Light and tissue 1

Benjamin Judkewitz, PhD
Postdoctoral Fellow
Biophotonics Laboratory
California Institute of Technology
benju@caltech.edu

Outline

Motivation

Absorption

Scattering

Pushing the limits

Cancer biology

E.g. understanding how tumors form and interact with blood vessels

Neuroscience

E.g. monitoring activity in deeper layers of the brain

Immunology

E.g. studying the biology of lymph nodes

Developmental biology

E.g. monitoring early development in real time Huisken et al (2004)

Diagnosis

E.g. early detection of tumors in deep tissues

How deep can we see?

With visible light in biological tissues: less than 1 mm, often less than 100 μm

But there are ways to push the limits.

Absorption and Scattering

Absorption in a cuvette

Absorption cross-section

$$\mu_a = \sigma_a \cdot N$$

The absorption coefficient μ_a is the total absorption cross-sectional area per unit volume [cm²/cm³]

Deriving the Beer law

Slice area: A

Slice volume: A·dx

Cross-sectional area in slice volume: $\mu_a \cdot A \cdot dx$

The relative change in intensity equals the total absorption crosssectional area in the slice divided by the slice area:

$$\frac{-dI}{I} = \frac{\mu_a \cdot A \cdot dx}{A} = \mu_a \cdot dx \implies I = I_0 e^{-\mu_a x}$$

Absorption in a cuvette

Absorption spectra

Scattering in a cuvette

Scattering cross-section

$$\mu_a = \sigma_a \cdot N$$

The scattering coefficient μ_a is the total scattering cross-sectional area per unit volume [cm²/cm³]

Beer law for scattering

What happens to the scattered photons?

Scattering Regimes

- $<\lambda$ Rayleigh Regime
 - E.g. particles in the sky
 - Strongly wavelength dependent
 - Mostly isotropic

- $\geq \lambda$ Mie Regime
 - Cells, water droplets (fog)
 - Anisotropic: mostly forward scattering

Mie Scattering, larger particles

Anisotropy factor: g

$$g = \begin{cases} -1...0 & \text{Backward scattering (anisotropic)} \\ 0 & \text{Unidirectional scattering (isotropic)} \\ 0...1 & \text{Forward scattering (anisotropic)} \end{cases}$$

g for most biological tissues: ~ 0.9 (highly forward scattering)

Imaging and anisotropy

Focusing without scattering

Focusing through isotropic scatterer (g = 0)

Focusing through forward scattering medium (high g)

Mean free path

Mean free path

Mean free path:
$$\frac{1}{\mu_s}$$

Transport mean free path:
$$\frac{1}{\mu_s \cdot (1-g)}$$

- The scattering mean free path is the average distance between scattering events (in biological tissues around 100 μ m)
- The transport mean free path can be thought of as the mean distance after which a photon's direction becomes random (in biological tissues around 1 mm)

Absorbing or scattering?

How do we image deep?

Choose transparent sample, long wavelength

Make sample transparent

Give up on resolution

Push the limits with modern microscopy

Choose transparent samples

Xenopus laevis tadpole

Make samples transparent

Make samples transparent

Optical projection tomography

Optical projection tomography

Sheet illumination

NIR fluorescence imaging

IR Dye emission at ~ 800 nm

Bioluminescence imaging

 $Luciferin + O_2 \xrightarrow{Luciferase} Oxyluciferin + Light (590nm)$

Bioluminescence imaging

Mouse grafted with cells genetically encoding luciferase Imaging following injection of luciferin

No background autofluorescence.

Bioluminescence imaging

Summary

- In biological tissues, scattering dominates over absorption
- Scattering in most samples is anisotropic (high g)
- Scattering mean free path and transport mean free path are a measure of the penetration depth limit.
- Scattering and absorption are reduced at longer wavelengths
- To image deeper, the simplest solution is to use transparent samples
- Other samples can be cleared optically (but they need to be fixed)
- Optical projection tomography and sheet imaging can be used to image large transparent samples
- NIR fluorescence imaging and bioluminescence have a penetration depth of several mm, but sacrifice resolution.