrams or “pulse sequences”, e.g. 
the simplest one-pulse experiment: 
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Single-pulse Experiment 
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Figure 10-2 
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Constraints on rf pulse 

1)  Must be << T2  

2)  Must be short enough to evenly excite all resonances in spectrum.  Pulse of length t 
contains these Fourier components: 
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Figure 10-3 

Recall for a
π
2

 pulse, t =
π

2γB1

.  We require for uniform excitation that  

γ B1 >> 2π∆    where   ∆   is the spectral width

So    tπ
2

<< π
2 2π∆( )

= 1
4∆  

Representative numbers: 

tπ
2

≈ 5µs       ∆ ≈ 5 –10 kHz  for 1H

∆ ≈ 20 kHz  for 13C
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Free-induction Decay 

After 
π
2

 pulse, Mxy ≠ 0 , nonequilibrium, so Mxy  must decay with time.  The rate of 

decay (1/T2 ) depends on how the individual spins that make up the magnetization can get 
out of phase, and this decay thus depends on 

(a) different frequencies of precession of various spins that are excited by rf: 

    ∆ω0 :  ω1
0 , ω2

0 K K  

(b) magnetic field inhomogeneity over the sample 

(c) variations in the precession frequencies due to fluctuations in the local 

magnetic field at the nucleus:  ∆ ω − ω0( )21/2
 

In any case, free-induction decay (FID) ≡  NMR spectrum in the time domain.  Long T2 's 
transform to sharp lines in the frequency domain; short T2 's yield broad lines. 
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Figure 10-4 

Spin Lattice Relaxation 

After a single pulse ≠ 2nπ, Mz  not at thermal equilibrium.  Bloch postulated exponential 
recovery of Mz  (justified for random isotropic rotational motion) with time constant T1 
… also called spin-lattice relaxation time (T2  processes are adiabatic … spin-spin 
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magnetization transfer without loss of energy to surroundings vs. T1 processes … spin 
system loses energy to surrounding “lattice” as relaxation proceeds).  So from Bloch, 
after a single pulse 

d
dt

Mz = −
Mz − M0( )

T1  

General solution:  Mz t( )− M0 = Ae− t / T1 .  For a π pulse:  Mz t( ) = 1 − 2e−t / T1( )M0  
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Figure 10-5 
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Stacked plot

Vary τ   and stack  F(ω)

τ 0 = 0
τ 1

τ 2
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Figure 10-6 

Note that different resonances have different T1's!  For each of the resonances, obtain a 
curve.  Use nonlinear least squares analysis to extract T1. 
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Figure 10-7 
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Another Two-pulse Experiment — “The Spin Echo” 
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Vary τ and obtain S(t,τ)  for a given τ.

The above pulse sequence or experiment can also be written
π
2 ′x

– τ – π ′x – τ – spin echo – RD

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This two-pulse experiment is a prelude to 2D NMR.

 

Figure 10-8 
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The spin echo is a component of many more complicated pulse sequences.  By itself, it 
can be used to measure T2  … by varying τ and looking at envelope intensity (or signal 
intensity in F(ω)).  Furthermore, Hahn showed an effect of diffusion on NMR spectra: in 
an inhomogeneous field, the spin echo amplitude diminishes according to: 
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Pulsed Field Gradients 

Recently (past 5 years) great use has been made of short duration (i.e. “pulsed”) field 
gradients.  A linear gradient applied along the z axis modifies the Larmor frequency for 
different volume elements along the length of the sample tube: 

ω z( ) = − γ B0 + Bg z( )[ ]
= ω0 − γ zG          where G is a constant ∝ gradient strength

 

If Mxy ≠ 0  when the gradient is applied, the spins become “phase-encoded”… their phase 

θ z( ) in the xy plane depends on their location along the z axis: 

φ z( ) = γzGt        where  t = duration of gradient pulse 
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Figure 10-9 
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As an example, a pair of gradients can be combined with a Hahn spin echo to create a 
diffusion-selective (therefore molecular weight-selective) echo sequence. 
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Figure 10-10 

The initial 90x pulse generates transverse magnetization.  The first gradient pulse phase-
encodes the magnetization.  The 180x rf pulse then inverts all spins … so the second 
gradient pulse should reverse the phase-encoding unless the molecules diffuse out of their 
original volume element during the first echo delay τ.  This will diminish the signals of 
small molecules preferentially to those of big molecules (since the latter diffuse more 
slowly) … particularly, this provides a way of eliminating the solvent signal in aqueous 
solutions of biological macromolecules. 


