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Chapter 2.  Derivation of the Equations of Open Channel Flow 
 

2.1  General Considerations 
 

Of interest is water flowing in a channel with a free surface, which is usually referred to as open 
channel flow.  The channel could be a man-made canal or a natural stream.  It could also be a 
segment of a channel network.   
 
In this chapter, none of the water flowing in the channel leaves the channel and no external water 
enters the channel.  Thus, all of the flow is longitudinal; there is no lateral component.  Lateral 
flow will be considered in a later chapter, as will network flows.   
 
The open channel flow equations are derived from the fundamental 3-dimensional equations of 
fluid mechanics.  These differential equations and related concepts are reviewed first below, 
followed by a definition of the open channel flow problem. 
 
2.1.1  Fundamental fluid mechanics 
 
Formulations in fluid mechanics are usually based on an Eulerian approach, which uses control 
volumes.  A control volume is a fixed region in space through which the fluid passes, as shown 
in Figure 2.1.  Each location , ,  is associated with an infitesimal control volume that 
surrounds it.  A function  of , ,  and  (  for time) associates the property  with the fluid 
particle that is passing through the infitesimal control volume (located at , , ) at the time 
instant .  The function  is not attached to fluid particles.  This concept applies to the 
components of a velocity vector as well:  ,  and  in the , , and  directions, respectively.  
As functions of , ,  and , components ,  and  define the velocity of a fluid particle that is 
passing through the infitesimal control volume (located at , , ) at time instant ; see Figure 
2.1. 
 
An assumption made here is that the water is incompressible and of uniform density.  In such a 
case, the mass of fluid inside an infitesimal control volume does not change with time as the 
fluid flows through the control volume.  This condition can be expressed in terms of velocity 
derivatives as follows: 

0 .          (2.1) 
 

This equation is known as the continuity equation.  Incompressibility is a good assumption for 
water flowing in open channels, but density variations can occur due to non-uniform 
temperature, salt concentration, etc.  Density variation is not considered here. 
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In an Eulerian approach, derivatives of functions such as  with respect to time must distinguish 
between the time rate of change of  observed at the infitesimal control volume as the particles 

pass through (denoted by  , the Eulerian time derivative), or the time rate of change of  for a 

particular particle as it passes through the control volume (denoted by  , the material time 

derivative).  These two time derivatives are related by 
 

 ,          (2.2) 
 

where the extra terms on the right are the convective part of the material time derivative.  Particle 
acceleration is expressed in a similar way; for the components in the ,  and  directions: 
 

           (2.3a) 
 

           (2.3b) 
 

 .         (2.3c) 
 

The material derivative for the acceleration vector is appropriate for equations of motion since 
they require actual accelerations of water particles. 
 
In fluid mechanics, equations of motion are referred to as momentum equations.  For the fluid 
inside the infitesimal control volume at a particular instant of time, the product of its mass and 
acceleration equals the resultant force acting on the fluid inside the control volume, which is a 
vector equation.  This resultant force is due to the weight of the fluid and to spatial variations in 
the internal stresses in the fluid.  The ,  and  components of the weight vector per unit 

volume can be expressed as ,  and , respectively, where  is the vertical 

distance above some horizontal reference plane,  is the fluid density, and  is the gravitational 
acceleration (acting vertically downward)..  Note that  is the gravitational potential energy 
per unit volume.  Components of the internal stress tensor acting on the sides of the differential 
control volume are normal stresses ,  and  and shear stresses ,  and ; see Figure 

2.2.   
 
The ,  and  components of the differential momentum equations are 
 

          (2.4a) 
 

          (2.4b) 
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 .          (2.4c) 
 

In the order listed, these are equations of motion in the ,  and  directions, respectively, for a 
water particle at some instant of time .  Each group of three terms containing derivatives of  
and  is the resultant force due to spatial variations in these internal stresses.  Equation (2.4) is 
written in per-unit-volume form.  
 
Constitutive equations for fluids involve the deviatoric stresses, those that exist in addition to the 
pressure:  the shear stresses ,  and , plus ,  and  where 
 

′  ;      ′  ;      ′              (2.5)  
 

and where the pressure  is the average of the normal stresses: 
 

3
 .         (2.6) 

Through a viscosity tensor, these six deviatoric stresses are related to the six strain rates:  the 

normal strain rates  ,   and   and the shear strain rates   ,   and  .  

The constitutive relations will not be given here because they are not needed in the derivation of 
the open channel flow equations.  Instead, it will just be mentioned that any product involving a 

deviatoric stress component and the corresponding strain rate, such as   or  , 

represents a rate of energy dissipation. 
 
Stresses acting on a domain of fluid at its boundary are referred to as tractions; the ,  and  
components of the traction vector are denoted by ,  and .  At a point on a boundary, with a 

tangent plane whose outward normal direction is denoted by the unit vector , the tractions are 
related to the internal stresses by the following expressions: 
 

          (2.7a) 
 

          (2.7b) 
 

 ,          (2.7c) 
 

where  ,  and  are the direction cosines of . 

 
Solution of the equations of fluid mechanics involves satisfying boundary conditions.  As an 
example of a boundary condition, the velocity component normal to an impervious boundary 
would be specified to be zero.  For a viscous fluid, the tangential component would be zero as 
well, which is a no slip condition.   Tractions from equation (2.7) can also be specified as 
boundary conditions.  For example, neglecting the effects of air currents, the tractions acting on a 
free surface would be zero.  Non-zero values of velocity and traction can also be employed. 
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Depending on the value Reynolds number, a fluid in motion can develop flow structures at very 
small length scales, a phenomenon called turbulence.  A simple and approximate way to account 
for turbulence, which is sufficient in many applications, is to interpret  ,  and  as averages of 
the velocity components over time at a time scale just large enough to smooth out the turbulent 
fluctuations.  The same is done for the elements of the stress tensor and boundary traction vector.  
Values used for viscosity are equivalent values that account for overall energy dissipation, 
including that due to turbulence. 
 
2.1.2  Open Channel Flow 
 
Whereas control volumes of infitesimal size are useful for developing differential relations, a 
finite-sized control volume forms the starting point for deriving the equations of open channel 
flow.  Such a control volume is depicted in Figure 2.3, and consists of the region of the channel 
located between the fixed cross-sections 1 and 2 that is occupied by water.  This region, denoted 
by , is bounded by four surfaces:  the free surface , the floor and sides of the channel , and 
the two cross-sections and .  The free surface boundary can move, so in this sense, the 
control volume is not a region fixed in space.  The symbols , , ,  and  all denote 
domains, either volume or surface.  An additional domain, that of an interior cross-section, is 
denoted by  without a subscript.  The intersection of an interior cross-section  and the domain 

 is the 1-dimensional line domain .  Because of the movable free surface, the extents of all 
these domains are functions of time.   
 
The domain symbols , , ,  and will serve a dual purpose; the actual meaning should be 
clear by the context.   will also denote the volume of the control volume, i.e., the volume of 
water within the domain  .  ,  and  will also denote the areas of the respective cross-
sectional domains.   will also denote the length of the intersection of  and  (the wetted 
perimeter of a cross-section). 
 
Figure 2.3 also shows the coordinate system employed and other geometrical variables.  The 

 axis is parallel to the slope of the channel bottom, making an angle  with horizontal, and  is 
taken to be constant.  The  axis extends across the channel in the horizontal plane, and  is 
perpendicular to  and  so that the three axes form a right-handed system.  So, if the channel 
slope is not steep,  will be mostly vertically upward.  Cross-sections 1 and 2, located at  
and , are parallel to the ,  plane, as is the interior cross-sectional domain .  Along the 
boundaries of , the normal direction is denoted by the unit vector , positive being outward, 
with direction cosines ,  and .  For a prismatic channel, in which the shape of the cross-

section does not vary as a function of , 0 along . 
 
With respect to a horizontal reference plane, the elevation of a point along the  axis is , and 
the elevation of some fixed point , ,  is , given by 
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  cos  .          (2.8)    
 

In terms of , the derivatives of  in the weight component terms of equation (2.4) are 

  sin ;  cos ; and  0.    

 
The equations of open channel flow are based on an assumption of the velocity distribution over 
a cross-section being primarily in the  direction.  Although the two velocity components  and 

 exist, they are assumed to be much smaller than .  This leads to a simplified, 1-dimensional 
flow theory in which the velocity parameter appearing in the open channel flow equations is the 
average of  over a cross-section, denoted by  and given by 
 

1
  .          (2.9) 

 

The channel flow rate , with units of volume of water per unit time, is 
 

 .          (2.10) 
 

,  and  are functions of  and .   
 
As will be shown later, other assumptions lead to the condition that the water pressure  varies 
hydrostatically in the  direction and is constant in the cross-channel direction , the latter 
implying that the water surface elevation  in the  direction is constant.  Two of these 

assumptions, that the accelerations   and   are small, are consistent with  and  being 

small.  If  is small (compared to , then the water surface elevation  will vary slowly in the  
direction.  Such a flow situation is referred to as gradually varying, for which the water pressure 
can be taken to be hydrostatic.  At the other end of the flow spectrum is rapidly varying flow, in 
which steep water surface gradients exist in the  direction.  An example of the latter is the flow 
in the vicinity of a hydraulic jump (Figure 2.4).   
 
The open channel flow equations can be written either for time varying flow or steady flow.  
Time differentiation appears in the former but not the latter.  The equations can be written for 
cross-sections 1 and 2 a finite distance  apart (the finite control volume in Figure 2.3), 
which will be referred to as the algebraic form.  By taking the limit as  approaches zero, 
the algebraic form can be turned into a differential form, which contains  differentiation.  Thus, 
the open channel flow equations for steady flow and a finite control volume contain no 
differentiation, while the differential form written for unsteady flow contains differentiation with 
respect to both  and . 
 
In the following sections, the open channel flow equations based on continuity (Section 2.2), 
momentum (Section 2.3) and energy (Section 2.4) are derived.  Since the momentum and energy 
equations have the same origin, one of them plus the continuity equation provide two 
independent equations from which the flow in the channel can be determined at every cross-
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section.  The flow is characterized by two independent parameters that are functions of  and , 
such as  and  for one set or  and  as another.   
 
Development of the momentum and energy equations requires that various correction 
coefficients be introduced so that , as defined by equation (2.9), appears explicitly.  A 
discussion of these coefficients is presented in Section 2.5.  The equations also require a 
roughness coefficient to control the boundary shear resistance in the momentum equations and 
energy dissipation in the energy equations.  This roughness coefficient is developed in Section 
2.6. 
 
Application of the algebraic form of the open channel flow equations in practice is hampered by 
the difficulty of evaluating terms that involve the unknown flow parameters between  and .  
These parameters can be interpolated based on their values at  and , but to reduce errors, the 
distance  should be small, which then becomes more or less equivalent to integrating the 
differential form numerically.  However, the algebraic form can be very important for 
accommodating short extents of rapidly varying flow in a channel, but only in the specialized 
application of steady flow.  In this case, enough of the difficult-to-evaluate terms drop out to 
make the application possible.  This topic is presented in Section 2.7. 
 
All of the derivations in Sections 2.2, 2.3 and 2.4 take the channel segment within the control 
volume  to be straight, which means constant slope and no curves in its horizontal alignment.  
Applicability of the open channel flow equations to the more general case of a curved channel of 
varying slope is discussed in Section 2.8.  Finally, a junction is considered in Section 2.9. 
 

2.2  Continuity Equations 
 

Integrating the continuity equation (eq. 2.1), over the finite control volume  shown in Figure 
2.3 and applying Green’s theorem results in 
 

     0,      (2.11)



 

                                               ¯¯¯ 1 ¯¯¯    ¯¯¯ 2 ¯¯¯     ¯¯¯¯ 3 ¯¯¯     ¯¯¯¯ 4 ¯¯¯¯ 
in which  

            (2.12) 
 

has been used for  and  over  and .   is the component of water velocity normal to 
a boundary, positive outward. 
 
Terms 1 and 2 on the right side of equation (2.11) are the flow rates through sections 2 and 1, 
respectively, denoted by  and .  Term 3 is the time rate of change of the volume of water 

within the control volume,  , since the free surface  is the only moving boundary of the 
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control volume.  Term 4 is the flow rate out of the control volume through the floor and sides of 
the channel, which is zero since lateral flow is not being considered.  Substituting the above as 
well as equation (2.1) into equation (2.11) results in 
 

 ,         (2.13) 

which is the algebraic form of the continuity equation for unsteady flow.  This equation basically 
states that the rate of increase (or decrease) of the volume of water within the control volume 
equals the flow rate of water into or (or out of) the control volume through sections 1 and 2.   
 
The differential form of the continuity equation is obtained by taking the limit as sections 1 and 2 

become closer together.  Thus,  in equation (2.13) is replaced by   and   is 

replaced by  , where  and  are functions of  and .  Substitution into equation (2.13) 

and division by  results in 

 ,         (2.14) 
 

which is the differential form of the continuity equation for unsteady flow.   
 
Equations (2.13) and (2.14) can be specialized for steady flow by dropping the terms with time 
derivatives.  Thus, 

          (2.15) 
for the algebraic form and 

0          (2.16) 
 

for the differential form.  Both equations indicate that  is constant along the channel. 
 

2.3  Momentum Equations 
 

The first step in developing the algebraic form of the momentum equation for open channel flow 
is to integrate the -direction momentum equation (eq. 2.4a) over the domain  of the control 
volume (Figure 2.3).  Results of integrating individual terms or groups of terms are as follows: 
 

            (2.17) 

                                                           ¯¯¯¯ 1 ¯¯¯ 
 

 

         (2.18) 

                         ¯¯¯ 2 ¯¯¯      ¯¯¯ 3 ¯¯¯                               ¯¯¯¯ 4 ¯¯¯¯ 
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sin  sin           (2.19) 

                                                                            ¯¯¯ 5 ¯¯¯ 
 

 ,          (2.20) 

                                                                   ¯¯¯ 6 ¯¯¯     ¯¯¯ 7 ¯¯¯     ¯¯¯ 8 ¯¯¯ 
 

where the Leibniz integration rule is used in equation (2.17), and Green’s theorem is used in 
equations (2.18) and (2.20).  Term 4 is zero in the absence of lateral flow.  Term 5 is the 
component of the water weight that acts along the channel slope .  In Terms 6, 7 and 8,  is the 

 component of the traction vector on the boundaries of ; the free surface is assumed to be 
traction free.  The traction   is related to the internal stresses by equation (2.7a).  Since the 
normal direction is parallel to  on  and ,  on  1  and   on  

1 .  For a prismatic channel,  on  since  0, which is entirely 

a shear traction. 
 
The numbered terms in equations (2.17) and (2.18) can be expressed as: 
 

Term 1            (2.21a) 

 

Term 2           (2.21b)  
 

Term 3           (2.21c)  
 

Term 4 0          (2.21d) 
where 

1
 .         (2.22) 

 

The coefficient  is a correction factor so that Terms 2 and 3 can be written in terms of the 
section velocity ; see Section 2.5 for a discussion of .  Terms 6, 7 and 8 on the right side of 
equation (2.20) are the -direction forces acting on the water occupying the control volume that 
are exerted by the water outside section 1, by  the water outside section 2, and by the floor and 
sides of the channel, respectively, and will be denoted by ,  and . 
 
Substitution of the above into the momentum equation (eq. 2.4a) after integration, noting that the 
two unnumbered integrals on the right side of equations (2.17) and (2.18) cancel, results in the 
algebraic form of the momentum equation for 1-dimensional open channel flow: 
 

  sin    .        (2.23) 

This equation equates the time rate of change of the momentum of the water occupying the 
control volume at some time  to the resultant force acting on this volume of water at the same 
time.  All terms represent quantities in the  direction.   
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In order to develop expressions for ,  and , the other two momentum equations (eqs. 2.4b 
and 2.4c) will be considered after making some further assumptions.  These assumptions are:  
neglect particle accelerations in the  and  directions (set the left sides of equations 2.4b and 
2.4c to zero); take ,  and  equal to the water pressure  (i.e., 0); neglect 

; and neglect the  variations of  and .  Equation (2.4b) thus simplifies to 

 cos ,          (2.24) 

which corresponds to hydrostatic pressure.  Integration gives  
 

 cos  .          (2.25) 
 

using  0 at  .  Equation (2.4c) simplifies to 
 

0 ;           (2.26) 
 

thus,  does not vary with , implying that the free-surface elevation is constant over the cross-
section, i.e.,  is a function only of  and .   
 
Using various expressions and definitions above,  
 

cos cos           (2.27) 

 

cos cos ,          (2.28) 

 

which are simple hydrostatic forces, and where  is  at the centroid of the cross-section.  Also,  

cos ,          (2.29) 

 

which has been decomposed into a part that reacts against the water pressure and a part due to 
shear tractions. 
 
Making the substitutions into equation (2.23) results in 

  

sin cos cos

cos  ,           (2.30) 

which is the algebraic form of the momentum equation incorporating the hydrostatic pressure 
condition. 
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As mentioned in Section 2.1.2, use of the algebraic form is hampered by the difficulty of 
evaluating terms that involve the unknown flow parameters between   and  , which for 
equation (2.30) includes the two integral terms as well as sin  and .   Application is 
usually limited to cases where the two integrals drop out, which requires steady flow in a 
prismatic channel.  The limitation to a prismatic channel allows the pressure part of  to be 
dropped (the second to last term on the right side of equation 2.30).   The result is 
 

 sin cos cos  ,        (2.31) 
 

which applies for steady flow in a prismatic channel without lateral flow. 
 
Equation (2.31) can be written compactly using a quantity defined over a cross-section called 
specific force, defined as  

1
cos .          (2.32) 

After dividing through by  and making the substitution, equation (2.31) takes the form 
 

sin  .          (2.33) 

 
For the differential form of the momentum equation, take the limit of equation (2.30) as cross-
sections 1 and 2 become closer together.  Thus, 

sin cos cos

 ,          (2.34) 
 

 

where   is  per unit length of the channel.  Application of the Leibniz integration rule 
to the second term on the right side of equation (2.34) results in two terms;  one cancels the third 
term on the right side above and the other appears as the last term in the result below: 
 

sin cos .          (2.35) 
 

This is the differential momentum equation for 1-dimensional open channel flow.  Hydrostatic 
pressure is assumed along the channel.  A discussion of the  term appears in Section 2.6. 
 
A steady version of equation (2.35) can be obtained by omitting the first term 
 

sin cos .          (2.36) 

 
An alternate form of equation (2.35) that does not contain  can be obtained using equations 
(2.10) and (2.14) along with some manipulation.  The result is 
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1 1
1

2
 ,          (2.37) 

where 

2
cos  .          (2.38) 

This equation has less physical correspondence than equation (2.36), but it bears some 
resemblance to the differential energy equation derived in the next section.   For steady state 
flow, equation (2.37) reduces to 

1
2

 .          (2.39) 

 
2.4  Energy Equations 

 
To develop the algebraic form of the energy equation, multiply the three momentum equations 
(eqs. 2.4a, b and c) by ,  and , respectively, and add them together to form a single equation.  
With substitution from equation (2.3) and the  terms moved to the left side, the result is 
 

 .     (2.40) 

 
The sum of the first three groups of terms on the left side of equation (2.40) can be expressed in 
terms of the kinetic energy per unit volume defined as 
 

½ ,          (2.41) 
 

where  ; and  is the amplitude of the water  particle velocity vector.  As can 
be verified by substitution, this three group sum is the material time derivative of  : 
 

 .          (2.42) 
 

The last group of terms on the left side of equation (2.40) is the material time derivative of the 
gravitational potential energy per unit volume, : 
 

          (2.43) 
 

since the Eulerian time derivative  is zero.  The right side of equation (2.40) represents the 

rate of work per unit volume done by the internal stresses. 
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Equation (2.40) is integrated over the control volume .  After substituting the material time 
derivatives of  and  and applying Green’s theorem to the right side, the result is 
 

 ,          (2.44) 

where 

, ,           (2.45)
, ,

 

 

is the rate of work done by the external tractions on the boundaries of the control volume, and 
 

          (2.46) 
 

is the rate of energy dissipated over the control volume by the internal stresses.  The sum 
 on the left side of equation (2.44) is the total energy (kinetic plus gravitational 

potential) per unit volume. 
 
Various integrals making up equations (2.44), (2.45) and (2.46) are evaluated as follows: 
 

           2.47  

                                                         ¯¯¯¯ 1 ¯¯¯¯             
 

          (2.48) 

                                ¯¯¯ 2 ¯¯¯      ¯¯¯ 3 ¯¯¯                               ¯¯¯¯ 4 ¯¯¯¯ 
 

           (2.49) 

                                 ¯¯¯ 5 ¯¯¯      ¯¯¯ 6 ¯¯¯      ¯¯¯¯ 7 ¯¯¯¯     ¯¯¯¯ 8 ¯¯¯¯ 
 

, ,
, ,

,          (2.50) 

                                                               ¯¯¯ 9 ¯¯¯      ¯¯¯ 10 ¯¯¯     ¯¯¯¯¯ 11 ¯¯¯¯  
 

where the Leibniz integration rule is used in equation (2.47) and Green’s theorem is used in 
equations (2.48) and (2.49).  Terms 4 and 8 are zero in the absence of lateral flow.  In Terms 9 
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and 10,  has been omitted since the v and w velocity components are assumed to be 

small compared to u, and additionally,  and  will be small compared to .  For Term 11, the 

velocity and traction components have been reoriented in the normal and tangential directions, 
and the tangential velocity is zero because of the no-slip condition, leaving the  term.  
Therefore, in the absence of lateral flow, Term 11 is zero. 
                   
Evaluations of the numbered terms are as follows: 
 

Term 1
2

          (2.51a) 

 

Term 2
2

          (2.51b) 
 

Term 3
2

          (2.51c) 
 

Term 4 0          (2.51d) 
 

Term 5 cos           (2.51e) 

 

Term 6 cos           (2.51f) 

 

Term 7  cos           (2.51g) 

 

Term 8 0          (2.51h) 
 

Term 9   cos           (2.51i) 

 

Term10  cos           (2.51j) 

 

Term 11 0,          (2.51k) 
where  

1
          (2.52)  

 

1
          (2.53) 

 

are velocity coefficients so that Terms 1, 2 and 3 can be expressed in terms of the average 
section velocity .  See Section 2.5 for a discussion of  and .  Hydrostatic pressure from 
equation (2.25) has been used for  in Terms 9 and 10. 
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Substituting the above into equation (2.44), noting that the two unnumbered integrals on the right 
side of equations (2.47) and (2.48) cancel, leads to 
 

2
  cos

2 2
 

                ¯¯¯¯¯¯ 1 ¯¯¯¯¯       ¯¯¯¯¯¯¯¯¯¯¯ 7 ¯¯¯¯¯¯¯¯¯¯¯      ¯¯¯2 ¯¯¯     ¯¯¯ 3 ¯¯¯       
 

cos cos  .          (2.54) 
 

                           ¯¯¯¯¯¯¯ 5, 9 ¯¯¯¯¯¯     ¯¯¯¯¯¯ 6, 10 ¯¯¯¯¯¯       
               

Introducing the concept of water head and dividing through by , equation (2.54) becomes 
 

1
2

cos  ,          (2.55) 

 

where 

2
cos .          (2.56) 

 

The water head  is a measure of the sum of kinetic and potential energy in units of length, i.e., 
energy per unit weight per unit volume.   
 
Equation (2.55) is the algebraic form of the energy equation for unsteady open-channel flow.  As 
mentioned in Section 2.1.2, use of the algebraic form is difficult due to the terms that involve the 
unknown flow parameters between   and  , which for equation (2.55) includes the two 

integral terms as well as .   Application is usually limited to cases where the two integrals 

drop out, which requires steady flow.  For this case 
 

 .          (2.57) 

 
To derive the differential form of the energy equation, the limit of equation (2.55) is taken as  
and  become closer together.  The result is 
 

1
2

cos  ,          (2.58) 
 

where is the rate of energy dissipation per unit length of the channel.  An alternate form that 
\does not contain  on the left side can be obtained using   and equation (2.14) along 
with some manipulation, resulting in 
 

2 2
 .          (2.59) 

 

A steady state version can be obtained by omitting the first three terms of equation (2.59): 
 

 .          (2.60) 
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The steady state equation (2.60) is sometimes written in terms of a quantity called specific 
energy defined as 

 
2

cos ,          (2.61) 

which is the total energy per unit weight per unit volume with the potential energy measured 
with respect to the  axis.  Equation (2.60) becomes 
 

 ,          (2.62) 

where sin .   is usually referred to as the slope of the channel, but this is strictly 

true for only small .   is positive when the channel elevation drops with increasing  . 
 

2.5  Coefficients ,  and  
 
The coefficient  appears in the momentum equations in the term  (see equation 2.23), 
which is the rate of -direction momentum transfer across a cross-section of the channel.  If the 
velocity component  were constant over the cross-section at its average value , this rate of 
momentum transfer would be ; thus,  is a correction factor accounting for the variation in  
over the cross-section.  As  is defined by equation (2.22), it will exceed 1 (or equal 1 for 
constant ).  Since the actual distribution of  will not be known in general, estimates of  based 
on available information must be used.  For uniform, laminar (non-turbulent) flow, a few 
analytical solutions for  are possible, and these can be used to calculate  using equation (2.22).  
Two of these solutions are shown in Figure 2.5:  one for an infinitely wide cross-section of 
constant depth and the other for a semicircular cross-section.  The resulting values of  are 6/5 
and 4/3, respectively.  However, actual flows will be turbulent, and as such  will be more nearly 
constant over the cross-section (dashed lines in Figure 2.5).  This means that  will be closer to 1 
for turbulent flow than for laminar flow.  Realistic ranges for  have been given as 1.03 to 1.07 
for man-made cannels and 1.05 to 1.17 for natural streams.  In practice,  is often taken as 1, but 
a higher value such as the range mid-point would seem to be a better choice. 
 
The coefficient  appears in the energy equations for time varying flow (see equation 2.55) and 
is defined similarly to  except that the total velocity  is used instead of the -component ; 
compare equations (2.22) and (2.52).  Under conditions of gradually varying flow,  and  will 
be similar, and so will  and .  No information exists that allows  to be independently 
estimated, so in practice it is chosen to be equal to . 
 

The coefficient  appears in the energy equations in the term  (see equation 2.54), which 

is the rate of kinetic energy transfer across a cross-section of the channel.  Similar to the other 
coefficients,  is a correction factor to account for variations in velocity across the cross-section, 



16 
 

in this case, both  and .  Estimates for  must be based on available information as well.  For 
the two uniform, laminar flow solutions shown in Figure 2.5, equation (2.53) gives values for  
of 54/35 (infinitely wide cross-section of constant depth) and 2 (semicircular cross-section), 
which exceed the corresponding  values.  These  values will be closer to 1 for turbulent flows, 
and ranges for  have been given as 1.10 to 1.20 for man-made cannels and 1.15 to 1.50 for 
natural streams.  In practice,  is often taken as 1, but a higher value such as the range midpoint 
would seem to be a better choice. 
 

2.6  Roughness Parameter  
 

The momentum and energy equations require some parameter that represents the roughness of 

the floor and sides of actual channels.  This is done through the   and    terms in the 

algebraic forms of these equations and through the   and   terms in the differential 

forms. 
 
Consider first the differential forms of the momentum and energy equations for the special case 

of steady flow.  For the energy equation (eq.2.60), the dissipation term  represents the 

negative of the slope of a plot of the head   vs. .  Since  is associated with energy, the term  

 is referred to as the energy slope ; a positive corresponds to a decrease in head  with 

increasing .  The (negative of the)  term in the momentum equation (eq. 2.39) is also 

associated with energy dissipation, as can be seen by multiplying top and bottom by  :  

, so that   is comparable to .  The product   is the rate of 

work done by the shear (friction) force through the average water velocity.  Note that   is 
positive in the  direction; it’s true direction is to oppose the flow.  Based on the foregoing,  

 is referred to as the friction slope .  Thus,  and   are defined as 

1
          (2.63) 

and 

 .          (2.64) 
 

Substitution into equations (2.39) and (2.60) leads to 
 

2
          (2.39') 

for the momentum equation and  

          (2.60') 
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for the energy equation.  In terms of specific energy, the energy equation is 
 

.          (2.62') 

The last three equations apply for steady flow. 
 
A further restriction from steady flow is uniform flow, also referred to as normal flow, in which 
no flow quantity varies in the  direction.  This implies that the channel is prismatic.  Equations 
(2.39') and (2.60'/2.62') reduce to   and  , respectively, so 
 

          (2.65) 
 

for uniform flow.  The relation  is basically a statement that the weight force of the water 

in the  direction is balanced by the shearing force along the floor and sides of the channel. 
 
Assuming uniform flow conditions, the shear force  can be expressed as  
 

, , , , , ,  ,         (2.66) 
 

where  is a length scale associated with the channel cross-section,  is a dimensionless factor 
representing the shape of the cross-section,  is the absolute viscosity of water,  is a length 
scale associated with the channel roughness (asperity dimension), and   denotes a general 
functional form.  In particular,  is the hydraulic radius, defined as  / , the cross-sectional 
area divided by the wetted perimeter.  Dimensional analysis leads to an equation of 
dimensionless ratios: 

, , ,  ,          (2.67) 

 

where the second independent variable is Reynolds number R and the third independent variable 

is related to the Froude number F.  Note that   is the average shear stress over . 

To estimate the value of R for typical open channel flow, assume  as a few meters per second 

and  as a few meters, and take the kinematic viscosity of water as 10  m2/sec.  This 

gives an R on the order of 10 .  Based on investigations into pressurized pipe flow, such a value 
for R should correspond to open channel flow well beyond the transition to turbulence and in a 
range where , when normalized as in equation (2.67), is independent of R.  These 
investigations also suggest that dependence on the shape factor  can be neglected.  The effect of 
the term related to the Froude number is poorly understood but is not felt to be major, so it is 

neglected.  This leaves the normalized  dependent only on the roughness parameter : 
 

  .          (2.68) 
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Equation (2.68) is used to eliminate  from the definition of  (equation 2.63);   is 

replaced by  according to equation (2.65) and the result is expressed in terms of   as 
 

⁄ ,          (2.69) 
where 

⁄
          (2.70) 

 

is the Chezy roughness coefficient.  Investigations into open channel flow on the functional form 
of   have found that 

⁄

.          (2.71) 

Substitution into equation (2.69) leads to 
 

⁄ ⁄ ⁄ .          (2.72) 
 

The roughness length scale  is commonly replaced by two other constants  and  so that 
equation (2.72) takes the form 

⁄ ⁄ ,          (2.73) 
 

where  1 m1/3/sec for SI units and 1.486 ft1/3/sec for English units, and  is the Manning 
roughness coefficient (dimensionless).  Values for  are obtained from experiments or field 
measurements; a list of sample values appears in Table 2.1.  The rougher the channel, the higher 
the value for . 
 
From equation (2.73), the velocity of flow in any channel can be found as long as the flow is 
uniform.  The flow depth must be known, which determines  and , which determines .  
Also, given , the normal depth can be found through an iterative process in which  is replaced 
by . 
 
For non-uniform flow, including the unsteady case, the friction factor  has to be incorporated 
into the momentum and energy equations of sections 2.3 and 2.4.  For the differential forms, an 

assumption is made that the terms   and   at any cross section of the channel are the 

same as if the flow there were uniform at the same flow parameters of the cross section.  
Therefore, these terms are replaced by  and  , respectively, where  is expressed as a 

nonlinear function of the flow parameters  and  using equation (2.73) with   replacing  : 

⁄ .          (2.74) 

 could be used instead of  , but convention is to use  , so equations (2.60') and (2.62') are 

now written as  

          (2.60'') 
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and 

 ,          (2.62'') 

which are steady state forms of the energy equation.  Substitutions into the other equations is 
straight forward. 
 

The algebraic forms of the momentum and energy equations contain the terms   and  , 

which can be expressed as 
1

           (2.75) 

and 

1
  .          (2.76) 

 

Substituting for the integrands from equations (2.63) and (2.64), using  for the latter, gives 
 

           (2.77) 

 ,          (2.78) 

 

which can be inserted directly into the algebraic forms of the momentum and energy equations 
from Section 2.3 and 2.4.   is again given by equation (2.74). 

 
2.7   Rapidly Varying Flow 

 
All of the continuity equations derived in Section 2.2 apply both to gradually varying flow and to 
rapidly varying flow since the hydrostatic pressure condition was never imposed during the 
derivations.  However, the differential forms of the momentum and energy equations (equations 
2.35/2.37 and 2.58/2.59 and the steady state versions) are only valid in regions where the flow is 
gradually varying since the hydrostatic pressure condition was incorporated in their derivations.   
 
Consider possible application of the algebraic form of the general momentum and energy 
equations (eqs.2.30 and 2.55, respectively) to rapidly varying flow.  These equations contain 
many terms that either incorporate the hydrostatic pressure condition or would be impossible to 
evaluate for rapidly varying flow.  So, consider instead equations (2.33) and (2.57) which are 
written for steady flow and, for the momentum equation, a prismatic channel as well.  The 
hydrostatic pressure condition only has to hold in the vicinity of sections 1 and 2, so the 
occurrence of rapidly varying flow between these two cross-sections does not rule out the use of 

these two special-case equations.   The weight term sin  and the shear term   in the 
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momentum equation (eq. 2.33) and the dissipation term   in the energy equation (eq. 2.57), 

however, depend on what is going on inside the control volume between sections 1 and 2, and so 
must be dealt with. 
 

Approximations for   and   that apply for gradually varying flow were developed in 

Section 2.6.  For the momentum equation, an assumption will be made that the approximation of 
equation (2.77) (with  given by equation 2.74) can still be used for rapidly varying flow, which 

seems reasonable since rapid variations affect the flow in the interior of the channel more than on 
the boundary where  acts.  It may also be true that  does not contribute much to 
equation (2.33), such as for a short channel segment; in which case, this term could be omitted.  
For the energy equation, the approximation of equation (2.78) (with  given by equation 2.74) 

would have to be augmented by an extra term representing the energy dissipation caused by the 
rapid variations in the flow.    Thus (for steady flow), 
 

  ,          (2.78') 

 

where the dissipation term  is in terms of head loss.  For many situations that produce rapidly 
varying flow, such as a rapid change in cross-section of the channel, expressions using 
coefficients based on experimental data are available for the extra head loss term.   
 
Substituting equations (2.77) and (2.78') into equations (2.33) and (2.57), respectively, yields the 
forms for the momentum and energy equations that can be applied for rapidly varying flow 
within the control volume: 

sin           (2.33') 

for the momentum equation and 

           (2.57') 

 

for the energy equation.  Equations (2.33') and (2.57') assume that hydrostatic pressure 
conditions exist at sections 1 and 2, steady flow and, for the momentum equation, a prismatic 
channel as well.  In practice, each of the two integral terms in equations (2.33') and (2.57') is 
approximated by multiplying the average of its values at sections 1 and 2 by the length of the 
control volume.  This procedure can also be used for the  sin  term in equation (2.33' , or if 
some a priori information is known about the flow profile, it can be used to improve the 
approximation.  Of course, if  0, this term drops out. 
 
Often, the momentum and energy equations are applied together to obtain desired information.  
For a hydraulic jump in a prismatic channel, the flow parameters at sections upstream and 
downstream of the jump are found by employing the momentum equation, then the energy 
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equation can be used to determine the rate of energy dissipation in the jump.   When the flow 
contains an obstruction such as a bridge pier or sluice gate, the energy equation is used to find 
the flow parameters upstream and downstream of the obstruction, assuming  can be estimated 
if it is significant.   Then the force exerted on the obstruction by the flow can be determined 
using the momentum equation.  Obviously, for such a situation, the channel is not prismatic, so 

  from equation (2.23) must be reintroduced in the form 
 

 ,          (2.79) 
 

where  is the force that the water exerts on the obstruction.  (  is the force that the 
obstruction exerts on the water.)  Carrying through with the analysis modifies equation (2.33') to 

sin  .         (2.80) 

This equation applies for steady flow in a channel with an obstruction, and  can be computed 
once the flow parameters at sections 1 and 2 are determined from the energy equation.  The 
water pressure on the obstruction does not have to be hydrostatic. 
 

2.8  Slope Variation and Curves in Horizontal Alignment 

The previous development of the open channel flow equations considered a straight channel, i.e., 
no changes in slope and no curves in horizontal alignment.  However, in practice these same 
equations are often used for non-straight channels.  The ,  and  axes still form a right-angled 
coordinate system, with the  axis horizontal, but the  axis is allowed to follow a path along the 
channel that curves in both the horizontal and vertical planes.  This topic is the subject of the 
present discussion. 

The first point to be made is that the concept of a straight channel may not always be clear.  
Consider horizontal alignment.  Figure 2.6a shows a channel with an unsymmetrical transition 
from narrow to wide.  Two choices for the  axis are shown:  one stays straight and one follows 
the channel center line.  While either could be used, the non-straight alignment has the advantage 
of the  axis remaining more parallel with the average direction of the water velocity in the 
channel.  In the straight arrangement, the “curving” of the channel is accounted entirely by the 
cross-sectional shape’s dependence on .  In Figure 2.6b, the channel is clearly curved and a 
straight  axis is not an option. 

The concept of a straight channel may also not always be clear with regard to channel slope.  
Figure 2.7a shows a case where the floor of the channel is uneven, but there is an average slope 
along which the  axis is directed.  In Figure 2.7b, the slope appears to be constant in elevation 
view, but it actually varies with  as shown in the two cross-sections.  But again, the  axis is 
directed along the average slope.  In both of these cases, the channel can be considered “straight” 
regarding its slope, and the variations in slope are accounted for by the channel cross-sectional 
shape being a function of .  In Figure 2.7c, there is clearly a transition from one slope to 
another, and the  axis is redirected in the transition region.   
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Deviation from straightness in a channel can cause a number of effects that violate assumptions 
made in the derivation of the open channel equations.  Water flowing around a horizontal curve 
experiences z-component accelerations that can alter the hydrostatic pressure distribution, 
causing the water surface to vary in the  direction (  no longer a function of just  and  ).  
Circulatory currents in the cross-sectional plane can be present, as well as cross waves when the 
flow is supercritical.  Variation of the slope angle  along the channel produces a  component 
of acceleration, directly changing the hydrostatic pressure distribution.  These effects, which 
represent errors in the standard solution, are a function of the radii of curvature in the horizontal 
and vertical planes, the amount of direction change of the channel, and the water velocity.   
While these effects can be significant in some cases, in many other cases the curves are gentle 
enough or the water velocity slow enough so that the errors can be ignored.  
 
For a curved channel, the solution will depend somewhat on where the  axis is located within 
the cross-section because different paths trace out different lengths.  The associated error is a 
function of the radii of curvature in the horizontal and vertical planes and the amount of direction 
change of the channel.  Placing the  axis at the centroid of the water cross-section is the best 
location to minimize this error, but this is not practical since the  coordinate of the centroid 
varies with the water depth.  The usual practice is to place the x axis on the center plane of the 
channel at the channel bottom.  This is an acceptable choice since it will minimize the part of the 
error due to curves in the horizontal plane, which is usually the major part.  
 
One potential problem with a curved channel pertains only to the momentum equations.  Because 
these equations are vector equations, their terms must have a consistent direction.  However, 
another form of the momentum equation can be written using angular momentum in which the 
terms are multiplied by a radial distance, which varies over the cross-section.  A rigorous 
derivation will not be presented here, but an approximation is to multiply the momentum 
equations by an average radius of curvature, converting the terms to angular form.  The radius 
cancels out, leaving the original equations.  Thus, application of the momentum equations to 
channels with curvature in either the horizontal or vertical plane is not a violation of the 
momentum principal. 

A few of the open channel flow equations do not contain any of the assumptions associated with 
straightness, and so are equally valid for curved or straight channels.  These include three of the 
continuity equations (eqs. 2.13, 2.15 and 2.16) and the general energy equation (eq.2.44 along 
with the definitions in eqs. 2.45 and 2.46). 

This discussion should help explain why the equations in this chapter are often used for curved 
channels.  However, it should always be remembered that approximations are involved, and that 
sometimes additional techniques will be required. 
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2.9  Channel Junctions 
 

Junctions in a channel can be of the merging flow type or of the separating flow type, as shown 
in Figure 2.8.  Some equations can be written for flow through a junction by applying the 
techniques from Section 2.2, 2.3 and 2.4, resulting in continuity, momentum and energy 
equations, respectively.  For the momentum equation, the presence of the  term and the 
existence of three distinct channel directions mean that this equation is not useful in most 
situations.  Therefore, the presentation here focuses on the continuity and energy equations.  The 
flow is restricted to steady conditions. 
 
As shown in Figure 2.8, the domain  includes the water volume between the cross-sections , 

 and .  The boundary  includes all other boundaries of the water volume, except the free 
surface.  Thus, the procedures are similar to those of the earlier sections, but with the added 
cross-sectional domain .   
 
The result for the continuity equation is just the addition of the flow term  to equation (2.15) 
as follows: 

 ,          (2.81) 
 

where the sign in front of  is positive for merging flow (part a of Figure 2.8) and negative for 
separating flow (part b).  Equation (2.81) is a statement that the rate of water flowing into the 
junction equals the rate of water flowing out.   
 
For the energy equation, the result is a similarly obvious change to equation (2.57): 

 ,          (2.82) 

where the sign choice in front of the  term is the same as that mentioned above.  Equation 
(2.82) says that the rate that energy flows into the junction equals the rate at which energy flows 
out plus the rate that energy is dissipated in the junction.  The  terms are still given by 
equation (2.56).  The energy dissipation term is the sum of contributions from rapidly varying 
flow and channel friction in the junction, denoted by . 
 
In practice, a junction is often short enough so that  and cos  at sections 1, 2 and 3 can be 
taken to be equal and the energy dissipated by channel friction can be neglected.  If, in addition, 

the water heads  at sections 1, 2 and 3 are small compared to the water depth , which is 

often the case, then the only terms remaining in equation (2.82) are the flow rates  and water 
depths  at the three sections and the energy dissipated in the junction by rapidly varying flow.  
Merging channels dissipate more energy in this way than separating ones, but if this contribution 
to the equation can also be neglected, then equation (2.82) reduces to the continuity equation 
when the water depth  is the same at all three sections, and so it is satisfied for this condition.  
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If equal water depths are appropriate for steady flow, it may be possible to make this assumption 
for unsteady flow as well.  Use of equal water depths, when appropriate, greatly simplifies an 
analysis. 
 


