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Basic outline of DNA polymerization: like RNA
polymerization except with dNTP subunits
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New phosphodiester bond is “paid for” by liberating PP;...
which is then hydrolyzed to 2 P;, making reaction
energetically favorable




Genomic DNA
replication is semi-
conservative... one
parental strand
stays in replicated
duplex of each
daughter dsDNA

(in bacteria and
eukaryotes, but not in all
viruses)

Chemically identical
but isotopically distinct
DNA molecules can be

separated by
density...
HH, HL, and LL all
distinct
on CsClI density
gradients

Predicted results
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Figure 4-29a
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Equilibrium CsCl
density gradient
centrifugation
allows individual
DNA molecules to
sediment/float to
their own densities
In the heavy salt
gradient

Only a duplex of one
“all-light” strand and
one “all heavy” strand
will band tightly at
iIntermediate density

Parental

Light N DNA
Hybrid 14N15N DNA

Heavy 15N DNA

Transfer to 14N

(a)

(c)
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The Meselson- seneration
Stahl experiment 0.: (.
(done here at o7 N
Caltech) > 1.0
proved basic 1.1 =
nature of DNA T L.
replication .19 h—
HH + light nucleotides - all HL, 2.5 —
then HL + light nucleotides - HL + LL, 3.0 N
etc.
4.1 :
e = i
mixed

Actual results
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DNA synthesis is extremely high fidelity...
one error per 10° vs. one error per 10* for RNA
transcription and RNA-dependent viral RNA synthesis

Table 5-1 The Three Steps That Give Rise to High-Fidelity DNA Synthesis

The third step, strand-directed mismatch repair, is described later in this chapter.

Table 5-1 Molecular Biology of the Cell (© Garland Science 2008)



DNA polymerase forms a “hand” that clasps
perfect duplex tightly before adding new dNTP

(a) Pol |, open form (b) Pol |, closed form
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(a) Correct base pairs (b) Incorrect base pairs
Active site shape in closed form
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Within the polymerase, 3’25’ exonuclease site
is there just behind the point of new dNTP
addition to undo errors

Growing
strand

Template
Exo _~  strand

Figure 4-34
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company




unpaired 3'-OH end of primer blocks
further elongation of primer strand by
DNA polymerase
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3’-to-5’ exonuclease activity attached
- oH | to DNA polymerase chews back to
c create a base-paired 3’-OH end on
the primer strand
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Figure 5-8 (part 2 of 2) Molecular Biology of the Cell (© Garland Science 2008)

Exonuclease
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unpaired

polymer from
the 3’ end back
to the last fully
base-paired
region



primer strand
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Defining origins of DNA replication:
All DNA synthesis starts from primers... and DNA
replication begins with synthesis of RNA primers
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Figure 5-11 Molecular Biology of the Cell (© Garland Science 2008)



DNA replication
from origins starts
bidirectionally
from RNA primers
that are locally
synthesized “

demand”:

note distinction
between leading
and lagging
strands

replication origin
1
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Bacterial chromosome: circular, one origin
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Figure 5-6 Molecular Biology of the Cell (© Garland Science 2008)
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Figure 4-32
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company

Bidirectional
outward
movement of
replication forks
from origin as
extent of
replicated region
expands



Eukaryotic chromosome: linear, multiple origins

© John Wiley & Sons, Inc. All rights reserved. Micrograph courtesy of Joel Huberman.

Replication goes “only” 50 nt/sec... a long cell cycle if you replicated 3 x 10°
bp (haploid genome) from only one origin per each of 23 chromosomes!
... In fact, ~1 origin per 30-250 kb



In situ autoradiography of newly synthesized
eukaryotic DNA also shows bidirectional replication

from origins
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Figure 5-29 Molecular Biology of the Cell (© Garland Science 2008)



(a) Processive synthesis
B clamp Polymerase
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Problem of the lagging strand: how do you prime

replication in opposite direction fsrrom the fork?

, Parental DNA duplex
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Direction of fork
movement

Leading strand
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Figure 4-30
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company



Individual “Okazaki fragments” are individually primed

with their own RNA primers 5
g7
— Point of joining
N— Lagging strand
QR Okazaki fragment
, Parental DNA duplex Short RNA primer
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Leading strand
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Figure 4-30
Molecular Cell Biology, Sixth Edition
© 2008 W.H.Freeman and Company



Creation of a
continuous duplex
from Okazaki
fragments requires
5> 3’ “editing out”
of the RNA primers
by a separate DNA
polymerase, once
strands collide, and
nick sealing by ligase

5[

Leading strand T, 30

Lagging strand
€) Primer synthesis
by primase

(2 Elongation by
DNA polymerasellll

€ Primer removal and
gap filling by DNA
polymerasel

@) strand sealed
by DNA ligase

© John Wiley & Sons, Inc. All rights reserved.



The DNA ligase reaction can use ATP to seal
nicks in the DNA

STEP 1 \'ww!m!ﬁ!“m" seezy M N UNE
e
used released
“Nick” = all base pairs are present, but one phosphodiester bond is

missing
Eligible nick: the nick leaves a 5’-phosphate one one side and a 3'-OH on
the other

ATP hydrolysis “activates” the 5’-OP0O,? at the break by AMP addition
and creates favorable leaving group for 3'-OH attack

Figure 5-13 Molecular Biology of the Cell (© Garland Science 2008)



How can you get the DNA

double helix unwound for Point of
copying at all?? Why does attachment
the DNA not twist into knots? of DNA

Replication machinery

Reprinted with permission from J. C. Wang, Nature Reviews Mol. Cell Biol. 3:434, 2002; © Copyright 2002, by Macmillan Magazines Limited.
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Figure 5-14 Molecular Biology of the Cell (© Garland Science 2008)

DNA helicase binds
ssDNA, denatures DNA
“ahead” of it
processively by
hydrolyzing ATP



Diameter of helicase central channel is big
enough only for ssDNA, not dsDNA

(B) (C) “hand over hand” torquing along
Figure 5-15 Molecular Biology of the Cell (© Garland Science 2008) DNA by SiX blade-like “handS"



Biochemical assay for helicase activity: release of
ssDNA probe from larger duplex
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Different helicases process along DNA from 5’23’ or from 3’ = 5’...
Helicase on lagging strand slides 5’23’ to pry open replication fork



How you can measure the direction that a
helicase goes along the DNA to unwind duplex
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Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Key fact: in vitro, without replication loading complex, helicases can only
start on ssDNA...

so tell which direction it went from a gap, by making ssDNA “loading
region” internal with asymmetrical duplexes around it, then adding helicase



Single-stranded DNA opened up by helicase
needs to be protected from self-hybridization

DNA polymerase

single-stranded region
~._ of DNA template

with short regions

of base-paired “hairpins”
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monomers ; -
v

cooperative protein binding straightens region of chain

Figure 5-16 Molecular Biology of the Cell (© Garland Science 2008)
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Processivity is crucial
to prevent DNA
synthesis from gk L

becoming unbalanced

or aborted

DNA polymerase
action is kept
“processive” along
continuous ssDNA o irariEs

stretches by mounting ,_._
on a “sliding clamp” .

clamped polymerase

Figure 5-18c Molecular Biology of the Cell (© Garland Science 2008)



This is also called the “trombone model”:
first proposed by Bruce Alberts

leading- newly

strand synthesized
templa\te | strand DNA polymerase on
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Figure 5-19a Molecular Biology of the Cell (© Garland Science 2008)



How can you overcome :
o INA Point of
orsional stress as. IS attachment
denatured and replicated?? of DNA

Replication machinery

Reprinted with permission from J. C. Wang, Nature Reviews Mol. Cell Biol. 3:434, 2002; © Copyright 2002, by Macmillan Magazines Limited.



2L o The price of
e denaturation is also
a DNA twist
. relaxation enzyme:
topoisomerase

template J lagging-stran
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\: Quick single-strand nicking
' lets DNA spin to let out
stress, then reconnection
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Figure 5-21 Molecular Biology of the Cell (© Garland Science 2008)
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Topoisomerases also
exist that make brief
dsDNA breaks to
untwist daughter
circular DNAs after
replication

“type Il
topoisomerases”



Important for later: eukaryotic DNA is packaged with
histones, and new histones are quickly loaded on new DNA

| NAP1 loading H2A-H2B dimer
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CAF1 loading
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Figure 5-32 Molecular Biology of the Cell 6e (© Garland Science 2015)
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