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SIZE AND PURIFICATION BY SYNTHESIS: BASIS OF
EARLY SEQUENCING
complex mixture of aborted DNA replication products
becomes an orderly “ladder” of DNA sequence
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Defining a probe is defining the biological question

 Known gene of interest & known sequence = an artificial DNA
probe can be synthesized to order (cheap now)

e A known gene or artificial DNA copy of an RNA molecule (cDNA)
can be used as a probe in its entirety

— (even if you don’t know its sequence yet)
— Cloning the gene (to be described) helps produce billions of
copies of the same gene to make purification and labeling very

easy

e Special expression features of a gene that is NOT yet identified
can be used to find a probe that will enable the gene to be
identified and isolated

— without prior knowledge of sequence
— DIFFERENTIAL LIBRARY SCREENING = new gene identification



Both genomic and cDNA (mRNA proxy) DNA can
be cloned in libraries
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Cloning and screening a genomic or cDNA library with
specific probes is the basis of specific gene discovery

Bacterial library colony DNA Bacterial library colony DNA screened
screened with negative control probe with probe for a specific gene of
interest

Bacterial library colony DNA Bacterial library colony DNA screened with total
screened with total cDNA from cDNA from stimulated cell (stim specific cDNA
unstimulated cell (control cell) in library can be identified)



Analyzing the expressed parts of the genomes in
different cells or conditions

e The RNA is what is different between cell types in an organism
or conditions of response to a stimulus... DNA stays the same.
So RNA often holds the answer to the question one is asking.

e Can test by hybridization either to RNA itself or to cDNA
copied from the RNA

e Can probe bulk RNA samples, RNA samples separated by size,
or cDNA clones separated as separate bacterial colonies

* Analyze structure and frequency of particular RNA molecules
in population



Common methods of

Short probes:

measuring RNA Oligonucleotides
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But...RNA-seq and
microarray
hybridization may
not tell you which
isoforms are
made... or even if
they exist

Structures come from cDNA clones ®en 1A

Complex transcription units
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Analyzing expression of RNAs of different
structures

 Cloned, long probe bridging
feature to assay
— ssDNA form

_ RNA form can also be made Can use position of label in

probe to get more info...

— End labeling
e Hybridize with target RNA — Uniform labeling

e Measure not only amounts
but also length(s) of
hybridized probe fragments



exon1 intron
5'_
3’_

exon 2
3/ 5 meessssssssss———— 3'

5 mRNA

cloned genomic DNA

Classic intron

mapping With a intron sequence

single-stranded DNA
probe

Shows presence of sequences from
both exons in RNA and lengths of
sequence expressed from both

This hybridization to labeled genomic DNA
does not directly show that these
sequences are linked in RNA

But hybridization of cloned cDNA to
genomic DNA — the reverse experiment --
will show that they were linked in RNA!
(Consider also how you could use PCR...)

Figure 8-37 Molecular Biology of the Cell (© Garland Science 2008)
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Splicing matters!
Famous case:
Drosophila sex
determination

Splicing of internal
exons can be
regulated by SA site
accessibility: binding
of protein to RNA at SA

site can control intron
inclusion or exclusion...
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A powerful combination: regulating splicing by
regulating choice of polyadenylation site:
No splice acceptor = no clipping at splice donor site either
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Same gene can code for either a membrane-bound or a secreted protein depending
on choice of poly(A) site... either before or at the end of last possible coding exon




Modifying genomes of cells

Use sequence-specific recombination to introduce desired
mutations into target DNA plasmids ...or cellular genomes

Recombination is a key natural aspect of DNA maintenance in
cells as well as an artificial result of DNA cleavage and ligation
in vitro

Starts like restriction digestion with a nick or staggered break
in the DNA

Local homology promotes rejoining (to be discussed in detail
later)

But recombination can introduce new sequences or delete
original sequences



Sequence homology, even over short
distance, can enhance DNA break repair
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Viruses in prokaryotes and eukaryotes modify host
genomes “for a living”: they encode their own
equivalents of restriction enzymes

viral DNA Y
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Integrases: high specificity for non-disruptive sites in viral DNA,

varying specificity for sites in host genome
Figure 5-73 Molecular Biology of the Cell (© Garland Science 2008)



Cre: A particularly useful recombination enzyme —
site-specific cutting and rejoining from a single enzyme

[ —
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l promoter
Cells not expressing Cre Cells expressing Cre
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Gene function is normal

Cre recognizes highly specific, 34-

bp target sites called “LoxP”

Promotes DNA strand breakage, b’@
exchange, and rejoining exclusively

between two LoxP sequences —— - —

High specificity - few “side effects”  Gene function is disrupted

Figure 5-42
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loxP Cre

mouse * mouse
All cells carry endogenous gene Heterozygous for gene X knock-
X with loxP sites flanking exon 2 out; all cells carry cre gene

[ —
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Gene function is normal

Cell type-specific gene
deletion in vivo at will:
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structure for end product

Gene function is disrupted



What we use molecular technology for

Finding NEW genes that are expressed in particular cell types
— DNA (genomically stored) versions
— RNA (expressed) versions

Finding all the genes an organism’s genome includes and how
they are organized

Measuring the expression of different genes quantitatively
Determining the sequence of a gene or genome

— See what proteins and RNA structures it encodes

Engineering ways to put one gene or gene variant under
experimentally determined control

Testing the effect on a cell or organism when a specific gene or
gene regulatory sequence is deleted or mutated



Translating from one code to another
Protein basics: subunits are amino acids

H H o

I Unlike —NH2 in
H—N"—C; C\ nucleotides, these

| | o free amino groups
| H | R | | and free carboxyl
amino side carboxyl groups are ionized
group chain group at neutral pH

Coding is a qualitative transformation, nucleotide triplets
translated to amino acids

No structural homology

Only polarity of polymerization is similar: what happens to
the end of the chain depends on what comes before it



neutral-nonpolar amino acids

acidic amino acids

basic amino acids
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Formation of amide bonds between carboxyl groups of
one amino acid and amino group of next amino acid
polymerizes protein chain... “N” to “C”
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Figure 3-1 Molecular Biology of the Cell (© Garland Science 2008)



TABLE 15-1 The Genetic Code GAUAU:’)

TH R E E second position
MATTERS... in [N | -

. . ucu VAU |
protein coding e g
S
: uca o stop
regions
UCG stop
You must know cuu ccu CAU CGU
= cuc Gee CAC CGe
where to start 2 o (e | Kt
: i Gin
counting and stay % cuG cce CAG CGG
9
In register @ AUU ACU AAU AGU
= Asn Ser
% lle Acc AAC AGC
= AUA ACA AA AGA
_ AUGT Met ACG pmG  ° acel O
43 = 64 triplets
20 amino acids + stop GUU ccu GAU GGU
- A
signals GUC GCC eac > | leee .
Val Al |
_ GUA Gea|l " GAA GGA 7
Unique codon for G 606 Bag Gl GGG
starting protein

chains; also used * Chain-terminating or “nonsense” codons.
for internal Met t Also used in bacteria to specify the initiator formyl-Met-tRNA™Met,
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... to be continued. Next session’s reading:
Alberts Ch. 6: pp. 333-366.
Now,

QUIZ 1

e 20 min, closed book
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