Bi/Ch 113: Biochemistry of the Cell, Spring 2017

protein and membrane trafficking

www.its.caltech.edu/~bich113

Goals:

- To present our current understanding of these topics, with an emphasis on the underlying molecular mechanisms.
- To illustrate the experimental strategies biologists use to analyze cell biological processes.
- To read research papers in detail and to discuss them critically.

Bi/Ch 113: Biochemistry of the Cell, Spring 2017

Lectures: Tuesday and Thursday 11-11:55 am, Broad 100

Section attendance is mandatory

Teaching assistants

Amanda Mock, <u>imock@caltech.edu</u>
Greg Varuzhanyan, <u>gvaruzhanyan@caltech.edu</u>
Ruohan Wang, <u>rwwang@caltech.edu</u>

Section 01: Wednesday 2-3:55 pm, Broad 200 (Ruohan) Section 02: Thursday 7-8:55 pm, Kerckhoff 101 (Greg)

Grading

Midterm: due at the beginning of class, May 9.

Final: due June 8 for seniors and graduate students; due June 15 for others.

Course grade is determined by: section performance, 1/3; midterm, 1/3; final exam 1/3.

No extensions are allowed for paper summaries, the midterm, or the final.

Protein and membrane trafficking

How do proteins get to their destination?

Protein and membrane trafficking

Endocytosis Secretion

Vesicle fusion

Protein translocation

How are proteins, lipids, and organelles sorted to the correct compartment?

Model systems:

ER: translocation, secretion, morphology

Viruses

Endocytosis

Nucleus structure and import

Autophagy

Apoptosis

Mitochondria

Relation to disease

Oncogenesis

Guidelines for reading and discussing papers

 8 research papers will be presented and critiqued in section.

Sections of paper

Title

Abstract

Introduction

Materials and methods

Results (Figures/Tables)

Discussion

Reading and discussing research papers

- 1. What is the overall question the authors are addressing? Is it an important question; does it address a gap in knowledge?
- 2. What experimental strategy do the authors use to answer this question?
- 3. Are the experiments appropriate for the question, and are they well-done? Are the data convincing?
- 4. Are the experiments properly controlled?
- 5. How strongly do the data support the conclusions? That is, do you believe their conclusions?
- 6. Are the findings interesting and important?
- 7. Where does one go from here?
 - -What additional studies can be done to test the conclusions?
 - -Is a new line of research suggested by these findings?

Presenting research papers in section

TAs will provide guidance on presentations

- 1) Provide **introduction** giving background material and describing the state of knowledge at the time the experiment was done. How does this work fit into the overall state of the field?
- 2) Analyze the **individual figures/tables** in the paper. What is the figure purporting to demonstrate, and what method is used? Are the data convincing? Which are the most critical pieces of data?
- 3) **Overall evaluation/conclusions**: does the paper accomplish what it claims to do? Are the results important? What are the directions for future work?

Cellular dimensions- prokaryotes

Bacteria: 0.5 µm diameter

Cellular dimensions- eukaryotes

Mammalian cell: 10-30 μm

Nucleus: 3-10 μm

Lipid bilayer: ~4 nm

Vesicles: >50 nm

Mitochondria: 0.4 µm diameter

 α -helix: 11 Å diameter; 1.5 Å translation per residue

Labeling nucleic acids with radioactive isotopes

Monoclonal antibodies

- Polyclonal antibodies recognize multiple epitopes.
- A monoclonal antibody recognizes a single epitope.
- Monoclonal antibody is a defined, renewable reagent.
- Specificity versus sensitivity.

Assigning gene function

- A. Temporal and spatial correlations-- limitations
 - 1. RNA localization- Northern blot analysis, RT-PCR, in situ hybridization
- 2. Protein localization- Western blot analysis, immunofluorescence, epitope tagging, chimeric GFP
- B. Functional approaches
 - 1. Overexpression- transfection, viral infection-- limitations
 - 2. Misexpression- viral infection, oocyte injection
 - 3. Gene disruption
 - -Yeast
 - -homologous recombination in mice- standard and conditional
 - -RNA interference
 - -dominant negative alleles
 - 4. Mutational studies

The fluorescent microscope

Fluorescence filter set for fluorescein (FITC)

Exciter filter: allows excitation (shorter wavelength) light to pass **Dichroic filter:** deflects excitation light and allows emitted (longer wavelength) light to pass

Emitter filter: allows emitted light to pass

Confocal and deconvolution microscopy create sharper images

Electron microscopy

Mitofusins localize to mitochondria

Structure of mitochondria

Use of fluorescent proteins to track organelle dynamics in live cells

Tracking individual mitochondria by photoactivation

Production of transgenic mice

Embryonic stem cells are totipotential

Creation of mice ES cells carrying a knockout mutation

Gene knockout in mice

Cell-type-specific (conditional) gene knockouts in mice

The *cre-loxP* system allows temporal and spatial control of gene disruption

specific expression of Cre recombinase inPurkinje cells of cerebellum

Using RNA interference to disrupt gene function

RNA-induced silencing complex

RNAi screens to discover new genes

Genome editing with engineered zinc finger nucleases

Fyodor D. Urnov, Edward J. Rebar, Michael C. Holmes, H. Steve Zhang and Philip D. Gregory

ZFN-mediated gene disruption in rat embryos

PNI - pronuclear injection; IC - intracytoplasmic; * - of transferred; †- of liveborn founders; ND - not determined

A M Geurts et al. Science 2009;325:433-433

ZFN targeted against GFP transgene in transgenic rats

Human ES cells and iPS cells: Endogenous Gene → Reporter at 95% Efficiency

TALE: transcription activator–like effector proteins from Xanthomonas

- •TAL effectors: virulence factors produced by a genus of plant pathogens, Xanthomonas spp.
- bind to specific host promoter sequences
- contain 17–18 repeats of 34 amino acids.
- DNA binding specificity determined by positions 12 and 13

Engineering TALEs using a simple code

TAL effector nucleases (TALENs)

Fok1
 endonuclease is
 an obligate dimer

TAL effector nucleases (TALENs) induce indels

hey2:

```
Mutations in 12 of 110 sequences: ~11%
#1297/ #1257
GCTCTTCCGTTTCCACATCCACCACATCCCAACAGAGCAGCGGGAGCAGCAGTAAACC
<-----GAGCAGCAGTAAACC
                                                               \Delta 142
GCTCTTCCGTTTCCACATCCACC------CAGCGGGAGCAGCAGTAAACC
                                                               \Delta 14
GCTCTTCCGTTTCCACATCCACC-----ACAGCGGGAGCAACAGTAAACC
                                                               \Delta13
GCTCTTCCGTTTCCACATCCAC-----AGAGCAGCGGGAGCAGCAGTAAACC
                                                               \Delta 11
                                                                               [2x]
GCTCTTCCGTTTCCACATCCACCAC-----AGAGCAGCGGGAGCAGCAGTAAACC
                                                                               [3x]
GCTCTTCCGTTTCCACATCCACCACAT-----tGAGCAGCGGGAGCAACAGTAAACC
                                                               \Delta 6 (\Delta 7 \text{ and } +1)
GCTCTTCCGTTTCCACATCCACCACATC -- AACAGAGCAGCGGGAGCAGCAGTAAACC
GCTCTTCCGTTTCCACATCCACCACATaaaccaccacACAGAGCAGCGGGAGCAGCAG
                                                              +6 (\Delta 4 \text{ and } +10)
ACCTTCCCTCTATCATT<-----/ /---->TCTGGGAAGAAAGAAA
                                                               \Delta303
gria3a:
#1258/ #1260
               Mutations in 13 of 89 sequences: ~15%
GGAGTCGTCCAATAGCTTCTCAGTCACGCACGCCTGTGAGTTTCTGCTCTTTATCTT
                                                               WΤ
GGAGTCGTCCAATAGCTTC-----GCCTGTGAGTTTCTGCTCTTTATCTT
                                                               \Delta12
GGAGTCGTCCAATAGCTTCTCA-----GCCTGTGAGTTTCTGCTCTTTATCTT
                                                               \Delta9
GGAGTCGTCCAATAGCTTCTCAGT-----CTGTGAGTTTCTGCTCTTTATCTT
                                                               \Delta9
GGAGTCGTCCAATAGCTTCTCAG-----CCTGTGAGTTTCTGCTCTTTATCTT
                                                               \Delta9
                                                                               [2x]
GGAGTCGTCCAATAGCTTCTCAGTCA----GCCTGTGAGTTTCTGCTCTTTATCTT
GGAGTCGTCCAATAGCTTCTCAGTCAgaaa--CCTGTGAGTTTCTGCTCTTTATCTT
                                                               \Delta 2 (\Delta 6 \text{ and } +4)
GGAGTCGTCCAATAGCTTCTCAGTCtcagtCGCCTGTGAGTTTCTGCTCTTTATCTT
                                                               +0 (\Delta 5 \text{ and } +5)
GGAGTCGTCCAATAGCTTCTCAGTCacgcACGCACGCCTGTGAGTTTCTGCTCTTTA
                                                                               [3x]
GGAGTCGTCCAATAGCTTCTCAGctgtgcctgtaACGCCTGTGAGTTTCTGCTCTTT
                                                             +5 (\Delta 6 \text{ and } +11) [2x]
```

CRISPR-mediated genome editing

- CRISPR: clustered regularly spaced short palindromic repeat system
- Found in archaea and bacteria
- Key components consists of Cas9 nuclease and guide RNA
- By engineering the guide RNA, Cas9 cleavage can be targeted to any desired site.

Assigning gene function

- A. Temporal and spatial correlations-- limitations
 - 1. RNA localization- Northern blot analysis, RT-PCR, in situ hybridization
- 2. Protein localization- Western blot analysis, immunofluorescence, epitope tagging, chimeric GFP
- B. Functional approaches
 - 1. Overexpression- transfection, viral infection-- limitations
 - 2. Misexpression- viral infection, oocyte injection
 - 3. Gene disruption
 - -Yeast
 - -homologous recombination in mice- standard and conditional
 - -RNA interference
 - -dominant negative alleles
 - 4. Mutational studies