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RNA is more than a protein coding
molecule

 RNA as regulator of other mRNAs’ translation and
lifespans (MiRNA and artificial versions)

* RNA as a local orientation device to recruit
chromatin modifier function to specific sites
(supplementing action of transcription factors)

* RNA as an enzyme



Multiple
regulatory
modes exist for
RNA molecules

Guidance for protein-
based enzymes:
using RNA
complementarity for
target specificity
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Long noncoding RNAs: from the dark
matter of the genome

A Cis-acting IncRNAs

Chromatin- A variety of roles in guidance of

modifyin . . g . .

complex chromatin modifiers, still being
/ discovered, and other roles

IncRNA gene
Chromatin-
B Trans-acting IncRNAs modifying
complex
IncRNA gene IncRNA

Some reviews: \ Transcriptional regulator
Fatica,Bozzoni Nat Rev Genet Jan 2014 IncRNA
Geisler, Coller Nat Rev Mol Cell Biol Nov 2013 \
Quinodoz, Guttman Trends Cell Biol Nov 2014

Local experts: Mitchell Guttman (CIT), WMM

Howard Chang (Stanford)



Regulatory RNA as a scaffold

Long non-coding RNAs probably use base pairing to interact
with other nascent RNAs

Long non-coding RNAs use secondary structure to recruit
multiple proteins

Often long non-coding RNAs recruit chromatin modifying
enzymes, including histone deacetylases (repression)

Local binding, local action, maybe helping to organize
domains of different gene regulation activities in cell nucleus



Functional noncoding RNA: synthesis & turnover
kinetics make it a quick-change artist
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Ways that RNA contributes to enzymatic activity

 RNA as guide, by base pairing with substrate

* RNA as catalyst
— stabilizing transition state &/or
— creating it through attack on substrate

 These are primary roles of multiple classes of RNAs



CRISPr—Cas9: a revolution in genome editing,
directed by RNA

sgRNA
binding to
Cas9

Matching DNA
target sequence

PAM
sequence

CRISPR-Cas9 development CRISPR-Cas9 applications
B— DNA deletion B— Biological research

B— DNA insertion B— Research and development
B— DNA replacement B— Human medicine

B— DNA modification B— Biotechnology

B— DNA labeling B— Agriculture

B~ Transcription modulation ...

B— RNA targeting




Phase1: Immunization

Evolution of a
defense
system: know
your enemy,
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Tracer RNA replaced by “Guide RNA”: a bacterial
mechanism for “immunity” can be made into a tool
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Many catalytic-like small RNAs are synthesized by RNA

polymerase lll rather than | or |l
(contrast with miRNAs, synthesized by RNA pol Il)

ﬁ
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The benefits of

2’-OH reactivity:

RNA can also
catalyze
enzymatic
reactions, not
just find
templates
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Figure 6-103 Molecular Biology of the Cell (© Garland Science 2008)



Table 6-5 Some Biochemical Reactions That Can Be Catalyzed by Ribozymes

Peptide bond formation in ribosomal RNA
protein synthesis

RNA cleavage, RNA ligation self-splicing RNAs; RNase P; also in vitro
selected RNA

DNA cleavage self-splicing RNAs

RNA splicing self-splicing RNAs, perhaps RNAs of the
splicecosome

RNA polymerizaton in vitro selected RNA

RNA and DNA phosphorylation in vitro selected RNA

RNA aminoacylation in vitro selected RNA

RNA alkylation in vitro selected RNA

Amide bond formation in vitro selected RNA

Glycosidic bond formation in vitro selected RNA

Oxidation/reduction reactions in vitro selected RNA

Carbon-carbon bond formation in vitro selected RNA
Phosphoamide bond formation in vitro selected RNA
Disulfide exchange in vitro selected RNA

Table 6-5 Molecular Biology of the Cell (© Garland Science 2008)



How a protein catalyzes RNA cleavage (RNase A)
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protonated Lys41 stabilize the transition state; (3) cleaved
polynucleotide is released; later (not shown) His12 “gives back”

(Fedor, Williamson Nat Rev Mol Cell Bio 2005)



RNA self-cleavage:
the easiest job for an RNA
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Extremely similar to RNase cleavage... especially if acid
and base moieties are there for transition state stabilization

(Doudna, Cech Nature 2002) ~STRUCTURE CAN HELP!



“Hammerhead” ribozyme: a naturally occurring
RNA enzyme that catalyze

Highly structured
“hammerhead”
motif allows an
RNA plant virus to
clip out genome-
length RNA pieces
from a long
concatenated
replication product

(Doudna, Cech Nature 2002)
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RNA-dependent catalysis can also stabilize transition
states by complementary base pairing
This plays a huge role in splicing: every eukaryote’s
need for precise RNA cleavage
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Figure 8-7
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company

not completely deterministic, but guided by key sequences
in substrate RNA... These are targets for base pairing



Reminder of
what
happens
during
splicing

Chemistry is permissive
but a big problem to find
the right phosphodiester
bonds to be attacked
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"R prs Splicing normally gets a lot of help
nl/UMUGIUS from ribonucleoprotein
“spliceosomes”:

key players, snRNA-Protein complexes
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MRNA intron is base paired with U1, U6 snRNAs:
handoff requires ATP hydrolysis
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Figure 6-30a Molecular Biology of the Cell (© Garland Science 2008)



Displacement of original binding protein for 3’ end of
intron by U2... also requires ATP hydrolysis
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Figure 6-30b Molecular Biology of the Cell (© Garland Science 2008)



Base pairing is important for splicing efficiency
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U6/U2 machine carries out the splicing with help from
U5 base pairing and more ATP hydrolysis

Figure 6-30c Molecular Biology of the Cell (© Garland Science 2008)



There are small introns in some microorganisms with such a
highly specialized structure that they can splice out
themselves....Possibly analogous folding to “spliceosomes”

(a) Group Il intron (b) U snRNAs in spliceosome

—~Pre-mRNA
intron

Figure 8-14
Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company



Translation in the ribosome itself may also
depend on ribozyme-like activity of rRNAs



Large subunit of ribosome

5.8S 285/
Human, ~ 13.7 Kb _
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D. melanogaster (fruit fly), ~ 7.7 Kb [ I
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processed by cleavage

© 2008 W.H. Freeman and Company

into the separate
18S: ~1.9kb  28S: ~4.7 kb rRNAS



Ribosomal
large subunit
structure

Highly structured RNA forms whole

shell of subunit
Figure 6-69a Molecular Biology of the Cell (© Garland Science 2008)



Within ribosome, complementarity to 16S (small
rRNA) can define translational start site (Shine
Dalgarno box in bacteria), but also...

acts as quality control
for alignment/pairing of 165 RNA |
codon/ tRNA anticodon
at each step of
translation

| anticodon codon |

Figure 6-68 Molecular Biology of the Cell (© Garland Science 2008)



And a ribozyme-like
catalyst lies at the
heart of the large

ribosomal subunit...

crucial for peptidyl
transferase reaction

In A site

In P site

(Hansen, ... Steitz

Large rRNA PNAS 2002;
Fedor, Williamson

Nat Rev Mol Cell

Bio 2005)



RNA as the jack of all trades of molecular
biology

Base pairing with other molecules for recognition
and complex assembly

Secondary structure for unique features
Biochemical reactivity for enzyme activity

Templating possible for replication



RNA world first?

Versatility: genetic code and active agent
Ease of synthesis and turnover, for flexibility

Inheritance at heart of some of most crucial
functions

Ability of isolated RNAs to do many jobs, including
self replication
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