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Summary. We apply Camerer and Ho’s experience-weighted attraction (EWA)
model of learning to extensive-form signaling games. Since these games often
have many equilibria, logical ‘refinements’ have been used to predict which
equilibrium will occur. Brandts and Holt conjectured that belief formation could
lead to less refined equilibria, and confirmed their conjecture experimentally. Our
adaptation of EWA to signaling games includes a formalization of the Brandts-
Holt belief formation idea as a special case. We find that the Brandts-Holt dy-
namic captures the direction of switching from one strategy to another, but does
not capture therate at which switching occurs. EWA does better at predicting
the rate of switching (and also forecasts better than reinforcement models). Ex-
tensions of EWA which update unchosen signals by different functions of the set
of unobserved foregone payoffs further improve predictive accuracy.
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1 Introduction

For a noncooperative game of any complexity, it is likely that people learn how
to play the game through experience, rather than figure it out by reasoning. A
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general theory of learning is therefore crucial for understanding equilibration
theoretically, and for explaining the changes in strategic behavior observed in
the lab and in the field.

In this paper we apply Camerer and Ho’s (1999) experience-weighted attrac-
tion (EWA) model to experimental data from sender-receiver signaling games.
Signaling games are very widely used to model economic and political phenom-
ena in which actions—perhaps apparently irrational ones leading to avoidable
inefficiencies—are taken to convey asymmetric information. Applications include
signaling product quality by price and advertising, strategic delay in strikes, ex-
cess capacity building by firms, choice of insurance policies, entry and pricing
in monopolistic markets, incentives and personnel policies in labor markets with
hidden action and hidden information, “money-burning” models of gift-giving,
and many more (see, for example, Tirole, 1988, and Gibbons, 1992).

Signaling games are especially interesting because they often have many equi-
libria. The equilibria are theoretically distinguished by a variety of ‘refinement’
concepts which are routinely used to justify why some equilibria are empirically
likely and others are not. However, these refinements usually assume players are
reasoning particularly logically. But if players learn equilibria rather than figure
them out, it is an open question whether their learning will lead to logically
refined equilibria more often than unrefined equilibria. In our discussion, we
present an example of how historical circumstances may lead all firms to offer
dividends, a possible unintuitive equilibrium.

Experimental tests of refinement concepts have yielded somewhat pessimistic
results about the ability of refinements, even fairly simple ones, to predict to
which equilibria experimental subjects will converge (e.g., Banks, Camerer and
Porter, 1994). Brandts and Holt (1992, 1993) suggest players in their experiments
are instead using a particular learning process (essentially a form of belief learn-
ing) (see also Cooper, Kagel and Garvin, 1997a,b). They observed that players
were led to an equilibrium which violated the Cho-Kreps ‘intuitive criterion’.
During equilibration, players left empirical ‘footprints’ at all information sets by
choosing strategies which later turned out to be rarely chosen. When behavior
eventually crystallized around the (unintuitive) equilibrium, and players thought
about which types of players were likely to make out-of-equilibrium moves, they
used their previous experience to form beliefs. In this game, these empirical be-
liefs contradicted purely logical arguments about which players would choose the
out-of-equilibrium move. The learning process supports an equilibrium which is
not supportable by standard game-theoretic logic.

Although Brandts and Holt’s belief-based dynamic provides the intuition for
‘unrefined’ play, is it the best model to characterize the relationship between the
history of play and eventual convergence? Camerer and Ho (1999a,b) introduced
a general model of learning in games called ‘experience-weighted attraction
learning’ (EWA). EWA hybridizes the two most popular approaches to learn-
ing in games—reinforcement and belief formation (like Brandts and Holt)—and
includes these as parametric special cases. The EWA model has been estimated
on 29 experimental data sets, and outperforms the familiar special cases in 25-27
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of the 29 cases, correcting for extra parameters (see Camerer, Ho, and Hsia,
2000).1 The general conclusion is that combining features of reinforcement with
belief learning in a particular way is helpful for explaining observed learning.

Since the Brandts-Holt model is a special kind of belief learning model,
and belief models are nested in EWA as a special case, by applying EWA to
data from signaling experiments we can test the Brandts-Holt theory, and see
whether adding additional EWA elements improves the fit. However, extensive-
form games with incomplete information, like signaling games, demand special
modifications which extend EWA’s scope (see Vriend, 1997). The key problem
is that players do not always know the foregone payoff to a signal which they
did not choose (because its payoff depends on other players’ reactions to the
unsent signal, which is usually not known). Because foregone payoffs are used
to update unchosen strategies, an extension is necessary when foregone payoffs
are not known. Since players know theset of possible foregone payoffs, we
extend EWA by reinforcing unchosen strategies according to some mixture of
the foregone payoffs in that set.

Our paper therefore makes three contributions. We extend EWA to extensive-
form games with incomplete information, in which there is imperfect informa-
tion about foregone payoffs. We extend earlier experiments on signaling games,
running them for 32 periods to see if sharper convergence occurs. Finally, we
estimate the extended EWA model (which includes the Brandts-Holt dynamics
as a special case) on the new data.

The paper is organized as follows. First we describe the games and the adap-
tive dynamics conjectured by Brandts and Holt. Then the EWA model is described
and the modifications necessary to fit it to the signaling data are detailed. Data
from new experiment are then presented and we investigate how well EWA, its
various extensions, and the belief and reinforcement special cases, explain the
data.

2 Adaptive dynamics and equilibrium selection

The main purpose of this paper is to apply EWA to signalling games, where
it may be able explain how learning dynamics can lead players to unrefined
equilibria.

This phenomenon is illustrated by two games taken from Brandts and Holt
(1993), extending work by Banks, Camerer and Porter (1994) and Brandts and
Holt (1992). Tables 1 and 2 show their Games 3 and 5. Nature chooses Type I
or Type II (with equal probabilities) and the sender is told which half the table
will be used to determine payoffs. The sender then selectsm1 or m2, and the

1 In-sample estimation is done in weak-link coordination games (Camerer and Ho, 1999a). Out-of-
sample forecasting has been done for median-action coordination games and dominance solvable “p-
beauty contests” (Camerer and Ho, 1999b), call markets (Hsia, 1998), “unprofitable games” (Morgan
and Sefton, 1998), centipede games (Camerer, Ho and Wang, 1999), and bilateral call markets
(Camerer, Ho, and Hsia, 2000). In some constant-sum games, EWA predicts slightly worse than
belief learning (Camerer and Ho, 1999b).
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receiver is notified of the sender’s choice, but not the type. The receiver then
chooses an action,a1, a2 or a3. Payoffs are determined from the cell in the table
described by the type-message-action triple; the sender’s payoff is on the left and
the receiver’s payoff is on the right.

Table 1. Game 3

Type I Type II

a1 a2 a3 a1 a2 a3

m1 45,30 15,0 30,15 30,30 0,45 30,15

m2 30,90 0,15 45,15 45,0 15,30 30,15

Table 2. Game 5

Type I Type II

a1 a2 a3 a1 a2 a3

m1 45,30 0,0 0,15 30,30 30,45 30,0

m2 30,90 30,15 60,60 45,0 0,30 0,15

In both games, in the unintuitive sequential equilibrium both types of senders
choosem2. Receivers respond witha2|m1 anda1|m2.2 In the sequential equilib-
rium which satisfies the Cho-Kreps (1987) intuitive criterion both types of senders
choosem1 and receivers respond witha1|m1 anda2|m2.3

2.1 Experimental data and the Brandts-Holt adjustment dynamic

In their Game 3 experiments, Brandts and Holt observe significant initial type
separation—in the early periods,m1 is three times more likely to be chosen by a
t1 sender than at2 sender. BH conjecture that senders start with a diffuse prior on
what the likely action responses will be. With a diffuse prior, the expected payoffs
for t1s are 30 (=(45+15+30)/3) and 25 (=(30+0+45)/3) for the two messages, so
t1s tend to choose messagem1 more. The expected payoffs fort2s are 20 and 30,
so t2s choosem2 more often.

2 Since both types choosem2, receivers come to realize this, Bayesian-update and form posteriors
P (t1|m2) = P (t1) = .5 andP (t2|m2) = P (t2) = .5. Their best response is then to choosea1, which
gives expected payoff 45 (.5 ·0 +.5 ·90). The sequential equilibrium coheres only if receivers choose
a2 in response to messagem1, which only happens when receivers believe thatm1 choices were more
likely to be made byt2s (more specifically,P (t2|m1) > 2/3 to justify a choice ofa2 by receivers).
This belief doesnot satisfy the intuitive criterion becauset2s earn 45 in equilibrium (from choosing
m2 and getting responsea1) and could not possibly benefit from switching tom1, whereast1s earn
30 in equilibrium and could conceivably benefit if they choosem1.

3 In the intuitive equilibrium both types choosem1 and are met with the responsea1, yielding t1s
45 andt2s 30. Sincet2s could conceivably earn more (45) by choosingm2 instead, the equilibrium
only sticks if defections tom2 are met with responses ofa2. The a2 response tom2 can only be
justified by the belief thatm2 defections are more likely to have come fromt2s (i.e.,a2 is optimal
for receivers ifP (t2|m2) > 5/7). This inferencedoes satisfy the intuitive criterion because, indeed,
t2 types might benefit by defecting fromm1 to m2 whereast1s would never benefit. Hence, the
equilibrium in which both types choosem1 satisfies the intuitive criterion.
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If receivers also start with diffuse priors on which types chose a particular
message, they should assign the highest expected payoffs to actiona1 in response
to m1, anda1 in response tom2. Empirically, however, they are more likely to
choosea2 in response tom2. This happens quickly (in the first two periods) so
it appears that receivers have anticipated the type separation, or learned it very
quickly, and use it update their beliefs that a messagem2 choice came from a
t2, which makes the action responsea2 optimal. As the game continues andt2
players continue to receivea2 responses tom2, they earn payoffs of 15 and begin
to switch tom1. In periods 9–12 all thet1s pick m1 and about 60% of thet2s
pick m1, so equilibration goes reasonably swiftly in the direction of the intuitive
sequential equilibrium in which both types pool onm1.

That equilibrium is supported by the belief that a messagem2 would be
chosen by at2 (who could conceivably benefit). The receiver choosesa2 in
response, yielding a lower payoff for the typet2 than she receives from pooling
on m1, which keeps her from defecting. The intuitive criterion requires that this
be deduced from the payoff table. However, in this game, this regularity is also
revealed to players through the path of play: because of the initial type separation,
most of the historical choices ofm1 were from t2s, so there were few observations
which conflicted with the intuitive criterion.

Game 5, in contrast, is designed so that observations which are likely to
emerge from early disequilibrium play will conflict with the intuitive criterion.
This is indeed what happens. In early periods, nearly allt1 senders choosem2 and
mostt2s choosem1. Receivers seem to anticipate, or learn quickly, that different
types choose different messages, and they tend toward actions which are best
responses given the type separation, i.e.,a2|m1 anda1|m2.

Recall that in the unintuitive sequential equilibrium in which both types
choosem2, defection tom1 is prevented if receivers think such a defection came
from a t2. Indeed, since the empirical probability ofm1|t2 is high, their belief
is justified by past experience (though it conflicts with the cold logic of the in-
tuitive criterion). This highlights the need for a theory of equilibrium selection
which includes a description of the convergence path and respects the way the
observed convergence affects players’ later beliefs. Without a story about how
observations conflict with rational conjectures about beliefs, it is hard to explain
this convergence to the less refined equilibrium.

In the Brandts and Holt dynamic (1993), players start with beliefs about what
others will do (i.e., play each strategy with equal probability) and revise their
beliefs in the light of what they observe. Cooper, Kagel and Garvin (1997a,b)
give a similar explanation for results in limit pricing experiments.4 This belief
dynamic does explain the major features of the data. However, these earlier
studies typically hypothesize particular parameter values, simulate paths for those
values, and show that the simulated paths resemble the data. We improve on this
procedure by estimating best-fitting parameters using maximum-likelihood. This
technique yields standard errors for parameter estimates, and permits a formal

4 Their analysis has an important twist: players assume others do not violate dominance.
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hypothesis test of whether adding EWA features to belief learning improves
accuracy significantly (as it has in 27 of 29 other data sets).

3 EWA learning

Experience-weighted attraction learning is a generalized reinforcement model
which hybridizes elements of reinforcement and belief-based theories. Since it
includes familiar models as special cases, it can be used as a statistical tool to
compare theories, and ask whether adding more features improves their predictive
accuracy. This section will highlight the important features of the model. See
Camerer and Ho (1999b) or Camerer, Ho and Chong (2000) for more details.

In EWA learning, strategies have attraction levels which are updated ac-
cording to either the payoffs the strategies actually provided, or some fraction
of the payoffs unchosen strategieswould have provided. These attractions are
decayed or depreciated each period, and also normalized by a factor which cap-
tures the (decayed) amount of experience players have accumulated. Attractions
to strategies are then related to the probability of choosing those strategies using
a response function which guarantees that more attractive strategies are played
more often.

3.1 EWA in the normal form

EWA was originally designed to studyn-person normal form games. The players
are indexed byi (i = 1, 2, . . . , n), and each one has a strategy spaceSi =
{s1

i , s2
i , . . . , s�i −1

i , s�i
i }, wheresi denotes a pure strategy of playeri . The strategy

space for the game is the Cartesian products of theSi , S = S1 × S2 × . . . × Sn .
Let s = (s1, s2, . . . , sn ) denote a strategy combination consisting ofn strategies,
one for each player. Lets−i = (s1, . . . , si−1, si+1, . . . , sn ) denote the strategies of
everyone but playeri . The game description is completed with specification of
a payoff functionπi (si , s−i ) ∈ �, which is the payoffi receives for playingsi

when everyone else is playing the strategy specified in the strategy combination
s−i . Finally, let si (t) denotei ’s actual strategy choice in periodt , ands−i (t) the
vector chosen by all other players. Thus, playeri ’s actual payoff in periodt is
given byπi (si (t), s−i (t)).

The EWA model updates two variables after each round. The first variable
is the experience weightN (t), which is like a count of ‘observation-equivalents’
of past experience. The second variable isAj

i (t), the i ’s attraction to strategyj
after period t has taken place.N (t) andAj

i (t) begin with initial valuesN (0) and
Aj

i (0), which are driven by pregame thinking due to introspection or learning
transferred from similar games (e.g., Samuelson, 2000).5

5 In a full model, the initial conditions would be determined by some theory of which decision
rules players use (e.g., Costa-Gomes, Crawford and Broseta, 2000) or a disequilibrium theory like
asymmetric response equilibrium (Weiszacker, 2000).
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After a period of play, experience weights are updated according to

N (t) = ρ · N (t − 1) + 1. (1)

Attractions are reinforced by a weighted payoff fori ’s j th strategy, [δ + (1− δ) ·
I (sj

i , si (t))] · πi (s
j
i , s−i (t)) (whereI (x , y) is the indicator function which equals

one if x = y and zero otherwise). The model weights hypothetical payoffs that
unchosen strategies would have earned by a parameterδ, and weights the payoff
actually received, from chosen strategysi (t), by an additional 1−δ (so it receives
a total weight of 1). Updated attractionsAj

i (t) are a depreciated, experience-
weighted lagged attraction, plus an increment for the received or foregone payoff,
normalized by the new experience weight. In formal terms,

Aj
i (t) =

φ · N (t − 1) · Aj
i (t − 1) + [δ + (1− δ) · I (sj

i , si (t))] · πi (s
j
i , s−i (t))

N (t)
. (2)

The factorφ is a discount factor that depreciates previous attractions. Along with
ρ, φ determines the limiting values of the attractions: ifφ > ρ, then attractions
are not bounded by payoffs, and can grow arbitrarily far apart.

Finally, attractions determine choice probabilities using the logit form6

Pj
i (t + 1) =

eλ·Aj
i (t)

∑mi

k=1 eλ·Ak
i (t)

. (3)

The parameterλ measures sensitivity of players to differences among attractions:
λ = 0 is equal likelihood and asλ increases, it converges to a best-response
function.

3.1.1 Special cases of EWA

Simple algebra shows that parameter restrictions onN (0), δ, and ρ reduce the
general model to special cases of historical interest. For example, whenN (0) =
1, ρ = δ = 0 the model reduces to a simplified form of cumulative reinforcement
in which only chosen strategies are reinforced (see Harley, 1981; Roth and Erev,
1995; Erev and Roth, 1998; Roth et al., 2000). Whenρ = φ and δ = 1, the
model reduces to belief-based learning in which players form beliefs according
to weighted fictitious play and choose strategies with high expected payoffs given
those beliefs (e.g., Fudenberg and Levine, 1998, and many others).7 Whenφ = 0
the model corresponds to Cournot best-response dynamics, in which players

6 Camerer and Ho (1998) show that the logit form fits slightly better than a power (or exponentiated
ratio) form, and has the advantage of being usable even when attractions are negative.

7 The key insight is that the belief updating equation can be written as a function of lagged beliefs
and plugged the computation of expected payoffs. When the expected payoff computation is written

as a function of its lag, the result isE j
i (t) =

ρ·N (t−1)·E j
i
(t−1)+π(sj

i
,s−i (t))

ρ·N (t−1)+1 . The belief term magically
disappears: since the only function of beliefs is to anticipate possible payoffs, and the belief updating
is based on past observations, the expected payoff impact of those past observations can be mimicked
by keeping track of a foregone payoff history directly. Beliefs are an unnecessary ‘middleman’.
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simply choose a best response to what happened in the previous period. When
φ = 1 the model corresponds to fictitious play, in which beliefs about what
an opponent will do are an arithmetic average of what she has done in the past.
This kinship between reinforcement and belief learning is surprising because most
previous researchers had thought the two were fundamentally different. Instead,
the EWA framework shows that belief learning is simply a kind of generalized
reinforcement learning in which unchosen strategies are reinforced as strongly as
chosen ones and reinforcements are weighted averages of lagged reinforcements
and payoffs.

Many researchers who have studied these models have suggested that, while
simple, they may be useful approximations. This begs the question of how to
judge usefulness. We adopt conventional statistical criteria which enable us to
judge precisely when adding parameters helps, or when omitting parameters hurts.

3.2 Extending EWA to signaling games

The first question to address in extending EWA to signaling games is what con-
stitutes a strategy. In these games, we denote types byti , messages bymj , and ac-
tions byak . The sender and receiver earn payoffsπS (ti , mj , ak ) andπR(ti , mj , ak ),
respectively. Because senders observe their own types, it is appropriate to define
their strategies conditional on observed types. There are two options.

First, one could define contingency strategies which specify a message for
each type. For example, (m1|t1, m2|t2) is a strategy in which the sender plays
m1 if t1 is observed, andm2 if t2 is observed. This approach assumes that a
sender chooses a complete strategy in each period (a strategy for each type),
but only ‘uses’ the portion which is relevant for her observed type. In games in
which complete strategies are elicited this modeling approach seems reasonable.
However, in our experiments complete strategies are not elicited. The complete-
strategy approach then begs the question of how to update attractions for several
complete strategies which have the same ‘used’ portion but different ‘unused’
portions. For example, suppose the sender ist1 and the chosen message ism2.
How does one update both (m2|t1, m1|t2) and (m2|t1, m2|t2)?

We take a second approach, which is to assume that players have different
strategy sets at each reachable node, which are not linked to form complete
strategies. This is similar to the ‘agent form’ game in which each node is played
by a different ‘agent’ for a single player, and all the agents have the same payoff.8

In the example above, we simply update the attraction tom2|t1, and the attraction
for the same message chosen by the ‘unrealized type’,m2|t2. In extensions of
the model, we also allow updating ofm1|t1, which the player could have chosen
but did not, andm1|t2. Similarly, we assume receivers have strategies which are
conditional on the message they observed the sender choosing, but not on the

8 A referee wondered whether there is evidence that players act as if they use agent-normal-form
reasoning. Note that our model allows the amount of cross-node dependence to vary parametrically,
becauseδ, µ1, andµ2 express the degree of dependence of the choice at one node on future behavior
at other nodes.
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sender’s type. A receiver’s strategy to choose actionk in response to messagej
will be denotedak |mj .

Initial attractions fort1 senders are denotedAm1t1(0) andAm2t1(0), and fort2
senders, the initial attractions areAm1t2(0) andAm2t2(0). (In the logit form one of
the attractions in each pair must be fixed for identifiability.) The initial experience
counts areN m1

S (0) andN m2
S (0).

For receivers who observe messagem1, initial attractions areAa1m1(0),
Aa2m1(0), and Aa3m1(0). For receivers who observe messagem2, the initial at-
tractions areAa1m2(0), Aa2m2(0), and Aa3m2(0). (One of the attractions in each
triple must be fixed for identifiability). The initial experience counts areN m1

R (0)
andN m2

R (0).

3.3 The baseline model

This section discusses how the EWA model presented in Eqs. 1 and 2 can be
adapted to signaling games. For receivers, this is a simple problem because
they can condition only on the sender’s message. Thus, the receivers know their
foregone payoffs at the end of each period: they update their attraction to their
chosen strategy with their realized payoff, and to other strategies with (δ times)
the foregone payoff given by the actual type and message. If the receiver had
chosena1 in response tom1 when the sender was at2, for example, she would
update according to:

N m1
R (t + 1) = ρ · N m1

R + 1 (4)

Aa1m1(t + 1) =
φ · Aa1m1(t) · N m1

R (t) + πR(t2, m1, a1)
ρ · N m1

R (t) + 1
(5)

Aa2m1(t + 1) =
φ · Aa2m1(t) · N m1

R (t) + δ · πR(t2, m1, a2)
ρ · N m1

R (t) + 1
(6)

Aa3m1(t + 1) =
φ · Aa3m1(t) · N m1

R (t) + δ · πR(t2, m1, a3)
ρ · N m1

R (t) + 1
. (7)

Since she does not observem2, N m2
R (t +1) = N m2

R (t) andAak m2(t +1) = Aak m2(t)
for k = 1, 2, 3.

The sender’s chosen strategies are updated according to the realized payoffs
in the same way. However, with senders, it is more difficult to define foregone
payoffs to unchosen strategies. There are two complications.

First, conditioning on a sender’s type, the foregone payoff to the unchosen
message is not known perfectly because it depends on the receiver’s unobserved
response. The sender knows theset of possible payoffs, but she does not know
which payoff in the set would have resulted. Of course, this is generally the case
in extensive-form games with unreached information sets. Below we consider
several ways of choosing a foregone payoff in the set, or some mixture of those
payoffs, to update the attraction on the unchosen message. In the baseline model,
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however, we simply leave attractions for unchosen sender messages unreinforced
(and thus do not decay their experience counts).

The second complication is that belief models implicitly require that the
attraction for the chosen message by theunrealized type also be updated by
that type’s foregone payoff. Remember that the sender knows the receiver’s
strategies may be message-dependent but cannot be type-dependent. Therefore,
how a receiver reacts when at1 sender chooses a message informs the sender’s
belief about the receiver’s reaction when at2 sender chooses thesame message.
For example, if at1 sender sends messagem1 and gets responsea1, she receives
payoff πS (t1, m1, a1) and updatesAm1t1 accordingly. But she also knows that if
she had been at2 and chosenm1, shewould have earnedπS (t2, m1, a1). Therefore,
the sender updates according to

N m1
S (t + 1) = ρ · N m1

S + 1 (8)

Am1t1(t + 1) =
φ · Am1t1(t) · N m1

S (t) + πS (t1, m1, a1)
ρ · N m1

S (t) + 1
(9)

Am1t2(t + 1) =
φ · Am1t2(t) · N m1

S (t) + δ · πS (t2, m1, a1)
ρ · N m1

S (t) + 1
(10)

andN m2
S (t + 1) = N m2

S (t) andAm2tk (t + 1) = Am2tk (t) for k = 1, 2.
In the belief learning restriction of EWA, cross-type updating occurs with

δ = 1. Just as EWA showed that belief learning is generalized reinforcement with
‘full’ reinforcement of unchosen strategies, belief learning in signaling games
requires full reinforcement of unrealized types. If this seems behaviorally im-
plausible, that implausibility should count as a strike against belief learning (as
a predictive model).

The updating rules for the receivers are relatively straightforward. However,
the notion of updating a foregone type, learning about a situation which did not
occur (but could have), can be confusing. The models we propose in Section
3.4 are more complicated still because they suggest ways senders might update
attractions for unchosen messages. Because updating rules for different combi-
nations of realized and unrealized types and chosen and unchosen messages can
get confusing, we will display update rules for senders in the game table. To
illustrate the baseline update rule described above, we will use the following
form:

Tabular representation of sender’s baseline update rules

Type I Type II

a1 a2 a3 a1 a2 a3

m1
φAm1t1

S (t)N m1
S (t)+πS (m1,t1,a1)

ρN m1
S (t)+1

φAm1t2
S (t)N m1

S (t)+δπS (m1,t2,a1)
ρN m1

S (t)+1

m2 Am2t1
S (t) Am2t2

S (t)

The underlined labels indicate that these rules represent an example where the
realized type ist1, the chosen message ism1 and the chosen action isa1. There are
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four cells in the table, one for each strategy-information set combination to which
the sender has an attraction. In each cell is the attraction update rule for that cell
given the the realized type and chosen message and response. In this case, Eq.
9 is represented in the upper left cell, where the sender increases her attraction
with the full weight of the realized payoff. The upper right cell demonstrates
how the foregone type is used: since the receiver’s choice is message and not
type dependent, the sender knows that had the type beent2, she would have
realizedπS (m1, t2, a1), but because this is only hypothetical, it is weighted by
the imagination parameter,δ (Eq. 10). The cells in the lower row do not have an
update rule, indicating that the attractions are just copied from one period to the
next; there is no new information. To further simplify presenting the update rules,
the denominator of the cells indicates how the experience counts are updated.
For the baseline rule, the experience count of the chosen message is updated
according to Eq. 8, and the experience count of the unchosen message is simply
copied into the next period.

3.3.1 Special cases of EWA

The choice reinforcement and belief-based special cases of EWA discussed above
apply, without much modification, to this adaptation of EWA for signaling games.
The reinforcement model is still realized ifδ = 0, ρ = 0 andN m1

R = N m2
R = N m1

S =
N m2

S = 1. However, the extension of the belief-based model is less obvious
because it requires estimating initial belief counts rather than initial attractions.

In addition to settingδ = 1 andφ = ρ, we implement the belief model’s
implicit constraints on theA(0)s by estimating them indirectly: we estimate belief
counts for each of the opponent’s strategies and computingA(0)s by using these
estimates to compute expected values. Thus, for the sender we estimateN a1m1(0),
N a2m1(0), N a3m1(0), which must sum toN m1

S (0) andN a1m2(0), N a2m2(0), N a3m2(0),
which must sum toN m2

S (0), and for the receiver we estimateN m1t1(0), N m1t2(0)
which sum toN m1

R (0) andN m2t1(0), N m2t2(0), which must sum toN m2
R (0).

3.4 Unchosen message models

The appeal of the baseline model is that the sender is making all valid inferences:
the receiver would have chosen the same action had the type been different, so
the sender knows what her exact payoff would have been in the unrealized type
case. However, the baseline model does not build in an answer to the sender’s
natural question, “Did I choose the right message, or should I have chosen the
other message, given my realized type?” The alternative models presented here
consider the possibility that a sender tries to force an answer to that question,
using various imperfect inferences about what her payoff would have been had
she chosen the other message.9

9 Another model is that the sender assumes the receiver would have chosen the same (observed)
action even if the sender had sent the other message. This neglects the sender’s knowledge that the
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3.4.1 Convex combinations of minimum and maximum payoffs

Another way to update foregone payoffs is to take a convex combination of
the minimum and maximum possible payoffs. Because the weights used can
vary from game to game, the model need not be sensitive to extremely high or
extremely low outlier payoffs, yet it can be more robust to attractive payoffs
than a median rule.10 For example, if players frequently switch to unchosen
messages, their ‘grass-is-greener-on-the-other-side’ switching could be captured
by assuming they are optimistically putting a lot of weight on the maximum
foregone payoff. Alternatively, if their message switching is slow their inertia
could be modeled by assuming they are pessimistically putting a lot of weight
on the minimum foregone payoff.

Let Π(m2, t1) = αMIN (πS |m2, t1) + (1 − α)MAX (πS |m2, t1), whereα is the
parameter of the convex combination. Then the convex combination model can
be written

Tabular representation of sender’s convex combination model update rules
Type I Type II

a1 a2 a3 a1 a2 a3

m1
φAm1t1

S (t)N m1
S (t)+πS (m1,t1,a1)

ρN m1
S (t)+1

φAm1t2
S (t)N m1

S (t)+δπS (m1,t2,a1)
ρN m1

S (t)+1

m2
φτ Am2t1

S (t)N m2
S (t)+µ1τΠ(m2,t1)

ρτ N m2
S (t)+τ

φτ Am2t2
S (t)N m2

S (t)+µ2τΠ(m2,t2)
ρτ N m2

S (t)+τ

The second row of the table gives the update rules for the unchosen message,
for both the realized and unrealized type. The new parametersµ1 and µ2 are
similar to δ; they represent the weight, or vividness of imagination, used in
updating the attractions to the unchosen message for realized and unrealized
types, respectively.

The other new parameter,τ , allows for the possibility that updating an uncho-
sen message by the median foregone payoff does not have as much psychological
impact as updating chosen messages, and hence is not the same as a single period
of ‘real’ experience. In addition to being the increment to the unchosen message
experience counter,τ is also an exponent ofφ and ρ for unchosen messages
and it multipliesµ1 andµ2. These additional appearances ofτ in the updating
equation allow it to be interpreted as the fraction of a period’s experience in
the unchosen message gained in conjecturing about and updating the unchosen
message attraction. To see this, suppose thatτ = 1. The unchosen message rules
then reduce to the chosen message rules withδ equal toµ1 andµ2 for the real-
ized and unrealized types respectively. On the other hand, ifτ = 0, the unchosen

receiver’s action choices could be message-dependent. It seems unlikely to fit the data better so we
have not investigated it empirically.

10 We also estimated a model where unchosen messages were updated with the median of the set of
foregone payoffs. Results were virtually identical to the convex combination model presented here,
and are available in Anderson and Camerer (1999).
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message attractions are not discounted and no payoff is added to them, so they
are unchanged.

3.4.2 Mirror sophistication: internal models of other players

A second model of unchosen-message foregone-payoff formulation assumes that
players use all information available to them, including using their own behavior
as a proxy for others’.11 Since subjects played both roles in the course of the
experiment, it is not necessary for senders to use a rule of thumb to guess about
the receiver’s response—a sender can appeal to the attractions of her receiver
alter-ego’s actions to compute the probability of each action in response to the
unchosen message. Her expected payoff from the unchosen message will be
the expected payoff from playing somebody like herself. We call this ‘mirror
sophistication’ because players form a guess about what a player in another role
will do by looking in a proverbial mirror at their own behavior when they were
in that role.12

Let pS (a1|m1) denote the probability with which the sender’s receiver alter-
ego would choosea1 given the messagem1. Let Π(m2, t1) =

∑3
j=1 pS (aj |m2)

×πS (m2, t1, aj ). Then the simple sophistication model can be expressed as in the
table below.

Tabular representation of sender’s mirror sophistication model update rules
Type I Type II

a1 a2 a3 a1 a2 a3

m1
φAm1t1

S (t)N m1
S (t)+πS (m1,t1,a1)

ρN m1
S (t)+1

φAm1t2
S (t)N m1

S (t)+δπS (m1,t2,a1)
ρN m1

S (t)+1

m2
φτ Am2t1

S (t)N m2
S (t)+µ1τΠ(m2,t1)

ρτ N m2
S (t)+τ

φτ Am2t2
S (t)N m2

S (t)+µ2τΠ(m2,t2)
ρτ N m2

S (t)+τ

The parameters are interpreted exactly as in the previous model. However,
this model departs slightly from the spirit of EWA because this implementation
of mirror-sophistication implies a belief-based interpretation of attractions. In
standard EWA, the learner never directly asks herself what her opponent will
do in order to best respond, as she does when using a belief-based model. In

11 Weber (2000) found this phenomenon in a repeated dominance-solvable beauty-contest game,
when subjects made strategy choices repeatedly withno feedback after each choice. He found that
players ‘learned’ even without feedback. Weber estimated a model in which one’s own choice is
taken as a proxy for what others might have done, and found a significant influence like mirror
sophistication.

12 Obviously, this rule will be sensitive to the experimental protocol and does not apply if the players
do not switch roles. We regard this protocol-sensitivity as an advantage. There is a strong intuition
among experimentalists that players do learn faster when they switch roles, which is supportive of
such a rule. (For example, Binmore, Shaked and Sutton, 1985, found that second-moving bargainers
learned to make subgame perfect offers in one trial after they reversed roles and became first-movers.)
This is easily testable, by comparing experiments with different degrees of role-switching, but we
know of no such experiments.
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this model, however, the sophisticated learner does ask herself what she believes
her opponent will do. Although the beliefs are still determined by EWA, this
makes the mirror-sophistication model incompatible with a reinforcement inter-
pretation. This is not particularly surprising because reinforcement learning uses
only realized payoff streams, and has no further provision for thinking about how
opponents adapt.

4 Experimental results

In order to test our baseline adaptation of EWA, its choice reinforcement and
belief-based special cases, and our unchosen message updating extensions, we use
Brandts and Holt’s Games 3 and 5. However, while the 12 periods of data on 24
subjects they generated is sufficient to grasp the intuition behind the Brandts and
Holt story, estimating a structural model as complex as EWA, and distinguishing
it from special cases, requires more statistical power. Therefore, we replicated
Brandts and Holt’s (1993) Games 3 and 5 with 32 subjects playing 32 periods.

For our replication, we recruited Caltech undergraduates who did not neces-
sarily have any training in economics, although many had participated in other
experiments. We used a standard signaling game software which presented the
game table as in Tables 1 and 2.13 In each period, the senders were randomly
selected, informed of the type and prompted for their message. When all senders
had selected a message, receivers were notified of their paired sender’s choice
and were asked to choose a response. They knew that each type was equally
likely ex ante. At the end of each period the realized cell of the payoff table
was highlighted and subjects wrote down their payoffs. There were four cohorts
of eight subjects, and we used a counterbalanced design, so two cohorts played
Game 3 first and two played Game 5 first. Subjects earned an average of about
$27 in about two hours, and were paid in cash as they left the laboratory. The only
protocol difference between our experiment and Brandts and Holt’s is that our
pairings were random, with replacement; we made no attempt to ensure subjects
did not play subjects they had played previously.

Figure 1 presents the data from our experiment, averaged across sessions
in 4-period blocks. The results in Game 3 replicate BH closely, and confirm
that with more experience, play converges reasonably sharply to the intuitive
sequential pooling equilibrium atm1, supported by action responsesa1 anda2 to
the two messages.

The Game 5 results are a little more surprising. We expected additional pe-
riods to causet2s to choosem1 less and less frequently, cementing convergence
to the unintuitive equilibrium atm2. Our hunch was wrong: additional periods
do not eliminate the separation between messages. The senders’ strategies during
the 13th through 32nd periods look much like the 9th through 12th periods of the
Brandts and Holt data, suggesting the convergence to the sequential equilibrium

13 The software we used also had a third message, which we instructed subjects never to use (they
were compliant).
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Figure 1. a Game 3 Sender.b Game 3 Receiver.c Game 5 Sender.d Game 5 Receiver
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is not complete, even after many more periods of learning.14 However, there is
also no evidence of movement back toward the intuitive equilibrium atm1.15

5 Estimation

In these models, the initial attractions, experience counts and model parame-
ters can be estimated from our experimental data. We computed the maximum
likelihood parameter estimates for each model using the constrained maximum
likelihood procedure in Gauss (Aptech).16 To simplify the estimation and make
the models easily interpretable, we impose a number of restrictions on the pa-
rameter space. First, we impose bounds on the initial attractions, so that the set
of possible attractions is not much larger for the EWA model than for the belief
models (whose attractions are closely tied to the payoff structure).17

The second restriction is that message-specific experience weights should be
the same for senders and receivers. That is,N m1

S (0) = N m1
R (0) and N m2

S (0) =
N m2

R (0). While there is noa priori reason we think this is so, tests across a broad
sample of data indicate that this is not a statistically significant restriction, and
it saves two degrees of freedom.

14 We also conducted a session with 64 periods of Game 5 only, to see if longer-run convergence
was different than what we observed in only 32 periods. There was no additional movement toward
either equilibrium.

15 To test that ‘zero-aversion’ was preventing some subjects from switching to the unintuitive
equilibrium, we ran eight subjects with a payoff table which added 15 to each payoff in Game 5
(call this Game 5’). These subjects converged to the unintuitive equilibrium in about 50 periods.
However, we were concerned that the unintuitive equilibrium payoff of 105 may have been focal in
that experiment, because (due to software constraint prohibiting three-digit numbers) it was indicated
by a post-it note pasted on subjects’ computer screens. Therefore, we ran three more sessions using
a payoff table which multiplied payoffs in Game 5’ by 4/5 (call this game 5∗). Behavior in game 5∗
was indistinguishable from that in Game 5. We brought back experienced subjects from game 5∗ and
ran them for 64 more periods, for a total of 128 periods, but did not observe further convergence.

16 To ensure we found the peak of any local maximum we located, we used a two-step search
process. From a given starting point, we used the Bernt, Hall, Hall and Hausman algorithm to
search the parameter space. This algorithm estimates the Hessian, rather than calculates it exactly
like Newton methods, and thus finds maxima quite quickly. However, it is not always precise. From
the maximum found by the BHHH algorithm, we applied Gauss’s version of the Newton gradient
ascent algorithm. Using an exact (numerical) Hessian, this second algorithm often produced small
improvements in fit. To ensure that the local maxima we found were global maxima, we tested a
variety of starting points. We found the parameter space to be surprisingly well-behaved: in each
model all of our starting points converged to the same maximum, suggesting that our estimates are
in fact global maxima. The Gauss and C code used to estimate parameters is available from the first
author.

17 We look at the set of possible payoffs given the information available at the time of move and
bound each initial attraction to be between the minimum and maximum attainable payoffs for each
strategy. For instance, in Game 5,t1 senders can earn payoffs{45, 0, 0} from m1, soAm1t1(0) must
be in the interval [0, 45] andm1 receivers can earn{45, 30} from a1, soAa1m1(0) must be in [30, 45].
Because one of each type or message conditional strategy must be a constant in the logit form, we
restrict one of the strategies in each information set to have an initial attraction equal to the minimum
attainable payoff. There is no way to determine which strategy should have its attraction set to its
minimum, so we estimated all possible combinations of these restrictions, and report only the one
that yielded the best fit.
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Our final restriction is that each of theN (0)s must be less than 50 and less
than 1

1−ρ . This prevents the model from putting so much weight on the initial
attractions that there is almost no effect of the experience gained in the play
of the game. Since 1

1−ρ is the asymptotic bound ofN (t) as t gets large, the

restrictionN (0) ≤ 1
1−ρ forces the experience weight to increase, which means

that new payoff information is getting less and less weight compared to lagged
attractions; subjects do not have less perceived experience after playing the game
than they brought into the game. Note that this restriction also requires 0≤ ρ ≤ 1
(for positive N(0)).

Imposing these restrictions compromises the asymptotic normality of the max-
imum likelihood parameter estimates, so we construct bootstrapped confidence
intervals using the percentile method.18

5.1 Fitting the baseline model

The objective of this paper is to test several models of how people update un-
chosen messages and unrealized types in signalling games. The focal point of
this study is the baseline EWA model described in Section 3.3. First, we test the
baseline model against models which are simpler, the choice reinforcement and
belief-based special cases of EWA.

Table 3 presents the parameter estimates of EWA and and belief-based (BB)
model for Game 3.19 The predictions they generate are shown in Figure 2 (along
with choice reinforcement). The estimates are performed on the first 24 periods
of our data; the last eight periods are a holdout sample we try to predict. The most
significant feature of the Game 3 data is that there is relatively little variance in
the frequency of play of different strategies. The strategiesm1|t1 and a1|m1 are
played with virtually constant frequency throughout the game,a2|m2 is highly
variable, but has no real trend andm1|t2 shows a steady increase. The parameter
estimates show this lack of variance in the large initial experience counts and the
depreciation parameters close to one.N̂ m1(0), in particular, achieves its maximum
value, reflecting the relative stability ofm1 play. This stability is reinforced by
φ̂ > ρ̂ which means that past attractions are amplified, so attractions are not
bounded by payoffs and this convergence can be quite sharp, as it is with them1

data.
Table 4 presents several goodness of fit statistics which we use to compare

models. The first row presents the average per period log-likelihood (summed
across subjects) for the first 24 periods. This is the number that was minimized in

18 This nonparametric technique requires performing maximum likelihood estimates on a large
numberB data sets, where each data set is the sample with each subject weighted by a Poisson
random number (Aptech 1995, 31). This process gives usB estimates of each parameter, and the
95% confidence interval for a parameter is given by that parameter’s 2.5th and 97.5th order statistics.
This method allows us to present the correct confidence intervals without knowing the transformation
which would make the actual error distribution normal (Efron and Tibshirani 1993, 171).

19 Reinforcement model estimates are reported in Anderson and Camerer (1999). The only inter-
esting parameter iŝφ = .70 in Game 3 and̂φ = .68 in Game 5.
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Table 3. Parameter estimates for Game 3 (underlined values are fixed for identification or for model
restrictions and bootstrapped 95% confidence intervals are in parentheses)

EWA BB

Value Param Count

δ 0.69 1.00
(0.47,1.00)

φ 1.02 0.97
(0.99,1.04) (0.97,0.99)

ρ 1.00 0.97
(0.98,1.00) (0.97,0.99)

λ 0.41 0.32
(0.34,0.54) (0.27,0.38)

Am1t1
S (0) 15.00 25.50 N a1m1

S (0) 0.00
(0.00,0.00)

Am2t1
S (0) 9.90 17.56 N a2m1

S (0) 10.40
(9.04,10.72) (10.39,10.41)

N m1
S (0) 50.00 34.64 N a3m1

S (0) 24.24
(49.91,50.00) (24.23,24.24)

Am1t2
S (0) 14.72 20.99 N a1m2

S (0) 0.00
(13.94,15.24) (0.00,0.00)

Am2t2
S (0) 15.00 20.85 N a2m2

S (0) 15.90
(15.89,15.90)

N m2
S (0) 32.91 26.07 N a3m2

S (0) 10.17
(32.81,32.94) (10.17,10.18)

Receiver

Aa1m1
R (0) 30.00 30.00 N m1t1

R (0) 17.39
(17.39,17.39)

Aa2m1
R (0) 25.12 22.40 N m2t1

R (0) 6.88
(24.61,25.74) (6.86,6.88)

Aa3m1
R (0) 15.00 15.00 N m1t2

R (0) 17.25
(15.00,15.00) (17.24,17.25)

N m1
R (0) 50.00 34.64 N m2t2

R (0) 19.19
(49.91,50.00) (19.19,19.20)

Aa1m2
R (0) 20.08 23.76

(19.37,20.32)

Aa2m2
R (0) 21.78 26.04

(21.16,21.87)

Aa3m2
R (0) 15.00 15.00

N m2
R (0) 32.91 31.57

(32.81,32.94)

Table 4. Goodness of fit statistics for Game 3 (parameters estimated to minimize In Sample LL)

EWA BB CR Convex Soph Freq

Calibration

In Sample LL -12.06 -12.55 -14.15 -11.16 -11.17 -12.74

Out Sample LL -9.02 -10.28 -9.83 -7.56 -7.55 -10.22

AIC -12.56 -13.05 -14.48 -11.83 -11.80 -12.99

BIC -13.71 -14.21 -15.26 -13.38 -13.25 -13.57

Fit

In Sample Miss 0.147 0.184 0.177 0.131 0.134 0.178

Out Sample Miss 0.090 0.090 0.125 0.062 0.062 0.102

In Sample MSD 0.095 0.101 0.108 0.087 0.087 0.106

Out Sample MSD 0.063 0.076 0.082 0.051 0.052 0.083

DOF 12 12 8 16 15 6
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Figure 2. a Game 3 m1|t1. b Game 3 m1|t2. c Game 3 a1|m1. d Game 3 a2|m2
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estimation. The second row presents the same statistic for the 25th through 32nd

periods, the holdout sample into which we hope to predict. These statistics can
be used to compare models, but there is no penalty for extra degrees of freedom
(because a more general model will not automatically fit better out-of-sample).
The third row presents the Akaike information criterion (AIC) and the fourth
row presents the Bayesian information criterion (BIC).20 These statistics can be
compared directly and used for model calibration; they are designed to reach a
maximum value at an optimal tradeoff between improvement of fit and additional
parameters, even when models are non-nested.21

The second section of Table 4 presents more measures of fit. The first two
rows present the in and out of sample ‘miss rate’. The miss rate is the percentage
of the time the subjectdoes not pick the strategy that is predicted most likely to
be chosen by the model. (It is one minus the hit rate.) The second two rows give
the average per-period mean squared deviation.22

The columns of Table 4 all represent models discussed in this paper, except
for the last one. The last column (Freq) is a model we propose for comparison.
It is determined by taking as the model prediction the frequency of play of each
strategy throughout the 24-period calibration sample; its predictions are horizontal
lines determined by the data.

Choice reinforcement’s out-of-sample miss rate and MSD are much worse
than EWA and barely better than the frequency model. It does not fit the data
well because it does not use foregone payoff information. Figure 2 shows that
reinforcement mistakenly predictst2 senders move slightly away fromm1, when
in fact they move strongly toward it. The reason is thatm2 is usually met with
the responsea2, so it yields a payoff of 15 fort2s. This payoff reinforces that
choice positively and leads them to choose it again, moving them away fromm1.
But in EWA and belief learning, what thet1s learn from choosingm1 influences
the attractions fort2 (through updating of the unrealized type attractions). Then
t2s gradually learn that messagem1 would pay 30, which is better than 15, and
this indirect learning moves them towardm1. As a result, we can see the AIC

20 The AIC is the total in-sample log-likelihood minus the number of model parameters, divided
by the number of sample periods (24). It is widely used for model comparison, but not motivated by
any optimality considerations. The BIC is the total in-sample log-likelihood minus half the number
of model parameters times the natural log of the number of observations, divided by the number of
sample periods (24). Under certain regularity conditions (which are not satisfied if parameters are
either estimated on or restricted to a boundary), the BIC can be interpreted as follows: if modeli
has a higher BIC thanj , then exp{−24∗ (BICi − BICj )} is an approximation to the posterior odds
ratio, Pr(BICi )/Pr(BICj ), of a Bayesian observer with equal priors (Carlin and Louis, 1996).

21 Note that the conventional way to make nested comparisons is aχ2 test. We do not use it because
the fact that some parameters are estimated and/or restricted to be on their boundaries violates the
assumptions of the Central Limit Theorem necessary to show that 2(LLi −LLj ) has aχ2 distribution.
However, the bootstrapped CIs from the model parameters which significantly influence fit (δ, ρ, φ)
suggest different conclusions are very unlikely.

22 This is calculated by creating, for each subject in each period, a vector with length equal to
the number of strategies. The strategy chosen by the subject in that period is assigned a 1, and all
others are zero. The MSD is the sum of squared differences between the created vector and the
corresponding vector of choice probabilities predicted by the model, averaged across subjects and
periods (but not across strategies).
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and BIC both suggest that the additional parameters of EWA are more than
justified by the improvement in fit, although the BIC also reflects the flatness of
the data, suggesting that EWA does not represent a significant improvement over
the frequency model.

The belief-based special case fits much better than the choice reinforcement
model, but still not as well as EWA. Again, the belief model fails to adequately
track the increasing frequency of playm1|t2. The problem is that the large value
of φ̂ = .98, along with large initial experience counts, means it takes a lot of
experience to alter thet2 sender’s beliefs, so the belief model does not allow
learning which is fast enough. This subtle point also illustrates why we wanted
to apply EWA to these type of data. The original BH story about belief formation
is not precise about strength of prior, fictitious play weight, and other parameter
values.23 By estimating EWA one is forced to be very precise about the details
of the model. It may not be possible to find configurations of belief model
parameters which can fit the initial conditions, the basic trend, and also get the
speed of convergence right. The sluggish belief learning ofm1|t2 in Game 3
shows that while the belief account gets the direction right, it converges too
slowly. Adding EWA parameters improves the fit considerably, producing a plot
which hugs the data except at the start and in periods 13-16.

Table 5 presents the parameter estimates for Game 5. Figure 3 shows the
predictions they generate. Table 6 presents goodness of fit statistics. Unlike Game
3, there is a significant trend to track in all the information sets. Look first at the
central parameters,δ, φ andρ. The estimated̂δ = 0.54, which is consistent with
previous findings in games of complete information. This suggests that senders
update the foregone type about half as much as they do their realized type.
The depreciation parameters are also well within the range found in complete
information games, and̂φ = 0.68 > ρ̂ = 0.46, which means that attractions are
growing over time, and are not bounded by payoffs.

The initial experience counts are only 0.62 and 3.37. Together with deprecia-
tion parameters much less than one, low experience counts mean initial attractions
are fairly quickly swamped by the experience gained in the play of the game.
The initial attractions for the sender suggest the observed initial type dependence,
and suggest receivers should respond tom1 with a predominance ofa2, and to
m2 with about equal frequencies ofa1 anda3 (which represent most of the non-
a1 responses tom2). In this environment, wherem2 comes mostly fromt1s, a3

has a lower expected utility for the receivera1, but it has the appeal of equity,
which may be particularly strong in the case when subjects must switch roles
from period to period.

Reinforcement does not fit well because it misses the gradual decrease in
the frequency of play ofm1 given t2 (until the sharp jump in the last block).
Since m1 gets reinforced by 30 fort2, it is getting strongly reinforced. As in
Game 3, thet1 choices ofm2 demonstrate to players that ift2s were to switch
to m2, they might get 45; this unrealized type reinforcement helps explain why

23 In their entry games, Cooper et al. (1997a,b) do specify parameter values, as do Brandts and
Holt (1994).
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Figure 3. a Game 5 m1|t1. b Game 5 m1|t2. c Game 3 a2|m1. d Game 5 a1|m2



Learning in signaling games 711

Table 5. Parameter estimates for Game 5 (underlined values are fixed for identification or for model
restrictions and botstrapped 95% confidence intervals are in parentheses)

EWA BB

Value Param Count

δ 0.54 1.00
(0.45,0.63)

φ 0.65 0.88
(0.59,0.71) (0.88,0.94)

ρ 0.46 0.88
(0.39,0.54) (0.88,0.94)

λ 0.09 0.15
(0.07,0.11) (0.12,0.18)

Sender

Am1t1
S (0) 18.25 34.70 N a1m1

S (0) 2.18
(18.25,18.26) (2.17,2.20)

Am2t1
S (0) 30.00 44.62 N a2m1

S (0) 0.00
(0.00,0.01)

N m1
S (0) 0.62 2.84 N a3m1

S (0) 0.65
(0.59,0.66) (0.62,0.67)

Am1t2
S (0) 30.00 30.00 N a1m2

S (0) 3.60
(3.58,3.61)

Am2t2
S (0) 11.34 19.95 N a2m2

S (0) 0.56
(11.34,11.34) (0.54,0.59)

N m2
S (0) 3.37 8.12 N a3m2

S (0) 3.96
(3.37,3.38) (3.95,3.97)

Receiver

Aa1m1
R (0) 30.00 30.00 N m1t1

R (0) 0.63
(0.58,0.65)

Aa2m1
R (0) 37.26 35.04 N m2t1

R (0) 3.06
(37.26,37.26) (3.04,3.07)

Aa3m1
R (0) 0.00 3.32 N m1t2

R (0) 2.21
(0.00,0.01) (2.20,2.23)

N m1
R (0) 0.62 2.84 N m2t2

R (0) 5.06
(0.59,0.66) (5.05,5.08)

Aa1m2
R (0) 41.88 33.93

(41.88,41.88)

Aa2m2
R (0) 15.00 24.35

Aa3m2
R (0) 43.26 31.96

(43.26,43.26)

N m2
R (0) 3.37 8.12

(3.37,3.38)

they switch. By leaving out unrealized type reinforcement, choice reinforcement
cannot account for the basic trend inm1|t2. Similarly, it is too slow to adjust to
the initial decrease and subsequent increase in the frequency ofa2 given m1, so
it must fit the initial periods with an essentially smooth function. Table 6 shows
that adding EWA parameters to reinforcement improve in- and out-of-sample fit
by every statistic.

The belief-based model does a better job of capturing the gradual decrease
and sudden increase in the frequency of play ofm1 given t2; it does almost as
well as EWA. However, it predicts essentially constant play fora2 in response
to m1, and an essentially constant rate of increase fora1 in response tom2. This
mirrors our findings for Game 3: the belief-based model, which formalizes the BH
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Table 6. Goodness of fit statistics for Game 5 (parameters estimated to minimize In Sample LL)

EWA BB CR Convex Soph Freq

Calibration

In Sample LL -13.49 -16.41 -15.26 -13.13 -13.15 -18.00

Out Sample LL -17.44 -20.40 -19.20 -17.69 -17.29 -18.60

AIC -13.99 -16.91 -15.60 -13.80 -13.78 -18.25

BIC -15.15 -18.07 -16.37 -15.35 -15.23 -18.83

Fit

In Sample Miss 0.181 0.221 0.190 0.171 0.172 0.253

Out Sample Miss 0.184 0.227 0.199 0.191 0.191 0.254

In Sample MSD 0.105 0.127 0.116 0.101 0.101 0.146

Out Sample MSD 0.113 0.138 0.127 0.116 0.113 0.145

DOF 12 12 8 16 15 6

dynamic, gets the direction right, but adding the flexibility of EWA substantially
improves tracking of convergence.

5.2 Fitting the unchosen message models

The estimates show that EWA is not too complicated (and that reinforcement and
belief models are ‘too simple’), because the baseline EWA model offers signifi-
cant improvement over the special cases. Now we look at the more complicated
alternative models of unchosen message reinforcement.

Table 7 presents the parameter estimates for Game 3 for the two alternative
models.24 While they both offer significant improvement over EWA, they have
similar parameter estimates and offer similar fits. The fit statistics in Table 4 show
that there is a significant feature of senders’ behavior EWA is not capturing, and
both unchosen message models capture it equally well.

The unchosen message models make slight improvements over EWA in a
number of places. We highlight one such improvement to convey the subtle
nature of the dynamic the unchosen message models predict.

Them1|t1 time series (Figure 2a) shows thatt1s almost always choosem1, but
occasionally choosem2 (0-10% of the time, depending on the block). Starting
with period 13, them2 rate fluctuates from about 3-10% and increases over time.
The EWA model underpredicts this rate, starting about 4% and decreasing over
time, to 1% in the last few periods. The unchosen message models do much better
because they predict that them2|t2 rate is around 4%, and slightly increasing over
time.

How do the unchosen message models keepm2|t2 around while EWA all but
extinguishes it? Consider how EWA updates whent1s choosem1, which they

24 We do not include figures for the unchosen message models because their predictions are very
similar to EWA and to each other in both games. Figures are available in Anderson and Camerer
(1999).
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Table 7. Parameter estimates for Game 3 (underlined values are fixed for identification or for model
restrictions and bootstrapped 95% confidence intervals are in parentheses)

EWA Convex Soph

δ 0.69 0.59 0.48
(0.47,1.00) (0.56,0.64) (0.33,0.66)

φ 1.02 0.77 0.76
(0.99,1.04) (0.76,0.81) (0.71,0.81)

ρ 1.00 0.98 0.98
(0.98,1.00) (0.98,1.00) (0.98,1.00)

λ 0.41 1.11 1.20
(0.34,0.54) (1.10,1.15) (1.13,1.36)

τ 1.07 1.05
(1.04,1.11) (0.95,1.15)

µ1 0.00 0.00
(0.00,0.00) (0.00,0.01)

µ2 0.46 0.57
(0.41,0.50) (0.48,0.72)

α 0.00
(0.00,0.00)

Sender

Am1t1
S (0) 15.00 15.00 15.00

Am2t1
S (0) 9.90 12.52 12.79

(9.04,10.72) (12.51,12.52) (12.77,12.81)

N m1
S (0) 50.00 29.32 32.35

(49.91,50.00) (29.32,29.32) (32.35,32.35)

Am1t2
S (0) 14.72 14.59 14.57

(13.94,15.24) (14.58,14.59) (14.48,14.57)

Am2t2
S (0) 15.00 15.00 15.00

N m2
S (0) 32.91 50.00 50.00

(32.81,32.94) (50.00,50.00) (50.00,50.00)

Receiver

Aa1m1
R (0) 30.00 30.00 30.00

Aa2m1
R (0) 25.12 27.38 27.55

(24.61,25.74) (27.38,27.38) (27.52,27.57)

Aa3m1
R (0) 15.00 15.00 15.00

(15.00,15.00) (15.00,15.00) (15.00,15.00)

N m1
R (0) 50.00 29.32 32.35

(49.91,50.00) (29.32,29.32) (32.35,32.35)

Aa1m2
R (0) 20.08 17.20 16.97

(19.38,20.32) (17.19,17.21) (16.93,17.03)

Aa2m2
R (0) 21.78 17.81 17.52

(21.16,21.87) (17.80,17.82) (17.46,17.57)

Aa3m2
R (0) 15.00 15.00 15.00

N m2
R (0) 32.91 50.00 50.00

(32.81,32.94) (50.00,50.00) (50.00,50.00)

almost always do. Because of the receivers’ actions,m1|t1 is almost always up-
dated with its highest payoff, 45. What happens to the attraction ofm2|t1? Since
m2 is rarely chosen byt1s, most of the updating of that attraction comes from
unrealized type updating whent2s choosem2. Because the unrealized type rein-
forcement is estimated to be strong (δ̂ = 0.69), and given how receivers respond
to m2, the attraction form2|t1 usually gets reinforcement of 0, and sometimes
δ ·30 (about 21). Becausem1|t1 is typically getting reinforced by 45, andm2|t1 is
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typically getting reinforced by 0 or 21, EWA predictsm2|t1 gets more and more
infrequently chosen over time.

The unchosen message models correct this subtle ‘overlearning’ predicted
by EWA by using choices of a different message by a different type,m1|t2,
as a cognitive opportunity to think again about the possible payoffs fromm2

for t1s. In the convex model, for example,µ2 is estimated to be 0.57 (and all
the weight is on an unchosen message’s highest payoff), so that whenm1|t2 is
chosen,m2|t1 is reinforced by 0.57 (45), around 26. Updating of ‘distant’ choices
is like a reminder that a message which is rarely chosen by a particular type
may yield a good payoff after all. Since that message-type combination is not
directly reinforced very often, this indirect reinforcement is necessary to maintain
a substantial probability that it may occur in the future. The baseline model
does not allow this kind of reinforcement, and hence, overpredicts how quickly
m1|t1 is distinguished by direct experience. The difference is small in percentage
terms, but is important in statistical estimation and gives a substantial predictive
advantage (especially out-of-sample) to the unchosen message models.25

The unchosen message model estimates for Game 5 are presented in Table 8.
As with Game 3, the behavior of both of Game 5’s alternative models is similar
to EWA, and very similar to each other. This again suggests that if there is some
significant pattern in the data not captured by EWA, these models capture it in the
same way. Table 6 shows, however, that the improvement in fit from modeling
the unchosen messages is barely worth the extra degrees of freedom. AIC favors
the unchosen message models, but BIC does not, and the out-of-sample statistics
are similar for EWA and the unchosen message models.

6 Discussion

Our first objective in this paper was to replicate Brandts and Holt’s results. We
closely replicated their results. However, the additional periods we ran demon-
strated that the convergence in Game 5 is slower than expected, and even 64 (or
128) periods is not enough to converge to equilibrium.

Using these data, we tested our adaptation of EWA to signalling games.
The baseline model updates the attractions to a sender’s unrealizedtype. This
allows the sender to make all valid inferences given that receivers are playing
message-contingent strategies. This model performed significantly better than its
choice reinforcement and belief-based special cases. The belief-based case is of
particular interest because it formalizes the BH dynamic. Our results indicate that
while the BH dynamic captures the direction of the frequency trends, the formal
belief-based restrictions underestimate the speed of learning.

Although EWA performs better than its special cases, it may also be that EWA
itself is too simple. Looking at the results from both games, updating unchosen

25 While the frequencies ofm2|t2 are small, they can have a large impact on estimation (particularly
when log likelihood is the fit measure). Because the logarithms of small positive numbers can be
hugely negative, it makes a big difference whether a model predicts that a rare event is impossible,
or just very unlikely.
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Table 8. Parameter estimates for Game 5 (underlined values are fixed for identification or for model
restrictions and bootstrapped 95% confidence intervals are in parentheses)

EWA Convex Soph

δ 0.54 0.51 0.50
(0.45,0.63) (0.49,0.52) (0.48,0.54)

φ 0.65 0.70 0.70
(0.59,0.71) (0.69,0.72) (0.68,0.71)

ρ 0.46 0.86 0.84
(0.39,0.54) (0.86,0.87) (0.84,0.85)

λ 0.09 0.28 0.25
(0.07,0.11) (0.26,0.32) (0.23,0.30)

τ 0.57 0.48
(0.56,0.58) (0.45,0.49)

µ1 0.05 0.00
(0.04,0.05) (0.00,0.01)

µ2 0.22 0.14
(0.20,0.23) (0.09,0.14)

α 0.00
(0.00,0.00)

Sender

Am1t1
S (0) 18.25 23.83 23.30

(18.25,18.26) (23.83,23.83) (23.30,23.30)

Am2t1
S (0) 30.00 30.00 30.00

N m1
S (0) 0.62 5.01 4.36

(0.59,0.66) (5.01,5.01) (4.36,4.36)

Am1t2
S (0) 30.00 30.00 30.00

Am2t2
S (0) 11.34 24.41 23.79

(11.34,11.34) (24.41,24.41) (23.79,23.79)

N m2
S (0) 3.37 7.09 6.32

(3.37,3.37) (7.09,7.09) (6.32,6.32)

Receiver

Aa1m1
R (0) 30.00 30.00 30.00

Aa2m1
R (0) 37.26 31.87 32.09

(37.26,37.26) (31.87,31.87) (32.09,32.09)

Aa3m1
R (0) 0.00 0.00 0.00

(0.00,0.01) (0.00,0.00) (0.00,0.01)

N m1
R (0) 0.62 5.01 4.36

(0.59,0.66) (5.01,5.01) (4.36,4.36)

Aa1m2
R (0) 41.88 23.77 24.88

(41.88,41.88) (23.77,23.77) (24.88,24.88)

Aa2m2
R (0) 15.00 15.00 15.00

Aa3m2
R (0) 43.26 24.06 25.17

(43.26,43.26) (24.06,24.06) (25.16,25.17)

N m2
R (0) 3.37 7.09 6.32

(3.37,3.37) (7.09,7.09) (6.32,6.32)

messages does improve upon EWA’s ability to fit the data and to predict out
of sample. In developing the alternative models, we expected to capture a few
specific features of the subjects’ learning process. One such feature is the relative
size of imagined experience, represented byτ . Since the unchosen message is
updated, it is necessary to update its experience count as well. Because this
experience is a result of the learner’s conjecture, we hypothesized it is less
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valuable than actual experience. This was weakly supported, asτ is about one
in Game 3 and about 0.5 in Game 5.

A second feature we hoped to capture was the imagination coefficient on the
realized-type, unchosen-message payoff and unrealized-type, unchosen-message
payoff. We expected them to have a multiplicative effect:µ1 requires only one
level of counterfactual reasoning, butµ2 requires two, suggestingµ2 would be
on the order ofµ1 · δ. This expectation is not realized in our estimates, however,
asµ1 is zero in both games andµ2 is greater than zero. This result is surprising
because it implies that imagination is not necessarily nested: senders will go
through two counterfactuals without learning from one. It may also suggest that
updating same-type, different-message attractions does not allow quick-enough
convergence to type-conditional messages.

Finally, we hoped to gain some insight into how subjects reinforce unchosen
messages. The two unchosen message models we examine produce essentially
similar fits on the two games we have examined. Because of its extra parameter,
we conclude the convex combination payoff model is inferior to the sophisticated
payoff model (indeed its AIC and BIC are higher for both games). However, the
models are so similar that it is difficult to conclude the intuition behind the mirror
sophistication model is more compelling than that of the convex combination
model. Thus, while we have been able to determine that senders do update the
unchosen message attractions, we have not been successful in explaining what
determines the value added to the attractions of the unchosen message. Based on
these results, one might use either of the unchosen message models and expect
to do adequately.

Using formal learning models can provide insight into how unintuitive equi-
libria might arise in natural markets. One example of historical convergence to
an unintuitive equilibrium is dividend policy of firms (see Bhattacharya, 1979).
From a tax point of view, firms should not pay dividends because they are taxed
as regular income of investors; if the firms’ cash were instead reinvested, the
result would be higher investor capital gains, which are taxed at a lower rate. So
why do firms pay dividends? Suppose there are two types of firms: low-quality
ones, which do not always have enough cash to meet a regular dividend pay-
ment (and cannot borrow to finance it), and high-quality ones which have plenty
of cash and good business prospects. Decades ago, security analysts were less
able to learn about a firm’s financial health from accounting data and company
sources than they are today; and struggling firms were less able to borrow. In
this era, regular dividend payments signal a firm’s financial health: low-quality
firms cannot afford to commit to dividends (and often miss regular payments),
but high-quality firms can. This part of corporate history corresponds to a tem-
porary separating-equilibrium phase in which low- and high-quality firms are
distinguished by their dividend policies.

But as firms realized how important dividends are, and credit markets de-
veloped, low-quality firms soon realized they had to pay dividends (or else re-
veal their type) and could borrow to do so. So a pooling equilibrium emerged
in which all firms paid dividends. However, this equilibrium is unintuitive if
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high-quality firms have good investment opportunities and would prefer to plow
dividend payments into those investments. If security analysts have the (newly-
developed) capacity to guess a firm’s investment prospects, these high-quality
firms could conceivably benefit from cutting the dividend (if the capital markets
interpreted this as a signal of having good opportunities). However, low-quality
firms cannot benefit as much (if security analysts can see they have few good
opportunities). Thus, firms may be ‘forced’ to continue to pay dividends if they
think capital markets will interpret a cut as a signal of low-quality—since only
low-quality firms did not pay dividends in the past. In this analytical narrative,
dividend policy is an unintuitive equilibrium which emerged because the trace
of the past, in which only low-quality firms did not pay dividends, inhibits high-
quality firms from breaking the pooling equilibrium (even though their perception
of the capital markets’ likely reaction does not obey the intuitive criterion).

Although we cannot identify the exact form of unchosen message updating,
we have replicated earlier results that empirical histories which conflict with log-
ical refinements can be generated, and that these histories interfere with conver-
gence to more refined equilibria. The Brandts-Holt dynamic provides the intuition
for how this conflict might arise. Adding the flexibility of EWA improves our
understanding (and predictive accuracy) considerably. Therefore, carefully speci-
fied formal learning models provide insight into how agents combine information
about the history of play with the payoff table to make strategic decisions and
help us to understand when play might be inconsistent with logical refinements.
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