Short- and Long-Range Neuronal Synchronization of the Slow (<1 Hz) Cortical Oscillation

F. AMZICA AND M. STERIADE
Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec G1K 7P4, Canada

SUMMARY AND CONCLUSIONS

1. Multisite, extra- and intracellular recordings were carried out in cats under ketamine and xylazine anesthesia to assess the degree of synchrony and time relations among cellular activities in various neocortical fields during a slow (<1 Hz) oscillation consisting of long-lasting depolarizing and hyperpolarizing phases.

2. Recordings were performed from visual areas 17, 18, 19, and 21, association suprasylvian areas 5 and 7, motor pericruciate areas 4 and 6, as well as some related thalamic territories, such as the lateral geniculate (LG), perigeniculate (PG), and rostral intralaminar nuclei. We used spike analyses (auto- and cross-correlograms) to reveal rhythmicities, time relations and coherence properties, analyses of field potentials recorded through the same microelectrodes as used for unit discharges (auto- and cross-correlation functions and their spectral equivalents), and spike-triggered averages. The results are based on 194 groups of neurons with a total of 591 neurons. Seventeen groups included intracellular recordings of cortical neurons with membrane potentials more negative than -60 mV and overshooting action potentials.

3. The most obvious and frequent signs of neuronal synchrony were found within and between association areas 5 and 7 and 18/19 and 21. Closely located cells or neuronal pools were also “closer” in time. The shortest mean time lag was found between cells within adjacent foci (1-2 mm) of areas 5 and 7 and was 12 ± 11.2 (SE) ms, with more caudal neurons preceding the rostral ones in 70% of cases. In visual cortical fields, the time lag between areas 18/19 and 21 neurons was 27.6 ± 36 ms, between areas 17 and 21 was 36.2 ± 47.8 ms, and between areas 18/19 and 17 was 40 ± 73 ms. In the majority of cases, neuronal firing in area 21 preceded that in areas 18/19. The longest time lags were found in distant recordings from visual and motor areas, with a mean of 124 ± 86.8 ms, although in some cell groups the time intervals between neuronal firing in areas 18/19 or 21 and areas 4 or 6 were as short as ~20 ms.

4. Similar time relations were found in those instances in which the unit firing of the same cortical neuron was used as reference in spike triggered averages and was related to the field potential recorded from an adjacent area before impaling a neuron and, thereafter, to membrane potential fluctuations after impaling the cell.

5. The LG reticular thalamic neurons reflected the slow cortical oscillation in 75% of multisite recordings. The coherence between the slow rhythm of visual cortical cells and LG thalamocortical neurons was observed in 58% of cases. One-third of LG neurons displayed the intrinsically generated, clocklike delta oscillation that occurred synchronously in simultaneously recorded LG cells.

6. We discuss several possible scenarios implicated in the genesis of the slow cortical oscillation. Although relatively short time lags may be ascribed to direct and oligo- or multisynaptic connections between adjacent or distantly located cortical areas, long time lags (>50 ms) presumably involve inhibition-rebound sequences within the cortex or corticothalamiccortical loops. In view of recent data indicating that the blockage of the slow oscillation during activated states could be achieved through a selective suppression of long-lasting inhibitory phases, we suggest that the major factors underlying short or long range neuronal synchrony during the slow oscillation are prolonged hyperpolarizations in cortical neuronal assemblies.

INTRODUCTION

Recently, we described a slow (<1 Hz) oscillation of intracellularly recorded neocortical and thalamic neurons and proposed that this oscillation is the emergent activity of a synchronized network (Steriade et al. 1993a,b,c,d). The concepts of synchrony and of an antinomy between synchronized and desynchronized electroencephalographic (EEG) patterns were widely used over the past six decades to distinguish the high-amplitude slow waves during sleep from the low-amplitude fast waves during wakefulness. Probably the first to suggest that the amplitude of EEG waves is related to the degree of neuronal synchrony were Adrian and Matthews (1934). However, when inferring the process of synchrony among neurons, one has to rely on simultaneous recordings from multiple sites.

Most studies on cortical synchrony dealt with information processing in the visual (see Singer 1993, for a review), auditory (Dickson and Gerstein 1974; Frostig et al. 1983), and sensorimotor (Murthy and Fetz 1992; Smith and Fetz 1989) cortices. The spontaneous activity of cortical neurons during different behavioral states was less often subject to correlation analysis (but see Noda and Adey 1970). The present paper demonstrates, on the basis of multisite, extra- and intracellular recordings from neocortical suprasylvian association areas 5 and 7, pericruciate motor areas 4 and 6, and visual areas 17, 18, 19, and 21, that the slow (<1 Hz) oscillation is the emergent activity of a synchronized cortical network. Some of these results have been presented in abstract form (Amzica and Steriade 1993).

METHODS

Animal preparation

The experiments were conducted on 28 cats under ketamine (10-15 mg/kg) and xylazine (2-2.5 mg/kg) anesthesia. Additional doses of anesthetic were injected at the first sign of diminished amplitude and increased frequency of the EEG, to maintain a constant pattern of synchronized EEG throughout the experiment. To further eliminate painful stimuli, all incised and pressure points were infiltrated with lidocaine. All animals were paralyzed with gallamine triethiodide and artificially ventilated with control of the end tidal CO₂ concentration at 3.7 ± 0.2% (mean ± SE). Rectal
temperature (37–38°C) and heartbeat were continuously monitored. The stability of recordings was ensured by bilateral pneumothorax, cisternal drainage, hip suspension, and by filling the hole made in the calvarium with 4% agar dissolved in saline.

The gross electrical brain activity (EEG) was recorded through stainless steel screws placed into the bone in the vicinity of the single-cell recording site or contralaterally. Coaxial electrodes were inserted closely to the site of cellular recording, with the ring at the cortical surface and the tip at a depth of ~0.6 mm (ECoG). Besides, electrothalamogram (EThG) was recorded through the coaxial electrodes inserted in appropriate thalamic nuclei.

At the end of the experiments, the animals were deeply anesthetized with a lethal dose of pentobarbital sodium (55 mg/kg).

Recording

Intracellular recordings were done with glass micropipettes filled with a 3-M solution of K acetate (impedance: 25–35 MΩ), whereas extracellular recordings were performed with coarser pipettes (5–10 MΩ) and/or with tungsten microelectrodes (impedance: 1–10 MΩ). The electrodes were held and manipulated by three micromanipulators. Up to four distinct electrodes, at 1.5-mm distance, were mounted on one microdrive. This technique enabled simultaneous recording from up to six distinct sites. A high-impedance amplifier with active bridge circuitry was used for intracellular recording and current injection. Other a.c. amplifiers were used for extracellular recordings. All channels were digitally recorded on tape (bandpass d.c. to 9 kHz) and fed to a computer for off-line analysis at a sampling rate of 20 kHz.

Data processing

We focused on spike analyses to disclose firing properties (interspike interval histograms), rhythmicities and their strength (autocorrelograms), and time relations together with coherence properties (cross-correlograms). The principles of spike analyses are described elsewhere (Aertsen and Gerstein 1985; Gerstein et al. 1978; Moore et al. 1966). Extracellular recordings were low-pass filtered at 100 Hz to prevent triggering from false events due to ample slow waves. Because the membrane potential (V_m) of cortical neurons recorded in vivo is around −70 mV (Nunez et al. 1993; Steriade et al. 1993c), the action potentials are not faithful translators of membrane excitatory-inhibitory slow oscillations. Central peaks around zero time lag in cross-correlograms may result from either common excitation or common inhibition (Fetz et al. 1991; Krüger 1983). Besides, a cross-correlogram results from an averaging procedure, and this might mask a dynamic shift in temporal relation between two units (Steriade and Amzica 1994).

Thus, because of the relative lack of precision of spike analyses, we complemented the data processing by analyses of focal (field) potentials and/or cortical EEG waves treated as time series. The focal waves were obtained by filtering the extracellular recording between d.c. and 30 Hz. The occurrence of action potentials during focal activity was considered as a condition for the focal waves to faithfully reflect membrane potential variations of surrounding cell populations. Autocorrelation, cross-correlation functions, and their spectral equivalents (fast Fourier transforms, FFTs) were computed according to the mathematical relations described by Rendat and Piersol (1980). In this paper auto- and cross-correlograms will refer to spike analyses, whereas auto- and cross-correlations will refer to field potential analyses.

The largest peak of an FFT or the count of cycles in an autocorrelation yielded the main frequency of the oscillation. Afterward, the strength of the oscillation was assessed by the following procedure: secondary peaks in autocorrelograms were counted, and a mark ranging from 0 to 4 was given. If no secondary peak followed the central one, the cell was termed arrhythmic and received 0. If at least four clear peaks followed the central one, the activity was considered as highly rhythmic and marked with 4. For this and intermediate weightings, the envelope of the decaying peaks was also analyzed to determine whether the oscillation was that of a sine wave (mark −4), of a wideband random noise (mark −1), or of intermediate values.

Cross-correlation strength was measured on the same scale (0–4) but as a function of the amplitude of the central peak. This was especially easy for wave analyses because of the autoscaling property of cross-correlations (all correlations between 2 waves range between −1 and +1, regardless of the amplitudes of the respective waves). A supplementary scaling procedure was necessary for spike analyses. A “flat” cross-correlation got mark 0, a central peak <0.25 got 1, between 0.25 and 0.5 the mark was 2, from 0.5 to 0.75 it was 3, and >0.75 the mark was 4.

The meaning of the central peak of a cross-correlation is that of a maximum likelihood between the two waves. This is why the time lag between two waves was taken at the abscissa of the maximum of the central peak. Correlation analyses were done on long enough time periods (at least 20 times the slowest time period detectable after d.c. elimination, i.e., minimum 60 s of data was acquired).

Whenever at least one of the neurons recorded simultaneously was rhythmic, we performed spike-triggered averages (STA), i.e., we detected the first spike from the discharge sequence that begins an oscillatory cycle, and we extracted (synchronized on that spike) equal sweeps of field potentials, EEG waves, or intracellular waves recorded simultaneously from other neurons. The averaged sweeps produced the STA, which provided the statistical evidence for interactions between the discharge in the reference neuron and the membrane potential variations of the target cell.

RESULTS

Data base

Our results are based on 194 groups of neurons with a total of 591 cells (in average, 3 cells/group, range 2–8/group). Of these, 66 groups (213 cells) were recorded at short distances (1–2 mm between neighboring electrodes) within areas 5 and 7 of the suprasylvian gyrus, 60 groups (151 cells) were recorded in different visual areas (17, 18, 19, and 21), 41 groups (137 cells) were recorded at distant sites (pericruciate areas 4 and 6, areas 5 and 7, and visual areas 18 and 21), and 27 groups (90 cells) consisted of simultaneously recorded cortical neurons from previously mentioned areas and reticular thalamic or thalamocortical neurons from related thalamic nuclei. Seventeen groups included an intracellular recording with V_m more negative than −60 mV and overshooting action potentials. The definition of cortical areas was based on cytoarchitectural studies of cat neocortex (Gurwitsch and Chatschaturian 1928; Hassler and Muhs-Clement 1964).

General oscillatory properties

The oscillatory features of the spontaneous activity were evaluated according to spike discharges and focal (field) potentials. The majority of cortical neurons (73%) were rhythmic (marks 1–4) in the frequency range (<1 Hz) of the slow oscillation (Steriade et al. 1993c). Oscillations in the delta range (1–4 Hz) were present in 8% of the recorded
TABLE 1. Oscillatory properties

<table>
<thead>
<tr>
<th>Recording site</th>
<th>n</th>
<th>Slow (<1 Hz)</th>
<th>Delta (1-4 Hz)</th>
<th>Arythmic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas 5 and 7</td>
<td>169</td>
<td>S 76, F 97</td>
<td>S 6, F 1.2</td>
<td>S 18, F 1.8</td>
</tr>
<tr>
<td>Areas 4 and 6</td>
<td>30</td>
<td>S 67, F 73</td>
<td>S 15, F 17</td>
<td>S 18, F 10</td>
</tr>
<tr>
<td>Area 17, 18, 19, and 21</td>
<td>142</td>
<td>S 71, F 88</td>
<td>S 10, F 5</td>
<td>S 19, F 17</td>
</tr>
<tr>
<td>Reticular thalamus</td>
<td>31</td>
<td>S 75, F 89</td>
<td>S 10, F 6</td>
<td>S 15, F 5</td>
</tr>
<tr>
<td>Dorsal thalamus</td>
<td>25</td>
<td>S 57, F 59</td>
<td>S 33, F 34</td>
<td>S 10, F 7</td>
</tr>
</tbody>
</table>

n is number of cells. S. spikes; F. field.

cells, whereas the remaining 19% of cells were arhythmic (mark 0). Cortical neurons, even when oscillating in the delta frequency range, showed generally an irregular oscillation, often modulated by the slow (<1 Hz) oscillation, and therefore the delta range is poorly represented in spectral analyses or it is overwhelmed by the lower spectrum.

The mean frequency of the oscillation in a representative population of 341 cortical cells was 0.75 ± 0.63 Hz for spike analysis and 0.81 ± 0.46 Hz for field analysis. Table 1 depicts the repartition of the oscillatory activities at different sites according to frequency bands. It appears that, in the slow band, more sites could be declared oscillatory according to their field than to their spike discharge, as would be expected from the rather whimsical discharge pattern during the depolarizing phase of the slow oscillation (see also below). The delta oscillation was present in fewer cortical cells, and it was less frequently disclosed by wave analysis. It was, however, present in ~33% of thalamocortical neurons. The arhythmic cells displayed slow oscillatory activity during transient epochs but did not meet the above-mentioned criteria of rhythmicity (see METHODS). The mean ± SE marks for slowly oscillating cortical neurons were 2.2 ± 0.9 for spike analysis and 2.8 ± 1.1 for field analysis. This indicates that the synchronous feature of the slow oscillation is better reflected in the focal waves.

Synchrony was not necessarily associated with oscillation, but oscillating cells were more likely to be synchronized than nonoscillating ones. From our sample of 194 groups of multisite recordings, in 54 groups (28%) all cells were very rhythmic (oscillatory mark 4), in 99 groups (51%) the oscillatory mark ranged from 1 to 3, and in the remaining 41 groups (21%) most of the cells were arhythmic. The 1st category of recordings had a mean correlation mark, as described in METHODS, of 3.35 ± 0.75, the 2nd category had 2.18 ± 1.33, whereas the 3rd had 0.85 ± 1.1. This result suggests that higher states of synchrony are achieved during oscillatory periods.

Synchrony in closely located cells (areas 5 and 7)

The transition from a short EEG-desynchronized epoch toward a synchronized EEG state, associated with changing patterns of neural discharges recorded from areas 5a and 5b, is displayed in Fig. 1. One impaled neuron and the adjacent focal waves in area 5a were recorded together with extracellular discharges and focal waves from area 5b. During the initial period, when field potentials had low amplitudes, the cells were silent or discharged randomly. As soon as the focal waves became more ample and slower, clear spike trains separated by periods of silenced firing occurred in the respective channels. The onset of the depolarizing phase of the oscillation seen in the intracellular trace corresponded to sharp depth-negative focal waves. The hyperpolarized phase of the oscillation coincided with depth-positive field potentials.

To assess synchronization, Fig. 2 displays auto- and cross-correlograms from the spontaneous activity of five neurons, simultaneously recorded with four microelectrodes in the suprasylvian gyrus at the sites indicated in the brain figurine. The distance between neighboring electrodes was 1.5 mm. The five autocorrelograms show that even if the degree of rhythmicity varied from one neuron to the other, all cells displayed oscillations within the same frequency range (0.7–0.8 Hz). In the bottom row of histograms, 4 out of the 10 possible cross-correlograms between the neurons are depicted. All show central peaks. In some cases (e.g., cross-correlogram between cells 2 and 4b) it was possible to disclose a time precession between the two neurons (see expanded histogram). In the case of neurons discharging single spikes, a main peak with an equal distribution around the zero line was interpreted as due to a common excitatory input (Engel et al. 1992; Fetz et al. 1991). The spectral relation between the oscillations of the five neurons is also contained in the cross-correlograms. Symmetrical secondary peaks at ~1.3 s reflect a coherent oscillation at 0.75 Hz.

Time relations are, however, hardly revealed by cross-correlograms between spikes, mainly because of variability of spike occurrence during the depolarizing phase of the slow oscillation (see intracellular trace in Fig. 1). Besides, the latency of a central peak in a cross-correlogram depends on the binwidth. Figure 1 also showed that there is a close relation between the onset of the depolarizing or hyperpolarizing phases of the oscillation and the extracellularly recorded field potentials. This raises the critical issue of the relation between the activity of one cell and the surrounding ones.

While recording a neuron (e.g., the area 7 cell in Fig. 3A), we were able to pick up with a different microelectrode the field potential in the adjacent area 5 (Fig. 3A), just before impaling a neuron in the track within area 5 (Fig. 3B). In this way, keeping the same reference (cell in area 7) before and after impaling area 5 cell, during the same EEG state, we obtained evidence about the relation of the impaled cell with its neighbors. During the initial period, before the impalement, the bursting area 7 cell oscillated synchronously with the focal waves from area 5 at a frequency of ~0.7 Hz. After impalement, the synchrony between extracellular spikes in area 7 and intracellular events in area 5 was preserved. The STAs in Fig. 3C were obtained by using as reference the first spike of an oscillatory cycle in area 7 neuron and show the tight synchrony between waves of area 5 (before and after impalement), area 7, and EEG. Here again the depolarizing events in the intracellular trac correspond to depth-negative field potentials of area 5 and 7 and to surface-positive deflections of EEG. Comparing the intracellular STA with the focal STA before impalement shows that the duration of the excitatory postsynaptic potential (EPSP) is shorter than that of the negative field potential.
FIG. 1. Relations between focal (field) potentials, extracellular discharges, and intracellular activity in closely located cortical neurons. Simultaneous recordings from 3 foci of anterior suprasylvian areas 5a and 5b (for recording sites see brain scheme in Fig. 5 of the present paper as well as Fig. 37 in Hassler and Muhs-Clement (1964)). The appearance of high-amplitude, rhythmic field potentials was accompanied by increased incidence of hyperpolarizations and rhythmic spike trains. In this and following figures, the polarity of field potentials and electroencephalographic (EEG) recordings is the same for intracellular recordings (positivity up).

suggesting that several depolarizing waves from different units may build up the focal negativity.

Therefore the correlational analysis of field potentials may be used as a complementary tool to assess neuronal synchrony. The peak of the cross-correlation provides the time relation between the activities of two foci. In the case depicted in Fig. 4A, each of two microelectrodes, at 1 mm apart within area 5, recorded two neurons. All four cells were rhythmic at 0.6 Hz (2 autocorrelograms, 3 cross-correlograms, and 1 cross-correlation between field potentials within sites 1 and 2 are shown in Fig. 4A). The cross-correlogram between cells 1a and 2a shows a central peak, probably due to a common input and/or a synchronized input arising largely from different sets of synchronized cells. Similar relations resulted from cells 1a-2b and 2a-2b (not shown). The two cross-correlograms between cells 1a-1b and 1b-2a had asymmetric central peaks with short time lags, in the order of 5–20 ms. The cross-correlation between the focal waves of the two foci displayed a well-defined peak.

The mean time lag between closely located cells (1–2 mm) in areas 5 and 7 was 12 ± 11.2 ms (range 0–140 ms) in a representative sample of cell groups (n = 70). In 70% of these cases (n = 49), the caudally located neurons preceded the rostral ones, and in 14% (n = 10) the contrary happened, whereas in the remaining 11 cases (16%) presumably common input patterns were observed (Fig. 4B). The mean correlation mark was 3.47 ± 0.72. The mean coherence mark was 2.02 ± 1.66.

In a few cases (n = 7), among simultaneous extracellular recordings, one neuron discharged high-frequency (>600 Hz) bursts of thin spikes (Fig. 5, inset from area 5b cell). These cells were tentatively regarded as local-circuit interneurons (McCormick et al. 1985; Steriade 1978). The spontaneous activity of the three neurons from areas 5a, 5b, and 7 showed a synchronous oscillatory pattern at ~0.5 Hz (Fig. 5). As in the great majority of our cases, this group of cells discharged during the depth-negative field potentials. However, the presumed interneuron discharged sometimes a first spike burst (a in rough data) at the onset of the depth-negative field potential; a second spike-burst (b) followed, by ~400 ms, falling on the rising slope of the depth-negative field potential. The two series of STAs (panel of averages, AVG in Fig. 5), calculated with the first spike in the interneuronal burst a (left) and b (right), demonstrate that the field potentials from areas 5b and 7 remained synchronized regardless of the firing of the fast-spiking cell. Note also that the shape of the STAs remained unchanged by shifting the reference from burst a to burst b. The cross-correlograms (Fig. 5, bottom) between the cell from area 5b and the other two neurons show high central peaks, equally distributed around 0 ms lag.

Figure 6 shows simultaneous recordings from areas 5 and 7, accompanied by thalamic neurons from a related nucleus. Generally (58% of cases), thalamocortical and cortical cells oscillated synchronously at the slow frequency. In the group depicted in Fig. 6, the intracellularly recorded cell in area 7,
the extracellularly recorded cell in area 5, and one of the centrolateral (CL) cells (small spike) discharged synchronously (see also B, were 7 sweeps were aligned on the depth-negative peak of the EEG wave and superimposed). The other CL neuron (large spike) fired ~220 ms later. The aspect of the thalamic field potentials (B, bottom trace) suggests that the recording electrode was juxtacellular to large-spike neuron, because spikes were associated with a focal positive deflection (probably the extracellular reflection of low-threshold spikes), whereas the discharges of small spike cell were associated with a focal negativity. One of the sweeps from the thalamic recording are expanded in the inset (Fig. 6B) to show high-frequency bursts (250 Hz) in the two neurons.

Synchrony among cortical neurons from different areas of the visual system.

The next series of data deal with multisite recordings from different cortical areas (17, 18, 19, and 21) and related thalamic nuclei (LG, lateral geniculate; PG, perigeniculate) of the visual system.

Simultaneous recordings in two association areas (18/19 and 21) of the visual cortex showed an average time lag of 27.6 ± 36 ms (range 5–160 ms) and a correlation mark of 2.9 (n = 31). In 70% of the cases, firing in area 21 preceded that in areas 18/19.

Figure 7A depicts a couple of such neurons, where the cell in area 21 is shown before impaling (Fig. 7A1) together with the field potentials, and after impaling (intracellular record in Fig. 7A2). The underlined sequence is expanded above to disclose the bursting pattern of the cell. Discharges in both recordings displayed a synchronous oscillation at ~0.5 Hz. The other panel (Fig. 7B) shows that even though the distance between the recording sites was greater than that in areas 5 and 7 (see above), the membrane fluctuations of area 21 cell was correlated with the discharges of the area 18 neuron. The fast excitatory events crowning the
FIG. 3. Patterns of synchrony between extracellular discharges in area 7 and field potentials as well as intracellular activity in area 5. A, top trace: recording of focal waves through the same microelectrode that eventually impaled the neuron showed in top trace in B. The extracellularly recorded area 7 neuron was a bursting cell (see inset indicated by arrow in B; intracellular action potentials truncated). C: 1st action potential in the 1st burst of area 7 cell, coincident with the beginning of a sharp depth negativity in area 7 (dotted line), was used for spike triggered averages (STAs) showing from top to bottom: the histogram of remaining spikes of area 7 cell (10-ms bins), focal waves in area 5, intracellular potentials (filtered at 30 Hz to eliminate action potentials), focal waves in area 7, and surface EEG.

Depolarizing phase of the slow oscillation in the intracellular recording (see inset in Fig. 7B) occurred as a rule during the discharge of the other neuron, thus reflecting an increased excitation in the network.

The general synchronous oscillatory pattern could be seen throughout the visual cortices, including primary area 17 (Fig. 8). The simultaneous recordings of four neurons in areas 21, 18, and 17 (2 cells a and b) show a coherent oscillation at 0.85 Hz during which all neurons discharged synchronously and in phase with the onset of the focal depth negativity or surface positivity (see EEG area 18). Combined correlograms (black-filled, bottom) and correlations (above black-filled areas) are displayed to show the same oscillatory (AUTO) and time relation (CROSS) aspect of spike discharges and field potentials (Fig. 8). The peaks of the expanded three cross-correlations be
between focal waves disclosed time lags of 10–15 ms (not shown).

This pattern of synchrony was found in 58% of cell groups including an area 17 recording (n = 26). The mean time lag separating discharges in areas 21 and 17 was 36.25 ± 47.8 ms (range 0–115 ms), whereas the time lag between discharges in areas 18 and 17 was 40 ± 73 ms (range 0–170 ms). In 19% of the cases, area 17 neurons oscillated at delta frequencies (Fig. 9), and in 23% of the cases they were arrhythmic and were therefore not synchronous with
slowly oscillating cells in association areas. The neurons in areas 21 and 18 illustrated in Fig. 9 oscillated, as shown by their respective autocorrelograms and by the FFTs of simultaneously recorded field potentials, at a frequency of \(\sim 0.65\) Hz (other components \(< 1\) Hz are also disclosed by the FFTs). In area 17, another component appeared at 2.7 Hz (see arrow). This frequency also appears in the autocorrelogram of spike discharges. Although neurons in areas 21 and 18 kept the same relation pattern (CROSS 21–18) as described above, no synchrony was evident between cells in areas 21 and 17. The cross-correlations between areas 21–17 and 18–17 (above cross-correlograms) suggest a higher degree of synchrony than the respective cross-correlograms (Fig. 9).

The PG thalamic nucleus reflected the slow cortical oscillation in 75% \((n = 23)\) of the multisite recordings. In Fig. 10, cross-correlograms between cortical and PG neurons show a synchronized oscillation at 0.7 Hz.

The coherence of the slow rhythm \((< 1\) Hz\) in visual cortical and thalamocortical cells from the LG nucleus was observed in 58% \((n = 14)\) of the cases. This was due to either arrhythmic discharges in some cells \((11\%)\) or to rhythmic delta-oscillating thalamocortical units \((31\%)\) of the cases; Fig. 11). In the latter case, the two cortical neurons (from areas 21 and 17) oscillated at \(\sim 0.6\) Hz and were synchronous. No correlation could be disclosed between cortical and the two LG neurons. The latter displayed a clocklike delta oscillation at 2.7 Hz and were highly coherent.

Synchrony in distant recordings

The slow oscillation was found in many distant and functionally different neocortical areas (Steriade et al. 1993c). Our next approach was to record neurons belonging to more distant foci and, at the same time, to different sensory modalities. We kept one or several electrodes in areas 5 and 7 as a control for similar synchrony parameters and placed the other electrode(s) in the visual associational areas 21 and/or 18. Figure 12 shows that, during EEG-synchronized patterns, two neurons in area 21 (one of them recorded intracellu-
larly), two neurons in area 7, and one in area 5 oscillated synchronously at ~0.7 Hz. The onset of the spike trains was reliably preceded by sharp, high-amplitude negative focal waves, and hyperpolarizations in the intracellular trace correspond to silenced firing in the other neurons. As soon as the amplitude of the focal waves diminished and faster events replaced the slow waves, the synchronization was disturbed, and the intracellular neuron lacked the long-lasting hyperpolarizations that shaped the slow oscillation. As an argument for the use of field potentials as a reliable support for synchrony analysis, note the matching of the focal waves of the extracellularly recorded neuron in area 21 with the intracellular membrane potential fluctuations (Fig. 12B, *).

The widest spatial extent of our recordings covered simultaneously the motor and visual cortices (Fig. 13). Coherence was present between distantly located foci. Both spike and field analyses point to longer time lags as compared with those from close recordings (140 ms in Fig. 13B), with a mean of 124 ± 86.8 ms (range 20–260 ms).

DISCUSSION

We demonstrated that neurons recorded from closely or distantly located foci in association, visual, and motor cortical areas tend to discharge synchronously during the slow (<1 Hz) oscillation. To obtain stable recordings from multiple sites, including impalements of cortical cells, the slow rhythm was investigated under ketamine and xylazine anesthesia. To what extent was the rhythmic activity and its synchronization dependent on the properties of the present anesthetics? As to the rhythmic activity, similar slow (<1 Hz) oscillatory patterns were also observed in previous intracellular studies conducted under urethane anesthesia, in undrugged brain stem–transected animals, and at the EEG level in naturally sleeping cats and humans (Steriade et al. 1993c,d). Ketamine administration in urethane-anesthetized animals increases the frequency of slow oscillation, from ~0.3 Hz to ~0.6–0.9 Hz, because of the reduction in the duration of the depolarizing phase of the oscillation (Steriade
et al. 1993c). This phase probably includes components mediated by N-methyl-D-aspartate (NMDA) receptors that are blocked by ketamine (MacDonald et al. 1991; Thomson 1986). Ketamine was administered during the state of waking and proved to significantly increase the amplitude and incidence of slow EEG waves during the state of sleep, thus placing this substance among the most effective pharmacological tools in inducing slow-wave sleep patterns (Feinberg and Campbell 1993). Even if ketamine anesthesia mimicks the electrical activity during slow-wave sleep, the degree of synchronization reported in the present paper probably exceeds that occurring during natural EEG-synchronized sleep. One likely possibility is that this increased synchronization is due to the combined use of xylazine, an α_2 adrenoceptor agonist. Indeed, the effects mediated by α_2 receptors are generally inhibitory and act by increasing a K^+ conductance in a variety of central structures (see Nicoll et al. 1990). The cyclic long lasting hyperpolarizations, which are priming events toward the coherent activity of cortical neurons underlying the synchronization of slow oscillation (Contreras and Steriade 1995; Steriade et al. 1994b), are thought to be due, at least partially, to prolonged Ca^{2+}-
F. AMZICA AND M. STERIADE

Extra-cell area 21

Focal area 21

Extra-cell area 18

Focal area 18

Extra-cell area 17

Focal area 17

EEG area 18

AUTO

area 21

area 18

area 17_a

area 17_b

CROSS

area 21 - area 18

area 18 - area 17_b

area 21 - area 17_b

area 17_a - area 17_b
FIG. 9. Delta oscillation in primary area 17 cell, asynchronous with activities in visual association areas. Simultaneous recordings from areas 17, 18, and 21. Top: 2 cells from areas 21 and 18 oscillating at ~0.6 Hz, whereas area 17 cell displayed a faster rhythm, within the delta frequency range (2-3 Hz; see also fast Fourier transform (FFT) below). Bottom: autocorrelograms from the 3 cells. Insets: FFTs performed from the field potentials recorded through the same microelectrodes. Note autocorrelogram and FFT from area 17; arrow in FFT indicates a peak at 2.7 Hz. Cross-correlograms between the discharges of 3 cells (black-filled) and cross-correlations between field potentials (above).

FIG. 8. Synchrony between activities in primary and association visual cortices. Top: rough data displaying simultaneous recordings from areas 21, 18, and 17 (unit discharges and field potentials; 2 cells, a and b, recorded through the same microelectrode in area 17) as well as the surface EEG from area 18. The rhythmicity of the slow oscillation (~0.85 Hz) is demonstrated by autocorrelograms of spikes (black-filled). Cross-correlograms and cross-correlations show synchrony of the slow oscillation. Note also close time relation between the 2 neurons from area 17 (a and b) in spite of different discharge characteristics.
Synchrony is a relative term. In the case of an oscillation with such a long period (>1 s), we considered two events as synchronous if the time lags were below one order of magnitude of the oscillation period. The mean time lag in cross-correlograms between closely located neurons (1–5 mm apart) in areas 5 and 7 was 12 ms. It was longer (from 27 to 40 ms) among neurons recorded at greater distances (5–10 mm) from different visual cortical areas or from visual and anterior suprasylvian association cortices, but could reach 125 ms when recordings were made from visual and motor cortices (~20–30 mm apart), although, in the latter case, relatively short time lags (~20 ms) were also detected. Thus, our data point to an average increase in time delays between cortical foci as a function of distance.

These time lags were derived from measures obtained by performing both spike and field analyses. In many instances, field potentials reflected the membrane potential fluctuations more faithfully than the extracellular action potentials (see Fig. 12B, *). The value of field potentials in assessing neuronal synchrony was also demonstrated in STAs showing...
similar time relations between the unit firing of the same
cortical neuron when related to the field potential from an
adjacent area and, immediately thereafter, to membrane
fluctuations after impaling the neuron (Fig. 3, A and B).

Although some nonsynaptic factors may be decisive in
the genesis of this generalized slow oscillation (see below),
the consistent and relatively short time lags between different
areas suggest that the intracortical synaptic circuitry is impli-
cated in the propagation of slow oscillatory activity. In the
cat association suprasylvian gyrus, where a major part of
present experiments were conducted, the intrinsic circuitry
probably accounts for >70% of the synapses (Grüner et al.
1974). Other studies, performed on visual and sensorimotor
cortices, used electron microscopic examination of Golgi-
impregnated, retrogradely labeled, or intracellularly stained
neurons, and showed that the sources of local connections
are both stellate and pyramidal-shaped neurons (for reviews,
see Gilbert 1983; Jones 1988; Somogyi and Cowey 1984;
White 1989). The local axonal collaterals of pyramidal cells
form asymmetric synapses with spines of pyramidal and
stellate neurons as well as with dendritic shafts of aspiny or
sparsely spiny stellate cells. The axons of pyramidal neurons
give rise to horizontal projections spanning up to 8 mm in
visual cortex, thus allowing communication between neu-
rons having widely separated receptive fields (Gilbert and
Wiesel 1983; Mason et al. 1991; McGuire et al. 1991; Gilbert
1992). Horizontal projections have also been observed in
other sensory areas (Imig and Reale 1981; Jones et al. 1978;
Winfield et al. 1981). In addition to short- and medium-
range intracortical projections, a series of studies revealed
long-range corticocortical projections linking distant areas
belonging to functionally different sensory and motor modal-
ities (for reviews, see Goldman-Rakic 1988; Reinoso-Suárez
1984).

The above data suggest that, besides the intracolumnar
and close intercolumnar operations mediated by a few syn-
apses, the slow oscillation may propagate through long-range
connections as each cortical area is connected to many other
fields through direct and/or indirect linkages. Relatively
short time lags suggest propagation through oligo- or multi-
synaptic excitatory connections. Long time lags (>50 ms)
probably involve inhibition-rebound sequences in the cortex
or within corticothalamocortical loops. Local inhibitory neu-
rons are activated through feed-forward and feedback path-
ways (Nuñez et al. 1993; Toyama et al. 1969; Winfield et
al. 1981), and, in turn, they project to both pyramidal cells
(Matsubara et al. 1987) and other inhibitory interneurons
(Kisvárday et al. 1993) located in the same or neighboring
columns. Whereas low threshold rebound spikes are ubiqui-
tous in the thalamus (see review by Steriade and Llinás
1988), postinhibitory spike bursts seem to be present in only
~10% of neocortical neurons investigated in vivo (Nuñez et
al. 1993), probably because the low-threshold Ca2+ cur-
cent can be fully expressed in cortical cells at exceedingly
negative membrane potentials, ~100 mV (Sayer et al. 1990).
This explains the scarcity of high-frequency spike bursts in
cortical pyramidal cells during EEG-synchronized sleep
(Evarts 1964; Steriade et al. 1974), as compared with those in
thalamic cells where such bursts are a characteristic fea-
ture of resting sleep (see Steriade et al. 1990). Nonetheless,
the propensity of cortical neurons to discharge at the very
onset of the depolarizing phase, immediately after prolonged
periods of hyperpolarizations, as consistently seen during
the slow oscillation (see Figs. 7 and 8 in Steriade et al.
FIG. 12. Synchronization-desynchronization in distant recordings. Simultaneous recordings from areas 21 (intracellular and extracellular), 7, and 5 (extracellular spikes and field potentials). A: coherent oscillation in all 4 neurons was interrupted during a brief period of desynchronized activity (middle). B: same traces as in A. Oscillations recorded intracellularly better fit with focal waves than with extracellular spikes (asterisk).

1993c (see also area 7 cell in the present Fig. 6A), suggests that postinhibitory rebound events, lacking the stereotypy of thalamic spike bursts and not yet fully understood, are decisive in starting the long-lasting depolarizing phase of the cortical slow oscillation. Besides, the rebound bursts of thalamocortical neurons occurring after the generalized inhibitory period of the slow oscillation, in phase with cortical discharges (Contreras and Steriade 1995) (also the present Fig. 6), may contribute to trigger the depolarizing phase of the oscillation. Thalamocortical afferents have access to cortical local circuits by driving both corticothalamic and aspiny multipolar cells engaged in a recurrent inhibitory circuit. Thus the excitation of aspiny neurons either by thalamocortical or corticothalamic input could cause them to inhibit corticothalamic cells (White and Keller 1987).

The two major types of pyramidal-shaped neurons, regular-spiking and intrinsically bursting cells, as described in vitro (Connors et al. 1982; McCormick et al. 1985) and in vivo (Núñez et al. 1993), display the slow oscillation (Steriade et al. 1993c,d). The same oscillatory behavior was also observed in fast-spiking neurons and morphologically identified aspiny basket cells (Contreras and Steriade 1995). Vir-
FIG. 13. Synchrony in distant recordings. A: 2 extracellular recordings (spikes and field potentials) from areas 4 and 18, together with contralateral EEG from area 4. B: autocorrelograms reveal rhythmic oscillation (~0.9 Hz) between neuronal discharges from areas 4 and 18, and cross-correlogram shows the coherence of the slow oscillation (inset, marked by arrow, shows a time lag of ~0.12–0.18 s between the 2 neurons). C: same analyses, but with focal waves, points to a time lag of 0.14 s between the oscillations in the 2 areas.

...tually all aspiny cortical cells are regarded as GABAergic (Jones and Hendry 1986). Both pyramidal and aspiny local-circuit neurons display a similar phase relation to the EEG slow oscillation (Contreras and Steriade 1995). This accounts for sequences of repetitive inhibitory postsynaptic potentials (IPSPs) occurring in pyramidal neurons at depolarized levels and recurring at the frequency of the slow oscillation (see Fig. 6 in Steriade et al. 1993c). The fact that an overwhelming proportion of cortical cells, including inhibitory cells, discharge during the depolarizing phase of the slow oscillation (see Figs. 1, 3, 5, 7, and 8) suggests that the membrane conductance is significantly increased, thus diminishing the probability that single-axon EPSPs (Thomson et al. 1993; Thomson and West 1993) will elicit action potentials in target cells. Instead, the depolarizing envelope of the slow oscillation consists of compound PSPs triggering action potentials in a random way. This may explain the relative low incidence of short time lags in the present cross-correlograms.

The slow oscillation transcends the cortex and is transferred to the thalamus (Steriade et al. 1993b), striatum (Cowan and Wilson 1994), and upper brain stem core structures (Steriade et al. 1994a). Of all these distant structures, the thalamus is obviously the most likely candidate to influence, by feedback projections to the cortex, the slow oscillation. Whereas a great majority (75%) of PG reticular thalamic neurons reflected the slow cortical oscillation, a smaller percentage (58%) of LG thalamocortical neurons were coherent with slowly oscillating cortical neurons in the present experiments. Instead, a third of LG neurons dis-
played the intrinsically generated, clocklike delta oscillation (1–4 Hz), previously described in vitro (Leresche et al. 1991; McCormick and Pape 1990) and in vivo (Curro Dossi et al. 1992; Steriade et al. 1991). The spectacular synchrony of simultaneously recorded LG cells at the delta frequency (see cross-correlogram in Fig. 11) is in line with the demonstration that, in the LG nucleus, intrinsically delta-oscillating cells may be synaptically coupled through intranuclear axonal collaterals of thalamocortical neurons (Núñez et al. 1992; Soltesz and Crunelli 1992). Besides the presence of the delta oscillation, thalamocortical cells fire fewer action potentials during the rhythmic depolarizations generated by the slow oscillation (Steriade et al. 1993b), probably because of the shunting of Na+ spikes by inhibitory inputs from reticular thalamic (and possibly local thalamic) interneurons that are simultaneously driven during the cortically generated slow rhythm. Thus there is not yet definitive evidence whether or not the thalamus plays a significant role in synchronizing the slow cortical rhythm. The slow oscillation was present at the level of single cortical neurons after total lesions of appropriate thalamic nuclei (Steriade et al. 1993c), but further experiments with multisite recordings are needed to establish the role of thalamocortical neurons in intracortical synchrony. In this respect, emphasis should be placed on rostral intralaminar and ventromedial thalamic neurons that project widely on layer I of neocortex, where they contact the distal apical dendrites of deeply lying pyramidal cells (see Steriade et al. 1990). The horizontal layer I inputs evoke long-lasting EPSPs that may trigger active currents along the apical dendrites, involving both Na+ and Ca2+, thus amplifying the EPSP on its way to the soma (Caulier and Connors 1994). Together with the “backward” corticocortical projections traveling in layer I, these superficial thalamocortical projections may contribute significantly to the propagation of the slow oscillation.

The genesis and synchronization of slow oscillation are probably due to a combination of nonsynaptic and synaptic factors. The effects of ephaptic transmission were postulated to play a role in epileptic seizures in the hippocampus (Roper et al. 1993; Taylor and Dudek 1984a,b; Traub et al. 1985). However, at the level of neocortex, there is no substantial evidence that ephaptic effects may contribute to normally synchronized states. Two, metabolic and intrinsic, factors are considered here in the genesis of the slow oscillation. 1) We have recently hypothesized (Steriade et al. 1994b) that the release of adenosine in the extracellular space, as a consequence of synchronous activity of many neurons during their prolonged depolarizations, may inhibit the cellular firing through an increase in K+ conductance. Such effects were described in the hippocampus (Haas and Greene 1988), thalamus (Pape 1992), and neocortex (McCormick and Williamson 1989), and the adenosine promoting effect of sleep was hypothesized to depend on an increase in K+ conductance of arousing mesopontine cholinergic neurons (Rainnie et al. 1994). Adenosine can be slowly removed from the extracellular space, enabling neurons to fire, again releasing adenosine, and thus repeating the cycle. 2) The role of a Gk(Ca) in the genesis of prolonged hyperpolarizations during the slow oscillation was hypothesized in view of the blockage of this slow rhythm through a selective suppression of hyperpolarizing phases by stimulating mesopontine cholinergic nuclei (see Fig. 11A in Steriade et al. 1993a). It is known that acetylcholine suppresses Gk(Ca), that produces long-lasting IArn, in neocortical cells (McCormick and Williamson 1989; Schwinding et al. 1988; Stafstrom et al. 1984).

We finally propose that the diminished firing rates in neurons of ascending diffuse modulatory systems from the very onset of sleep (see Steriade and McCarley 1990) lead to long-lasting hyperpolarizations in target cells, consequently leading to an avalanche disfacilitation in thalamic and cortical networks. The prolonged inhibitory periods favor the propensity to rebound spike bursts that constitute an efficient driving force for setting into action the cortical circuitry and developing sustained depolarizing phases in virtually all types of neurons. The possibility that metabolic factors, such as adenosine, would accumulate and induce cyclic hyperpolarizations sculpturing the slow oscillation should now be tested directly.

We thank P. Giguère and D. Drolet for technical assistance. This work was supported by the Medical Research Council of Canada (Grant MT-3689). F. Amzica is a doctoral student.

Address reprint requests to M. Steriade.

Received 2 May 1994; accepted in final form 4 October 1994.

REFERENCES

CORTICAL NEURAL SYNCHRONIZATION

