Day 1 - Purify IgG_{2b} from ascites

- a. Wash Protein G column with 20 mM NaPO₄, pH 7.0, 0.05% NaN₃, at 0.5 ml/min.
- b. Clarify aliquots of ascites by pelleting (5,000 rpm, 5 min, RT).
- c. Dilute the clarified ascites 1:10 with 20 mM NaPO₄, pH 7.0, 0.05% NaN₃. Filter the diluted ascites through a 0.45 μm syringe filter or Steriflip.
- d. Adjust pH of the clarified, filtered ascites to 7.0 with 1 M NaPO₄, pH 7.0.
- e. Load the ascites onto the pre-equilibrated Protein G column at 0.5 ml/min. Wash the column with 20 mM NaPO₄, pH 7.0, 0.05% NaN₃ until the baseline returns to the starting level.
- f. Prepare 10, 1.5 ml microcentrifuge tubes by sequentially numbering them and adding 400 µl 1 M NaPO₄, pH 7.4 to each.
- g. Prepare 2L 100 mM NaOAc pH 5.5, 1 mM EDTA for dialysis, by combining: 1700 ml 0.1M NaOAc 4 ml 0.5M EDTA, pH 8.0 ~300 ml 0.1M acetic acid (use to pH)
- h. Elute the bound antibody by washing the Protein G column with 0.1 M citric acid, pH 3.0, 0.05% NaN₃. Collect 1 ml (final volume) fractions into the above prepared tubes. Invert to mix and check the pH with strip indicators to assure antibody is neutralized.
- i. Pool the antibody-containing fractions and dialyze against 100 mM NaOAc, pH 5.5, 1 mM EDTA, O/N, 4°C.
- j. Wash the Protein G column with 5 ml of 0.1M citric acid, pH 3.0, 0.05% NaN₃, followed by 5 column volumes of 20 mM NaPO₄, pH 7.0, 0.05% NaN₃. Store column at 4°C.

- Day 2 Digest IgG_{2b} and purify Fab
 - a. Harvest IgG_{2b} from dialysis and measure A_{280} (blank with 100 mM NaOAc, pH 5.5 1 mM EDTA, ε_{IgG2b} (mg/ml) = 1.38)
 - b. Concentrate the IgG_{2b} using Amicon spin cell concentrator and Millipore YM10 membrane (pre-soaked in Millipore water, 30 min.). Concentrate the IgG_{2b} to ~ 2 mg/ml.
 - c. Wash the Superdex 75 column with 100 mM NaOAc, pH 5.5, 150 mM NaCl.
 - d. Harvest the concentrated IgG_{2b} and take post concentration A₂₈₀ reading (1:20 with 100 mM NaOAc, pH 5.5 1 mM EDTA, ε_{IgG2b} (mg/ml) = 1.38)
 - e. Make 1 M cysteine (Sigma, C-7880) 105.4 mg cysteine 600 μl 100 mM NaOAc, pH 5.5, 1 mM EDTA
 - f. Dilute papain (Sigma, P-3125) in 100 mM NaOAc, pH 5.5, 1 mM EDTA 1 μ l 28 μ g/ μ l stock papain + 9 μ l diluent = 2.8 μ g/ μ l 2 μ l 2.8 μ g/ μ l + 198 μ l diluent = 0.028 μ g/ μ l
 - g. For IgG_{2b} , digests work best when done in 1 mg antibody per 1 ml reaction volume. Also, in my experience optimized yields are obtained when digesting and further purifying Fab from **no more than 5 mg** of IgG_{2b} . Prior to starting the digest, combine all components *except* the antibody in the 1.5 ml microcentrifuge tubes and pre-incubate at RT for 15 min to activate the papain. Reaction conditions:

0.1 M NaOAc, pH 5.5, 1 mM EDTA to bring final reaction volume to 1 ml (don't forget to account for the volume of antibody to be added, see below)
1 mM final EDTA
50 mM final cysteine
333 ng papain (1:3000 ratio of papain:MW1)

- h. After the 15 min activation incubation, add 1 mg antibody to each tube and incubate at 35C for 30 min, on rotator.
- Make 0.5 M iodoacetamide (Sigma, I-6125) 92.5 mg iodoacetamide 1 ml 100 mM NaOAc, pH 5.5, 1 mM EDTA Wrap in foil (light sensitive) and store at RT until needed.

Fab Production (cont.)

- j. Begin washing the Protein A column with 0.1 M NaPO₄, pH 7.4, 0.05% NaN₃, at 0.5 ml/min (sensitivity set to 0.5 if purifying from 5 mg digest).
- k. Terminate the digests by adding iodoacetamide to 70 mM and incubating the tubes wrapped in Al foil on the nutator (30 min, RT).
- 1. Combine all terminated digests into a 15 ml Falcon tube and neutralize by adding 1M Tris-HCl, pH 8.8 until pH is ~7.0.
- m. Combine 15 μ l of the digest with 15 μ l reducing sample buffer for SDS-PAGE analysis. Load 20 μ l.
- n. Immediately add the terminated, neutralized digest to the pre-equilibrated Protein A column at 0.5 ml/min.
- o. Collect the Fab-containing flow through.
- p. Combine 15 μ l of the Fab with 15 μ l reducing sample buffer for SDS-PAGE analysis. Load 20 μ l.
- q. To the Fab-containing flow through, add NaCl to 200 mM and concentrate using an Ultrafree-4 spin concentrator (pre-rinse with 4 ml Millipore water.), to 500 μl.
- r. Filter the concentrated Fab through a pre-rinsed (with water) 0.2 µm spin column.
- s. Apply the Fab to the pre-equilibrated Superdex 75 column and elute using 0.1 M NaOAc, pH 5.5, 150 mM NaCl.
- t. Take A_{280} (ε_{Fab} (mg/ml) = 1.6) readings of Fab-containing fractions (blank with 0.1 M NaOAc, pH 5.5, 150 mM NaCl.).
- u. Elute the uncut IgG_{2b} , Fc and Fab/c fragments from the Protein A column with 0.1 M citric acid, pH 3.0, 0.05% NaN₃, and immediately neutralize with 1M Tris-HCl, pH 8.8. Store at 4C.
- v. Combine 15 μ l of the uncut IgG_{2b}, Fc and Fab/c fraction with 15 μ l reducing sample buffer for SDS-PAGE analysis. Load 20 μ l.
- w. Wash the Protein A column with 5 ml 0.1 M citric acid, pH 3.0, 0.05% NaN₃, followed by 15 ml 0.1 M NaPO₄, pH 7.4, 0.0% NaN₃. Store column at 4C.