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Four barriers to prokaryotic modes of gene
regulation in eukaryotes

Nuclear/ cytoplasmic distinction (space & time
separation between RNA, protein synthesis)

Genome complexity: enormous search space for TFs

In multicellular eukaryotes, extreme biological
complexity via different gene expression patterns

Packaging of DNA in highly dense chromatin:
accessibility barrier?



Histone packing of DNA in eukaryotic nuclei: not
just free DNA

(A) (B)

Figure 4-20 Molecular Biology of the Cell (© Garland Science 2008)



Large loops do not correspond to genes, but help
facilitate long-range interactions ~100 Mb
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are also dynamic loops...



Within the larger
loops, gene
expression is
controlled by
dynamic looping of
promoters to
contact specific
enhancer(s) that are

bound by TFs in that

cell at that time

(stay tuned for much
more on this!)
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core histones
linker DNA of nucleosome
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What is the role of histones in gene regulation?

A neutral general obstruction? (if so, where is the
specificity?)

A local obstacle to prevent excessive transcription
factor binding to “forbidden” genes?

A specific traffic controller for transcription factor
access?

A medium on which DNA can be marked at particular
sites by previous transcription factor action?



Nucleosome dynamics allow transcription factors to get to DNA
...but less often where nucleosomes are densely packed
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Figure 4-28 Molecular Biology of the Cell (© Garland Science 2008)



Open vs. closed chromatin: part of the answer
to controlling gene accessibility?
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Using modern high-throughput sequencing
technology, DNase hypersensitivity locates
regions of DNA that may be especially active in
cell-type specific gene regulation
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One important point: these DNase hypersensitive
regions are the opposite of classic DNA footprints:
coarse vs. fine grain visualization

In vivo footprint is small... hypersensitive region around it is bigger
(5-10 bp vs. 300-500 bp)
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“Epigenetic marking”: Decoding a problematic term

e DNA in chromosomes is packaged into chromosomes that at any
given moment may be different

— in the density of histones per length of DNA (compaction/ openness)

— in the post-translational modification of histones over particular
regions (“epigenetic marks”)

 Genes that are currently being expressed are less compacted and
have different marks on their histones than silent genes

e Realissue: in a differentiated cell, is all of the genome equally
accessible to every transcription factor?

— access differences based on “inertia” due to cooperativity?
— access differences based on developmental history of the cell?

— If not, then how are these differences caused and how reversible are
they?



Distinguishing genomic regions that are/are not “in play”:
Two broad kinds of “epigenetic marks”

e Covalent (but reversible) methylation of DNA sequence
itself on CpG dinucleotides

e Covalent (but reversible) post-translational modification of
histone protein tails in nucleosomes enclosed by particular
DNA sequence

— Methylation of lysines
— Acetylation of lysines

These have a strong correlation with different regulatory
activity states of the local DNA sequences

However, all these marks can be removed as well as added



A special epigenetic modification:

CpG methylation of DNA
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Figure 7-79 Molecular Biology of the Cell (© Garland Science 2008)
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Effects of CpG methylation on gene regulation

e If a TF normally binds to a site with a 5’-CG-3’
dinucleotide in it, methylation can block it from
recognizing the site

 DNA with methylated CpG’s can be preferentially
bundled into closed chromatin

* CpG methylation can block CTCF binding near a gene,
causing the gene to end up in the wrong loop &
under influence of the wrong regulatory elements



Once established, CpG methylation can be
maintained over multiple cell generations by
default, without additional regulatory input
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Figure 7-80 Molecular Biology of the Cell (© Garland Science 2008)



DNA methylation can
occur as a result of
transcriptional silence,
not as a cause of it

Methyltransferase
enzymes (Dnmt) that
initiate methylation are
recruited to genes that
are already repressed

P. A. Jones, Nat Rev Genet, July 2012
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Still, DNA methylation (like histone modification)
is reversible in a regulated way

Passive demethylation
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Two broad kinds of “epigenetic marks”

e Covalent (but reversible) post-translational modification of
histone protein tails in nucleosomes enclosed by particular
DNA sequence

— Methylation of lysines
— Acetylation of lysines

e Covalent (but reversible) methylation of DNA sequence
itself on CpG dinucleotides

These have a strong correlation with different regulatory
activity states of the local DNA sequences

However, all these marks can be removed as well as added
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A short “code” phrasebook: common H3 marks

modification state “meaning”
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MODIFIED FROM Figure 4-44b Molecular Biology of the Cell (© Garland Science 2008)



Activated (K4) or
repressed (K9,
K27)

Poised (K4)
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Some of the
marks found on
histones in “silent
chromatin”
provide docking
sites for
chromatin-
condensing
factors
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Once initiated, some ‘\
modifications, ) ) ) E )
especially “repressive” “reader-writer” complex|

ones, can propagate
themselves away from
the initiating site ATP-dependent o

chromatin remodeling

complex

through a recruitment- aop.
relay mechanism ~

via recruited protein
complexes that act as
“readers” (binding the
marked histones) and
“writers” (adding same marks
to neighboring ones)... But
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not forever CHROMATIN CONDENSATION

Figure 4-46a Molecular Biology of the Cell (© Garland Science 2008)



Ways to identify the DNA interacting with a
specific protein or modified protein form, across

a large number of sites
 Chromatin immune precipitation

— Uses antibody to find an unknown DNA based on complex
with known factor

— Question: how do you sample all the DNAs you get?

Depends on what you are looking for:

— Single region may be detected by probing (but what size will
it be? After restriction digest & gel electrophoresis?)

— Array methods: see where your enriched DNA binds to array
of probes to regions of known genomic sequence (ChlP-chip)

— Direct sequencing methods (ChlP-seq)
— Can display results vs. whole genome browser, many tracks



Figure out meaning of marks by global correlation with

known promoters, RNA polymerase, and coactivators

Heintzman et al (2007): early analysis by “ChIP-chip”

Ex post facto correlation of sequences retrieved by
one antibody with sequences retrieved by another

Correlation with known genome annotation

Correlation with measured RNA polymerase II,
binding of important coactivator proteins like p300
(to be described much more next lecture)
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Changes in
“permissive” histone
marks like H3K4me2 at
sites of changing TF
binding can show sites
where the TF plays an

important role:

Developmentally dynamic
regulation of Ffar2 by PU.1

binding  specific PU.1 inhibitor

effect

developmental
expression

(Champhekar et al., 2015 Genes Dev)
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Epigenetic marks “work” as predictors because they are
results of early TF action, which recruit histone modifying
enzymes... then they facilitate activity by later-arriving TFs

Transcription factors can recruit

Amount of twi MLL — histone H3K4 methyl
modifier transferases

recruited

depends on TF UFR

binding and e Transcription factors can recruit
orevious CBP or (E)P300 — histone H3K27

modification
state

(Holmqvist...Manner-

vik, PLOS Genet
2012, 8: e1002769)

acetyl transferases

Transcription factors can recruit
Gen5 (Kat2a) histone H3K9 or K14
acetyl transferases

Transcription factors can recruit
Utx or Jmjd3 histone H3K27
demethylases: remove repression



A stepwise interaction of
transcription factors with
chromatin can open &
activate cis-reg elements

CLOSED CHROMATIN
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