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Abstract. We describe the diffusion-limited growth of dendritic needle crystals from
the vapor phase, for which the application of an electrical potential to the crystal can
profoundly affect the growth morphology, leading to an electrically induced morpho-
logical instability. With an improved theoretical treatment of this phenomenon, as well
as new experimental data, we find the following below a threshold potential: 1) attach-
ment kinetics is often more important than surface tension for selecting the Ivantsov
solution in growth from the vapor phase, even in the absence of significant faceting; 2)
the electrically modified growth velocity contains both polarization and electrostatic
contributions, in contrast to previous treatments; 3) the threshold electrical potential
is roughly independent of supersaturation, and 4) non-polar systems also exhibit the
same electrically induced instability. Above threshold the underlying assumptions of
solvability theory break down, and a new stabilization mechanism is required to explain
the high-velocity shape-preserving needle growth observed in this regime. Guided by
new electric needle data, we propose that the growth rates are being stabilized pri-
marily by structural deformation driven by surface tension. We also describe the use
of chemical additives to alter the needle growth axis and greatly increase the growth

velocity.

1. Introduction

The formation of stable spatial patterns is a fundamental problem in the study of nonlinear non-
equilibrium systems [1], and controlling pattern formation has generated considerable recent interest
in light of a host of possible technological applications. A now-standard example of a condensed-
matter pattern-forming system is the diffusion-limited growth of free crystalline dendrites, which are
nearly ubiquitous products of rapid solidification, from either liquid or vapor precursors. While the
diffusion equation alone is sufficient to define a relationship between the dendrite tip velocity and
tip radius, typically anisotropic surface tension or attachment kinetics must be included in order
to select a unique needle-like solution. Microscopic solvability theory has succeeded in furnishing a
mathematically consistent and dynamically stable solution to this problem for simple 2D and 3D
dendrite growth [2-4]. Instabilities and noise amplification leading to sidebranch generation have
also been well studied [3].

Here we examine diffusion-limited shape-preserving needle growth from the vapor phase in the

presence of an applied electrical potential. We previously described how high electric fields and
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field gradients near the needle tip can enhanced its growth, and subsequently drive in a new kind
of instability in this system [6-9]. The growth behavior for small applied potentials is quite well
described by an extension of normal dendrite growth theory, and we derive below an improved
theoretical treatment of this phenomenon. This theory not only describes the behavior of the
dendrite growth as a function of the applied potential, but it also explains the existence of the
instability which occurs above a threshold potential.

The growth behavior above threshold is particularly interesting, and for some range of parameters
we can still observe shape-preserving needle growth, albeit with much increased tip velocities. Above
threshold the growth is still predominantly diffusion limited, so we retain the usual Ivantsov relation
between the tip velocity and radius to a good approximation. However, the normal assumptions
in solvability theory are no longer valid in this regime, and therefore the needle growth requires
a new stabilization mechanism to select the correct Ivantsov solution. We performed a series of
experiments to explore the physics of needle growth in this new electric regime, and from these we
are able to examine the physical mechanisms responsible for selecting the enhanced needle growth
rates.

Electrically modified dendrite growth is a useful tool for better understanding the general prob-
lem of pattern formation during solidification, in that it provides the experimenter with a new
variable which affects the growth process. In addition, the phenomenon may also lead to interesting
applications, such as the production of nanoscale metallic needle structures [10], processes for elec-
trically mediated growth of nanotubes or polymers [11], and perhaps electrochemical modification

of electrospin technologies [12].

2. Kinetics Limited Dendrite Growth from the Vapor Phase

Before examining electrically enhanced growth, it is instructive to first write down a theoretical
treatment of normal diffusion-limited dendrite growth from the vapor phase in the presence of a
solvent gas, focusing on a range of parameters appropriate for our experiments. While the underlying
mathematics for normal growth from the vapor phase is essentially the same as for dendrite growth
from the melt, there are two interesting differences: 1) the extreme density difference between the
solid and vapor phases allows us to work in a very slow growth approximation, and 2) attachment
kinetics is typically more important than surface tension in the selection problem, as we will see
below. In this treatment we will ignore thermal effects arising from latent heat released during
crystal growth, as this heat is fairly effectively carried away by the crystal and the solvent gas. This
validity of this assumption is discussed quantitatively in the Appendix.

The timescale for diffusion to adjust the vapor concentration in the vicinity of a growing dendrite
18 Tdif pusion = R? /D, where R is the radius of the dendrite tip and D is the diffusion constant. This
is to be compared with the growth time, 7g,.un & R/v, where v is the dendrite tip velocity. The
ratio of these two timescales is given roughly by the Peclet number, p = Rv/2D. For our experiments
growing ice dendrites in a solvent gas of air at a pressure of one atmosphere, we find v &~ 5 um/ sec,
R~ 1 pum, and D = 2 x 107° m?/sec, so a typical value of the Peclet number is p ~ 10~7. In

this regime the diffusion length ¢ = 2D /v is of order 10 meters, much larger than the size of our



experimental apparatus. Thus the time-dependent diffusion equation for the particle concentration
around the dendrite can be replaced by Laplace’s equation, V¢ = 0, which must then be solved

with the appropriate boundary conditions. The continuity equation at the interface yields
D /. =
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for the normal growth velocity, where cgo54 is the crystal density.

Our goal here is to describe the essential physics of dendrite growth in the presence of an applied
potential, and not to find a mathematically precise solution to the full problem, so we will make some
rather crude approximations when dealing with the dendrite geometry and the surface boundary
conditions. This approach is instructive, quite productive, and is also an unfortunate necessity for
several reasons: 1) the full problem of 3-D dendrite growth with significant attachment kinetics has
not yet been solved (the 2D problem is described in detail in [3]); 2) the details of the attachment
kinetics for ice growth from the vapor are not well known anyway; and 3) we will see that the exact
problem becomes substantially more difficult when an electrical potential is introduced.

The contribution of surface energy to the surface boundary condition for a spherical crystal can
be found by noting that the surface energy is Usyyface = 4mR%y, where v is the surface tension,
equal to 0.109 J m—2 for ice. Pulling a molecule off reduces the surface area and thus releases an

energy
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The contribution of this energy to the equilibrium vapor pressure goes like e®//+T
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we have the equilibrium vapor pressure

2d
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where d = v/¢so1iakT and csq¢ is the saturated vapor pressure above a flat interface.

Attachment kinetics in this case are obtained from the Hertz-Knudsen equation for growth from
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where cgyrface 1S the vapor concentration just above the surface and o <1 is the usual condensation

coefficient. In the second expression we defined the characteristic kinetic velocity
c kT
[ 5)
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which is a temperature-dependent quantity intrinsic to a given material. For our ice experiments
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Vin, ~ 440 pm/sec. Combining the Hertz-Knudsen equation with the above expression for c., then

gives the boundary condition
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This expression is strictly valid for spherical growth in the case of isotropic surface tension and
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attachment kinetics, but the general case will be similar in form.
We now assume that the crystal growth proceeds with a dendritic morphology, defined by an

approximately parabolic dendrite tip moving at constant velocity. In our experiments the tip shapes



are only roughly parabolic, since the attachment kinetics are such that some faceting is observed.
For many of our measurements, however, it appears that the dendrite tip is indeed rounded, perhaps
the result of kinetic roughening, and the faceting becomes fully developed only along the body of the
dendrite, where the growth is slower. We thus believe that the parabolic assumption is a reasonable
one when describing our experiments. Here again our goal is not to solve the exact growth problem,
but only describe the salient physical features of our experiments with electrically enhanced growth.

Diffusion-limited dendrite growth has been well characterized, and for the slow-growth limit
from the vapor phase it is straightforward to show that the Ivantsov solution for growth of a 3D

cylindrically symmetric parabolic crystal of tip radius R is [4, 7]
2D Csat 2d v
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where A; = (Coo — Csat) /Csat and 7., is the parabolic coordinate of the far-away boundary of the
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system, at which point we have ¢ = c,,. This solution gives a relation between the tip velocity v
and radius R, here with small perturbations from the capillary and kinetic terms (assuming d < R
and v € Q). The log term in this expression appears because we are in a regime where the
diffusion length is larger than the boundaries of the experimental apparatus, i.e. £ > n. In our
case we estimate 7., /R is roughly between 10* and 10°, which then gives log(n,,/R) between 9.2
and 11.5. Such small variations are negligible in our current treatment, so in what follows we will
take B = log(n,,/R) =~ 10 to be constant. This is consistent with our expectation that the particular
details of the far-away boundary condition in the problem — for example that the outer boundary
is not in fact parabolic, so that 7., is not precisely defined — should not contribute greatly to the
final solution.

When the growth is mainly diffusion limited we have v < «ug,, and we can substitute the

unperturbed Ivantsov solution in for v on the right-hand-side of Eqn 7, which then gives to lowest

order 2D oy 0 .
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These results are analogous to the case of dendrite growth from a melt, in particular the treatment
by Brener and Mel’nikov [3], where many aspects of the full solvability problem have been worked
out in 2D when both capillary and kinetic boundary conditions are relevant. The length d defined
above is essentially the same as the capillary length d in [3], and the length R}, defined above is
analogous to the length pDg in [3] (e.g. see Eqn 9.2). (See also [14]) Note both lengths are assumed
to be anisotropic with respect to the crystal axes.

In our ice experiments we have d ~ 1 nm and Ry;, ~ 30 nm, and we expect the anisotropy in the
attachment kinetics to be larger than the anisotropy in the surface tension. This is probably the case
even when the growing crystal does not show significant faceting, since the anisotropy in d is only a
few percent. Since in our experiments we have A; > 0.2, it then stands to reason, given the results

in [3], that the selection of the dendrite radius will be governed by attachment kinetics, and not by



surface tension. Furthermore we see that Ry, is linear in D but is not very strongly dependent on
material properties. Thus we expect that attachment kinetics will often be more important than
surface tension in the growth of dendrites from the vapor phase. For our subsequent analysis we
will assume that capillary effects are negligible in comparison to attachment kinetics.

Following the analysis in [3], we then write down a dimensionless “solvability” parameter
2RpinD A7 ¢
_ kJZ'I’QL 21 Csat (11)
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which relates v and R, and we expect that o¢ will be approximately independent of the extrinsic

oo

variables in the problem, and will depend only on the intrinsic material properties, particularly the
degree of anisotropy in the attachment kinetics.

As has been noted in the context of solvability theory (e.g. [15]), Eqn 11 above follows mainly
from the fact that attachment kinetics here provides the additional length scale Rj,  necessary for
uniquely determining the needle crystal shape. Calculating o from material properties, in particular
the anisotropy of the attachment kinetics, would require a full 3D treatment of the dendrite problem
including kinetics, which as yet does not exist. Instead we will simply assume that o is a constant to
be determined from experiment, and proceed with the problem of calculating the additional effects
of an applied electrical potential.

Note that combining the solvability parameter with the Ivantsov solution gives a tip radius that

is independent of A4,

B
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and a dendrite tip growth velocity
2D sa
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which depends linearly on Aj, as is seen in the 2D solution [3].
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3. Electrically Modified Dendrite Growth

When an electrical potential is applied to the growing crystal, the normal diffusion equation is
replaced by the Smoluchowski equation [7,13], which describes diffusion in the presence of an

external force. In our case we have

Oc — = —
a:DV-(Vc—I—cV(I)) (14)
where the external force felt by the solute molecules is described as the gradient of the effective
potential
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where ¢ is the molecular polarizability, and the electric field is the gradient of the electrical potential
— —

E = -V [7]. Again we will assume the slow-growth limit and take dc/dt ~ 0. The continuity

equation at the interface yields the normal component of the surface growth rate as

A (Vet eV o) s (16)
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The boundary condition at the crystal surface is now changed by the fact that the applied

potential changes the equilibrium vapor pressure, which we can see most easily in the spherical case.

Consider a spherical droplet of radius R and charge (), where we assume the charge is localized at



the droplet surface. The electrostatic self-energy of this charge
11 @°
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is independent of the dielectric constant of the droplet, since there is zero field below the surface.
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If the molecule has a nonzero polarizability, then pulling the molecule off the droplet releases the
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polarization energy
dUpolaT = £E2 (19)
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where ¢ =~ 3.4 x 1073 C?mN~! for a water molecule.
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Again these energies contribute to the equilibrium vapor pressure like e , yielding for the

spherical case (ignoring the surface energy contribution)
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where RZ, = e0©f/2¢s01iak T, R2y = Ep5/KT, and g = Q/4megR is the electrical potential applied
to the droplet. Note the presence of both electrostatic and polarization terms in this expression,
the latter being zero for non-polar molecules. Throughout this discussion we will assume that the
surface kinetics, parameterized by the condensation coefficient «, remains unchanged in the presence
of the applied electrical potential. This is likely the case since the applied fields are too weak to
significantly modify the surface molecular dynamics.

To derive the modified Ivantsov relation, first consider the spherical case, for which we have the

growth velocity

D = —
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From the electrical potential of a charged droplet we have
d®  4EpER?
= _ 2
dr kTrd (23)
and for the concentration field we can approximate ¢(r) in the integrand to be equal to the p; =0
solution RA
Co(r) = Cop — ——o (24)
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In the case of ice Res ~ 0.2(¢,/1000 V) pm and Ry, =~ 1.0(py/1000 V) pm, so we see the electro-
static and electric polarization terms are of fairly comparable magnitude when A; = 0.2; for higher
values of A the polarization term dominates.

The full parabolic case is clearly much more difficult to solve, and only an approximate treatment



has been demonstrated to date [7]. Following this we generalize the above and take the modified

Ivantsov solution to be
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where C' = 1+ 2T¢cs01i0A1 /20 and T’ & 0.2.is a dimensionless geometrical constant. It is understood

that this is only an approximate solution to the Smoluchowski equation, which takes the form of
the normal Ivantsov solution (in the slow-growth limit) modified by several small additional terms.
We expect that a full numerical solution would yield the same basic result, although probably with
additional small geometrical corrections.

In the case of ice Rejee ~ 40(pp/1000 V) nm, and 2{csoa/e0 = 23.5, giving C ~ 1 + 4.7A,4
at T = —5 C. The first analysis of this problem [6,7] ignored the electrical perturbation of the
equilibrium vapor pressure, an error which was pointed out by Brener and Muller-Krumbhaar [8]
. We see here that the subsequent correction [8] was again incomplete, in effect assuming I' = 0,
which ignores the polarization term. For our present experiments this assumption is not a good
one, since the polarization term is in fact larger than the electrostatic term. However since C' =1
when ¢ = 0, we retain the theoretical prediction that an applied potential will also affect dendrite
growth from non-polar molecules [8].

The electrical perturbation can be incorporated into the solvability relation by defining the

modified length Reoms = R, — /R, and again assuming that this is the additional length

n elec

scale necessary for uniquely determlmng the tip radius. This then yields the new solvability relation
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If the second term in the parentheses is < 1, we expect that oy will again be roughly constant.
Furthermore, taking Re.. = 0, we then see that the value of oy must equal that obtained in the
absence of an applied potential. Combining this with the modified Ivantsov relation then yields a

quadratic equation for the tip radius [6]

CR
R?— RyR+ ="R%,. =0 (29)
Ry
where Ry is the tip radius when R = 0.
The solution of the quadratic equation for small Reje. is
C
R~ R —R, 30
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As R increases, the tip radius decreases until a limit is reached when Reiee = Relec,thresh =

* 1/2 . .
(Ry;,, Ro/4C) /2 at which point R = Rypyesh = Ro/2 and v = vypresn ~ 2v9. Note R%oe thresh] Rinresh =
R}, /RoC is always < 1 in our ice experiments, which supports the assumptions leading to Eqn
26. Since Ry is independent of Ay, R}, ~ A, and C' ~ A; when dominated by polarization ef-
fects, so we expect Rejec thresh Will be independent of A;. Equivalently we expect that the applied
electrical potential at threshold will be independent of A;.
The quadratic equation above has no real roots when Reje. > (R}, Ro /40)1/ 2 indicating that



the above modified solvability theory cannot be used for large Rejec, Or equivalently when ¢ is above
some threshold potential ;... The lack of real roots indicates that above a threshold potential
neither surface tension nor attachment kinetics can stabilize the tip radius, at least not in the usual
sense of solvability theory. At this point the tip experiences runaway growth as R — 0 under the
influence of the Mullins-Sekerka instability (here enhanced by electric forces). The tip velocity thus
increases until it is stabilized by some other mechanism, which we discuss further below.

Although the above treatment for electrically enhanced growth is very much incomplete, most
of the theoretical uncertainty has been incorporated into the single parameter oy. Taking the next
theoretical step, and predicting o from material parameters, appears to be an exceedingly difficult
task. Furthermore, quantitative comparison of g with measurements would require a detailed
knowledge of the anisotropy of the attachment kinetics, which would be itself difficult to attain. In
spite of these problems, many aspects of electrically modified dendrite growth can be measured and

compared with the results above.

4. Experiments with Dendrites Grown from Vapor

We performed a series of experiments using ice to observe normal and electrically modified dendrite
growth from the vapor phase. Ice is a convenient material to work with in that it has a high vapor
pressure, freezes at an easily accessible temperature, and it forms dendrites readily. Ice has also
been very well studied, so many of its material properties are well characterized. Clearly dendrites
grown from the vapor phase of other materials should exhibit a similar behavior, as dictated by
theoretical considerations.

Electrical effects in the growth of ice crystals from the vapor was first described by Mason and
collaborators [9], and we previously described additional details of the behavior of ice dendrites
growth as a function of the applied electrical potential [6-8]. The existence of a threshold potential
was established in these measurements, and the tip velocity as a function of ¢, below threshold was
found to be in good semi-quantitative agreement with the above theory. We have now extended
these observations by measuring dendrite tip velocities as a function of supersaturation A; as well
as g, and have made many measurements above the threshold potential, where a different tip
stabilization mechanism is required.

Our experiments were performed in air at atmospheric pressure, using a vertical diffusion chamber
with a width and depth of 20 ¢cm and a height of 30 cm. The bottom of the chamber was typically
held at 7' = —50 C, and the supersaturation could be changed by adjusting the upper temperature,
which was typically around 7' = 40 C [7]. Crystals were grown on the end of a thin wire placed inside
the chamber from the bottom, to which an electrical potential could be applied. Supersaturation
was determined using a combination of diffusion modeling and frost-point measurements, and we
estimate an overall scaling uncertainty in our reported A; of roughly +30 percent.

Crystals grown at T' = —15 C exhibited a classic dendritic morphology with growth along the
a-axis, as is shown in Figure 1(a). These dendrites have an out-of-plane thickness of only some tens
of microns (thicker far away from the growing tips), governed by strong faceting of the basal planes.

It appears, however, that the faceting only becomes established some distance away from the tip,



and that the solid surface very near the tip is not faceted. The tip radius could not be resolved
by our long-distance optical microscopy, and thus we could only place an upper limit of R < 2 pum
from direct observations (see Figure 1). Tip velocities for these dendrites were observed to increase
approximately linearly with A; as shown in Figure 2(a). At the lower supersaturation levels we
observed stronger faceting of the prism planes near the dendrite tips, which corresponded to the
deviation from the linear relationship at small A; seen in Figure 2(a).

Crystals grown at 7' = —5 C exhibited asymmetrical sidebranching, as is shown in Figure 1(b).
At these high supersaturation levels the growth vector was typically displaced from the c-axis, as
shown in Figure 1(b), with larger angular displacements toward the a-axis observed for larger Aj.
Again it appeared that the region near the needle tip was not faceted, and again we could place
an upper limit of R < 2 um from direct observations. We measured tip velocities which increased
linearly with A;, as shown in Figure 2(b).

For our measurements at both 7' = —5 C and -15 C we see that the normal (¢, = 0) dendrite
shapes were only roughly parabolic, so the Ivantsov solution is only an approximate one, and our
analysis above can only be applied in an approximate sense. Nevertheless our data at both -5 C
and -15 C clearly show tip growth which is approximately linearly dependent on Aj, as expected
when kinetic effects predominate over the surface energy [3]. For the -15 C dendrites the points are
roughly fit by v = 5A; pm/sec, for which the Ivantsov solution yields Rg ~ 1.2 pm independent of

A over this range. The relation
Ry = ika (32)
aog
then gives aog &~ 0.25. Similarly, the -5C data are reasonably well fit by v = 9.5A; pmn/sec, giving
Ry ~ 1.5 pm over this range of Ay, and aog ~ 0.2.

Applying a small electrical potential (below threshold) to the growing crystals resulted in tip
velocities that increased with increasing ¢, and growth morphologies that were essentially un-
changed from those at zero potential, as we reported earlier [6,7]. In all cases we observed a
well-defined threshold potential, beyond which the crystal growth was qualitatively different. We
take this threshold potential to be the same as was calculated in the previous section. At T'= —15
C we typically observed the tip-splitting phenomenon described in [7] when the potential reached
its threshold value, so no tip velocities were made above threshold at this temperature. At T' = —5
C we usually observed a fast-growing “electric needle” morphology above threshold, which exhib-
ited no sidebranching and a constant tip velocity. Figure 3 shows an example of the electric needle
morphology, for the case when the needle growth was along the c-axis of the ice crystal.

Figure 4 shows the tip velocities as a function of ¢, at various A; for needle growth at -5 C,
showing both the value of the threshold potential at each A; and the electric needle velocities above
threshold. We observed a threshold potential of ¢, ~ 1000 volts which was roughly independent of
A;, consistent with the above theoretical expectations. Our analysis then implies Reec thresh = 40
nm, and combining this with Ry = 1.5 um, and C' = 5.7 (at Ay = 1) we find R}, = RyinA1/a =24
nm at A; =1, or « =~ 1. A high value of the condensation coefficient is also suggested by the needle
morphology, which shows little faceting near the needle tips. The more gradual velocity transition
with increasing A; is not explained by our model.

Although the electric needles that grew above threshold were essentially featureless in their



morphology, the needle growth proceeded along different crystal axes, which could easily be discerned
by removing the electrical potential and observing the subsequent normal growth, as demonstrated
in Figure 3. In clean air at T'= —5 C the needle growth was typically not along a principal crystal
axis, like the growth of normal needles shown in Figure 1(b). It is the growth rates of these “clean
air” electric needles that are plotted in Figure 4 and Figure 2(c).

Interestingly, we found that trace chemical additives in the air could have a dramatic effect on
the electric needle growth, even when the concentration level was too low to produce any perceptible
change in normal crystal growth. In particular, chemical additives could induce the electric needle
growth to be along the ice c-axis, and such needles grew approximately four times faster than electric
needles in clean air, as is shown in Figure 2(c). We found that a number of chemical additives at the
100 ppm level produced these rapidly growing needles, including various alcohols and acids, as well
as chloroform, xylenes, methylene chloride, and even gasoline vapor. Acetic acid was particularly
effective even at concentrations as low as 1 ppm, which produced essentially no change in the
normal crystal growth. It appears likely that the additives are concentrated by the electric fields
and gradients near the needle tip, thereby enhancing the chemical effects.

From the supersaturation dependence at ¢, = 2000 volts (see Figure 2(c)) we infer tip radii of
R* ~ 360 nm for clean air electric needles using the Ivantsov relation, again independent of Aj.
In the presence of chemical additives, the higher electric needle velocities imply R* ~ 90 nm at
¢y = 2000 volts, also roughly independent of Aj.

In a separate experiment, we examined the electric growth phenomenon for a non-polar molecular
solid by examining the growth of iodine crystals from the vapor, again in a solvent gas of air at
a pressure of one atmosphere [20]. At a supersaturation of A; &~ 0.1 we obtained the results
shown in Figure 5. Rapid needle growth above a threshold potential of ¢, ~ 1000 volts was again
clearly observed. The considerable scatter in the data above threshold may have resulted from
competition between growing dendrites, although the scatter at ¢, = 0 was much lower. These data
provide qualitative support of the above theory, and clearly verify that this electrically induced

morphological instability is present in non-polar systems.

5. Stabilization of Electric Needle Growth

When the applied electrical potential ¢, is greater than the threshold value ¢;,...p, the crystal
growth at —5 C changes abruptly into the rapidly growing “electric needle” morphology described
above. A notable feature of electric needles is that they exhibit shape-preserving growth with
constant tip velocities, analogous to normal diffusion-limited dendrite growth. We see from the
discussion above, however, that the theoretical machinery developed to describe normal dendrite
growth can no longer be applied in the regime of electric needle growth, since at small tip radii the
electric effects overwhelm the normal stabilization mechanisms. Thus we must address anew the
question of what physical mechanism stabilizes the growth of electric needles, or equivalently what
mechanism selects the correct Ivantsov solution.

The first step we can take in this direction is to rule out several possible candidate mechanisms.

The latent heat generated by the condensing molecules appears to be inadequate for stabilizing the

10



tip growth, using the considerations in the Appendix. The calculated temperature increase is both
small and roughly proportional to vR, and is therefore independent of the tip radius R to lowest
order. Thus although tip heating will increase the saturation vapor pressure, and thus slow the
needle growth slightly, it does not appear that this mechanism limits the electric needle growth.
Further evidence for this statement comes from the growth data at 2000 volts, which show a linear
dependence of growth velocity on A;. Since tip heating increases with A, one would expect slower
growth than is observed at the higher supersaturation levels.

Since we are applying a high voltage to the growing needle crystal, and the radius of curvature
of the tip is as small as 90 nm, we must also consider field emission as an R-dependent source of tip
heating that may stabilize the tip growth. From the Fowler-Nordheim relation [19]

e3 87r21/2mi/2 w3/2
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where A is the emission area, e is the electron charge, h is Planck’s constant, W is the material

I=4 E%exp [ (33)

work function, F is the surface electric field, and m, is the electron mass. Using W = 4.4 eV
= 7.0 x 1071? J [17] and taking A = R? for the emission area, with E = 2,/ log(1.,/R)R for the
parabolic case, this becomes
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where as above we have assumed log(n,,/R) = 10. Assuming a power P ~ Iy, is deposited at the

I =
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needle tip (likely an overestimate), and assuming the same simple thermal conduction model used in
the Appendix, we estimate that tip heating becomes significant for I > 10711 A. Ice conductance is
high enough [17] that such low currents produce a negligible voltage drop along a needle, supporting
our assumption of a constant electrical potential along the needle.

We measured the current emitted from growing needle crystals, and found there was a consid-
erable dependence on the sign of the applied potential. For ¢, = 2000 volts we found I < 1 pA
under most circumstances and I ~ 1 pA for chemically mediated growth (with considerable scatter
in the latter measurements). For ¢, = —2000 volts we measured I ~ 1 — 3 pA without additives
and I =~ 10 pA with additives (again with considerable scatter). These values are consistent with
the Fowler-Nordheim relation, given the uncertainty in the various parameters. When I 2 10 pA we
observed that the needle growth slowed substantially, and the tip velocities became quite variable
from needle to needle.

We conclude from these results that field emission plays a significant role in our experiments with
electric needle growth when ¢, = —2000 and the crystals are grown in the presence of chemical
additives, which results in sizable currents. In all other regimes it appears field emission does not
limit the needle growth. Without chemical additives, or when the measured currents were below 1
PA, the needle growth rates were observed to be the same (to +15 percent) for positive and negative
applied potentials.

Having eliminated thermal and field emission mechanisms, we propose that the diffusion-limited
electric needle growth is stabilized by the diminished structural integrity of the material when formed

into an extremely sharp tip. That is, the needle tip radius becomes so small that its solid structure
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is subject to deformation driven by surface tension over timescales comparable to the crystal growth
time ~ R/v. There is considerable uncertainty in our understanding of the structural properties of
ice, particularly for such extremely small crystals, which makes detailed calculations difficult [17]

Surface melting certainly sets a lower bound on tip radius, since surface melting is known to
produce a quasiliquid layer at these temperatures, which likely has very little resistance to shear
stresses. The ice quasiliquid layer has a thickness of roughly 20 nm at T'= —5 C [18], which is not
insignificant compared to the tip radii inferred from our measurements.

Although this model is both speculative and difficult to quantify, it does explain the fact that
in our measurements the tip radius R* is essentially independent of A; and ¢, in the electric
growth regime (at least above a Aj-dependent transition region; see Figure 4). Above the threshold
potential the tip radius decreases to the point that structural deformations become an important
influence. This must occur at some material-determined size scale, so we would expect that the
new tip radius would depend mainly on material properties, and would not depend strongly on
supersaturation or the applied potential, as is observed. The change in R* in the presence of
additives could be explained by the strongly anisotropic structural properties of ice, since the most

rapid growth observed is for c-axis needles, or by chemically induced changes in surface tension.

6. Discussion

In summary, we have examined the detailed physics of electrically enhanced diffusion-limited den-
dritic needle crystal growth from the vapor phase. When an applied potential is below a threshold
value, we are able to adequately reproduce the measured needle growth velocity v(Aq, ¢y) using an
electrical extension of solvability theory. One interesting feature of this theory, which is confirmed
by our experiments, is that the needle tip selection is governed by attachment kinetics in this regime.
Furthermore we expect that attachment kinetics will often be more important than surface tension
in the diffusion-limited growth of dendrites from the vapor phase, as long as the supersaturation is
fairly high.

Theory and experiment also reveal the existence of a threshold potential, beyond which the needle
growth exhibits a morphological instability. Furthermore we see that the threshold potential ¥z, ¢sp
is roughly independent of A; for highly polar molecules. Finally, we experimentally confirmed
the theoretical prediction [8] that an applied potential will affect dendrite growth from non-polar
molecules, which likewise exhibit a morphological instability above some ¢, 0sp-

We also examined in some detail the very interesting case of electric needle growth when g >
Pihresh, &S this is a new physical regime in which the normal assumptions of solvability theory are
not valid, and a new mechanism is required to stabilize the growth. Our measurements with ice
suggest that electric needle growth in this system is usually not limited by the effects of latent heat
deposition or field emission, and we propose that structural deformation of the needle tip is the
likely stabilization mechanism.

Additional experiments with other materials would further elucidate the phenomenon of electric
needle growth. In particular, since ice is a relatively soft material [17], these investigations suggest

that harder materials could yield much sharper tips. Related experiments with refractory metals
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have produced electric needle crystals with nanometer-scale tips [10]. We believe that additional

research into electrically enhanced growth could potentially lead to useful applications.

7. Appendix — Consideration of Thermal Effects

Diffusion-limited dendritic growth from the vapor phase is a double diffusion problem, since in
principle we must consider both particle diffusion to the growing crystal and thermal diffusion to
remove the heat generated by condensation at the solid/vapor interface. In considering this joint
diffusion problem it is useful to first examine the spherical case, which can be easily solved exactly
in the slow-growth limit. Beginning with Laplace’s equation for both the particle concentration field

¢(r) and the temperature distribution 7'(r), we find a growth velocity

D Ac
v = — 35
Csolid R ( )
which in turn produces a temperature increase
R
AT = A (36)
Rsolvent

Here Ac = Coo —Csur face A0 AT = Tgyrrace— T, A is the latent heat of condensation per unit mass,
p is the solid mass density, and Kgppens 18 the thermal conductivity of the surrounding medium.

Combining these yields the growth rate

D copr A
p= 2 Seat 1 (37)
R Csolid 1+ Xo
with Ay = (¢oo — Csat)/Csat, Where cgqq is evaluated at T, and
dl sa DA\ sa
_ n(Csat) P Csat (38)

0 dr Rsolvent Csolid
is a parameter which depends only on material properties and the diffusion constant. In the case

of our ice experiments, (1/csqt)(dcsqr/dT) ~ 0.1 K1, D = 2 x 107° m?/sec, A = 2.8 x 10% J/kg,
Ksolvent = Kair ~ 0.025 W m™! K1 p = 917 kg/m?® and c,at/Csoria ~ 107°, giving x, ~ 0.2 at
T = —5 C. We see the main effect of thermal transport is an effective rescaling of A; by about 20
percent.

The full parabolic case is of course much more difficult to solve, but a full solution is not
necessary to examine the essential thermal effects. A crude but adequate model is to assume the
dendrite growth to be a semi-infinite rod with radius equal to the dendrite tip radius R, with heat
being deposited on the end of the rod [7]. The rate at which latent heat is deposited roughly is
Qinput% AmR2vp, where v is the dendrite tip velocity, and heat conduction along the rod carries
heat away from the end at a rate Qroqd ~ Kiksoia(mR?) AT/ L, where AT = Ty, — Tomp is the
temperature difference between the end of the rod and the ambient medium, K; is a dimensionless
geometrical factor of order unity, and L is the effective distance from the end of the rod where the
rod temperature approaches the ambient temperature. We expect K1 > 1 for the parabolic case,
since the conduction down a parabolic needle would be greater than for a straight rod. Finally, heat
conduction into the ambient medium can be solved for the case of an infinite cylindrical rod, which
gives Qqir A Ksotvent LAT .

In steady state we must have (Q;,,,,;~Q;,a~Q which gives L ~ K7 (Hsozid/ﬁsolvem)l/z R,

solvent
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and we note that since Kgo1iq > Ksolvent We have L > R. This then gives

1
AT ~ — vitAp

Kl V EsolidRsolvent

analogous to Eqn 36. Combining this with the Ivantsov relation for vR gives a modified Ivantsov

(39)

relation oD A
Csat 1
~ 2 —1 40
"~ BR Coolid 1 + X (40)
where here 5 4l DA
x = n(csat) P Csat (41)

BKl dT vV EsolidBsolvent Csolid

For the case of our ice experiments we have Keoiq ~ 2.4 W m~! K~! and we estimate x < 10-3.
We can conclude from this analysis that for our experiments the thermal perturbation to the

Ivantsov solution is very small, meaning that the dendrite growth is being limited primarily by

particle diffusion, and not by thermal diffusion. Including the perturbations from surface tension

and attachment kinetics yields

42
BRcsgiiq [1+x R avg, (42)

in place of Eqn 7. Since x is both very small and independent of R, we expect that thermal effects
also contribute very little to the selection of the dendrite velocity, as would be dictated by a full
solvability theory. We note, however, that d/R and v/vy;, are also fairly small, and our thermal
analysis is quite crude. Thus it is conceivable that for our experimental parameters thermal effects

do play some role in the selection problem, although we believe it is a negligible one.
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Figure 1. (a) Typical ice crystal dendrite grown at -15 C, which grows along the crystal a-axis and
exhibits quasi-symmetrical sidebranching. (b) Typical -5 C ice crystal dendrite, showing asymmet-
rical sidebranching. Here the sidebranches are aligned roughly along the c-axis. Scale bars are 200
microns long for both figures. Insets show regions near the growing tips expanded 4x.
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Figure 2. Tip velocities of growing ice needles, as a function of vapor supersaturation. (a) Dendrites
grown at T'= —15 C, with no applied potential; (b) Needle-like crystals grown at 7' = —5 C, again
with no applied potential; (c) solid squares: vy, for electric needles grown at T' = —5 C with an
applied potenial of 2000 volts; open circles: vy, /4, for needles grown at T'= —5 C and 2000 volts,
but in the presence of vaporous chemical additives. These additives were used to promote growth
along the c-axis, thus resulting in much faster growing needles.
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Figure 3. (a) Typical electric needle growth along the crystal c-axis at -5 C, which was induced using
chemical additives (see text). (b) Subsequent growth at -15 C, after removing the applied electrical
potential. Plates growing on the needle ends indicate the crystal orientation. The scale bar is 300
microns long.
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Figure 4. Tip velocities as a function of applied potential and supersaturation A;, for ice needles
grown at 7" = —5 C. Horizontal dotted lines were drawn through the first and last data points to
guide the eye.
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Figure 5. Tip velocities of growing iodine needle crystals as a function of the applied electrical
potential. Each point represents the measurement of a single needle. Although the data show con-
siderable scatter, there is clearly a large velocity increase above a threshold of ~1000 volts, verifying
the existence of this morphological instability for non-polar molecular systems.
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