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Decision to express most genes depends on
combinations of circumstances

e Cell type okay?

 Nutritional status okay?

e Timing okay?

e Signals from environment induce or repress?

These decisions are made through the mobilization of different
sequence-specific transcription factors in right combinations



Some crucial tools

Define cis-regulatory regions functionally

— Reporter constructs (Chloramphenicol acetyltransferase, luciferase,
GFP, 3-galactosidase [lacZ]) with/without candidate cis-reg region

— Mutagenesis methods
— Transfection of reporter construct into cells that can exert regulation
— Quick guantitative readouts in transfection systems

Define source of transcription factor proteins
— Biological specificity (cell type comparison)
— Physiological specificity (conditional activation)

Role of genetics to compare transcription factor positive and
transcription factor negative versions of same cells



Simple cases from E. coli provided intellectual
framework for whole field

Lac operon — controlling a group of enzymes needed to metabolize
lactose
— Use as carbon source when lactose is present

— Don’t waste energy to make these when a better sugar is present, like
glucose

Lambda phage repression/ activation
— Two modes of existence: lytic and lysogenic
— Lytic: use up cell’s resources making more phage, destroy cell

— Lysogenic: stay quietly incorporated into host bacterial DNA and let host do
the replication

— Switch from lysogenic to lytic mode under stress: “I'm splitting”



Huge divergence between the microbial and eukaryotic

worlds...
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And yet our own mitochondria and plant chloroplasts have their own
organelle genomes, which are prokaryotic genomes within our cells

Figure 1-21 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)



The bacterial way: streamline everything
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A single origin of replication, one replication initiation
event per “cell cycle” (and a simple cell cycle)
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Figure 1-29 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)



E. coli have a protein-coding buff’s dream of a
perfect genome...
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No “waste”, minimal intergenic regions, a genome of almost “all exon”

(also minimal regulatory requirements: just one cell type and little need for
one cell to coordinate activity with another)

No wonder bacterial geneticists were offended by eukaryotic “junk DNA”



And for prokaryotic viruses (and some eukaryotic ones),
you may need to double-use genetic information

Barrell, Air & Hutchison: overlapping coding regions in phage ¢x174

Nature Vol, 264 November 4 1976 as

Table 1 @X174 coding capacity
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MRNAs in prokaryotes and eukaryotes are structurally
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Figure 6-22a Molecular Biology of the Cell (© Garland Science 2008)



No physical separation
between transcription
compartment and
translation compartment:
translation can (& does) start
on nascent RNA transcripts

Obviously cannot require intact 3’ end
for translational QC, either!

Reprinted with permission from Oscar L. Miller, Jr., Barbara A. Hamkalo, and C. A. Thomas, Science
169:392, 1970; © Copyright 1970, American Association for the Advancement of Science.



Overview of transcription of bacterial mMRNA: by default,
one promoter and one polymerase-loading factor (o)
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Figure 6-11 Molecular Biology of the Cell (© Garland Science 2008)
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Bacterial transcription termination: a distinct signal
unlike eukaryotes, no role for cleavage & poly(A) addition

dyad
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3" /GGGTCGGGCGGATTACTCGCCCGAAAAAAAACTTGTTTT
RNA 5' CCCAGCCCGCCUAAUGAGCGGGCUUUUuuUU 3'
| J
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termination hairpin
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As RNA
polymerase (only
one) reaches end
of coding region...

Secondary
structure folding
and melting off the
DNA template help
to release RNA

(All RNA polymerases
let DNA snap-back
push finished strand off
template)

\ Oligo(V):

weak hybrid




Greatly reduced role in bacteria for coordinated
transcription factor action at dispersed genomic sites
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But a new problem: how to control multiple starts of translation?



Bacterial translational initiation is oriented by “Shine
Dalgarno box” complementary to 16S rRNA which can
lie anywhere in mRNA
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This enables bacterial ribosomal small subunit to scan
for initiation sites anywhere in the mRNA, any number
of times, without regard to 5" end
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Bacteria use a specially modified Met to charge
their initiator AUG tRNAs

(Metazoan immune
cells recognize fMet-
Initiated peptides as a
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Bacteria do
carry out precise
and powerful
gene expression
regulation

Short mRNA half-life
ensures massive
dynamic range
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Lac operon

Major milestone in concepts of gene regulation (Jacob &
Monod)

Combination of positive and negative regulation
— Negative regulation when lactose is not present
— Negative regulator: Lacl = “Lac repressor”
— Positive regulation when glucose is not present

— Positive regulation via Catabolite Activator Protein (cCAMP activated
protein)

Most important: METABOLIC RELIEF OF REPRESSED STATE

Key to induction by lactose is allosteric change in Lacl when it
binds inducer, causing loss of DNA binding (Monod, Wyman,
Changeux or “MWC theory”)



E. coli lac operon

Lactose operon: Absence of lactose
lac operon regulatory region Lactose metabolic genes

Lactose operon: Presence of lactose, presence of glucose
e ¥ Inducer (allolactose): Temary complex formation

C. J. Wilson ... & K. S. Matthews
Lactose operon: Presence of lactose, absence of glucose Cell. Mol. Life Sci. 64 (2007) 3-16

. cAMP
~4 i Transcription of lacZ¥A mRNA
CRP dimer |



Lac Repressor (Lacl protein): domains, allosteric change
in response to inducer, affects DNA binding
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Closeup of lac operator shows overlap in binding sites
for RNA polymerase and repressor

CAP-binding site DNA covered by RNA polymerase

I » mMRNA

5 f ; \chAACGC.BAT'.'I!AATG'I'GAGTTAGCTCACTCnTTAGGCACCCCRGGCTTThC&TTTATGC TTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCT
3 JGTTGCGTTAATTACACTCAATCGAGTGAGTAATCCGTGGGGTCCGARATGTARATACGAAGGCCGAGCATACAACACACCTTAACACTCGCCTATTGTTAAAGTGTGTCCTTTGTCGA |
I

-35 -10 +1

DNA covered by repressor

Copyright ® 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.



Repressor gene itself is part of same gene cluster,
but under different regulation

Promoter

cAMP-CRP RNA Polymerase Operator
binding site binding site

—— mRNA

DNA GAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGLTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATG 3'
_—

sequence CCGCCCTClCCGCGTTGCGTT&&TH\C&CTC}U\TCG}\GTGﬂuGTlATCCGTGGGGTCCGMMTGTG&MAT&CG.M\GGCCGAGCMT&C}\}_\C.&CACCTT}U\C.&CTCG-CCT.QTTGTTA.&AGTGTGTCCTTTGTCGMCﬁC o .
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(via ribosomes...)



Repressed state is maintained by the single Lac
repressor as tetramer, interacting with two neighboring
sites as well as operator (+11)

02(+412)

Figure 7-3
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company

These help keep local concentration of Lacl protein high near Lac operon, so
that only ten molecules per E. coli cell are enough to keep genes repressed



The other repression paradigm: ligand-
dependent repression at the Trp operon

promoter

start of transcription

-10 +1 +20
operator

inactive repressor /K
‘ RNA polymerase .

tryptophan actlve repressor

MRNA sessssss——)
GENES ARE ON GENES ARE OFF

For feedback negative control...
homeostasis

Figure 7-35 Molecular Biology of the Cell (© Garland Science 2008)



A subtle ligand-dependent conformational
change in the Trp repressor alters recognition
helix orientation... promotes DNA binding

GENES ARE ON GENES ARE OFF

Figure 7-36 Molecular Biology of the Cell (© Garland Science 2008)



Opposite sign of effect, similar philosophy

e This is only part of the regulation of the Trp
operon... more to come

e But strictly transcriptional regulation
component is like mirror image Lac operon
— Repressor as obstruction for polymerase
— Direct ligand-dependent control of repressor

binding

— Default is for RNA polymerase to work

Next time: read C. Yanofsky, Trends Genet 20: 367-274 2004
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