Chemistry 24b (Spring term 2004) Problem Set #2 Due: 4/19/04, 11AM, in class

Part I

From Tinoco, Sauer, Wang and Puglisi: Chapter 7, Problems 4, 5, 15, 18, 21

Part II

Problem A

The dissociation of the double helix d(AACAA)·d(TTGTT) has an activation energy of 35 kcal·mol⁻¹ and a rate constant of 10^4 sec^{-1} at 35°C. Calculate the entropy of activation. How might you explain the positive sign of ΔS^{\neq} ?

Problem B

Given that H_3O^+ reacts with an amine, whose pK is 9.25, with a diffusion–limited rate constant of 4.3 x 10^{10} M⁻¹·sec⁻¹, calculate the rate of reaction of H_2O with R-NH3⁺.

Problem C

Calculate the half-time of the reaction of *lac* repressor with operator, both present at an initial concentration of 10^{-11} M. Assume that the rate constant is 5 x 10^{9} M⁻¹ ·sec⁻¹, and that the reverse reaction can be neglected.

Problem D

Derive an expression for the relaxation time of the third-order reaction

$$A + B + C \xrightarrow{k_1} D$$

Problem E

A proposed mechanism for decomposition of ozone (O₃) to oxygen is

$$O_3 \xrightarrow{k_1} O_2 + O$$
$$O_2 + O_3 \xrightarrow{k_2} 2 O_2$$

Use the steady-state approximation on the concentration of O atoms to derive the rate law for the process, assuming that the second step is rate limiting and that both steps are irreversible.