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Abstract. We describe a new instability mechanism in free dendrite
growth, which arises from electrically enhanced diffusion of polar mole-
cules near the dendrite tip. For a small applied potential the dendrite
tip velocity increases slowly with potential, as is described by an exten-
sion of normal solvability theory. Above a threshold potential, however,
capillarity is insufficient to stabilize growth. We present observations
that confirm this instability, which brings about a transition from en-
hanced normal dendrite growth to a rapidly growing needle morphology
with strongly suppressed sidebranching.

The formation of stable spatial patterns is a fundamental problem in the study
of nonlinear nonequilibrium systems [1]. A now-standard example of a pattern-
forming system is the diffusion-limited growth of free crystalline dendrites, which
are nearly ubiquitous products of rapid solidification, from either liquid or vapor
precursors. Microscopic solvability theory has succeeded in furnishing a mathe-
matically consistent and dynamically stable solution for simple 2D and 3D den-
drite growth (ignoring, for example, surface kinetic and surface transport effects,
both of which can be quite important in many systems) [2].

While the diffusion equation alone is sufficient to define a relation between
the dendrite tip velocity and tip radius, capillarity (a typically weak but singular
perturbation arising from surface tension) must be included in the theory in order
to select a unique dendrite solution, and an anisotropic surface energy was found
necessary for shape-preserving growth. In essence solvability theory describes the
balance between the Mullins-Sekerka instability [3], which tends to decrease the
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radius of curvature of a growing dendrite tip, and the Gibbs-Thomson effect of
surface tension, which tends to increase it. The result in 3D is a dendrite roughly
in the form of a paraboloid of revolution near its tip, growing at constant tip
velocity, that is a solution to the equations of motion governing heat or particle
diffusion in the vicinity of the solidification front [1, 2]. Instabilities and noise
amplification leading to sidebranch generation have also been well studied.

In this Letter we introduce a new type of nonlinear dendrite instability, arising
when particle diffusion is enhanced by the presence of the dendrite itself. Specif-
ically, we consider the system of dendrite growth via vapor diffusion in a solvent
gas, where the condensing particles possess a substantial electric polarizability.
By applying an external electrical potential to the growing dendrite, the strong
electric fields and field gradients in the neighborhood of the dendrite tip increase
the particle flux onto the surface.

For small potentials the dendrite growth is qualitatively unchanged, while elec-
trically enhanced diffusion increases the tip velocity approximately quadratically
with the value of the applied potential. This behavior is well described by the
addition of an external force to the diffusion equation, resulting in an extension
of normal solvability theory, which is described below.

We find, however, both theoretically and experimentally, that there exists a
threshold potential for normal dendrite growth, beyond which the modified solv-
ability theory no longer yields physical solutions. This indicates that surface
tension is insufficient to stabilize the enhanced dendrite growth in this regime.
Experimentally, beyond the threshold potential we observe a runaway growth of
thin needle-shaped crystals, with strongly suppressed sidebranching. This behav-
ior lies outside the realm of solvability theory, requiring mechanisms other than
capillarity to determine the stable growth point.

In the presence of an external force F the diffusion equation is replaced by
the Smoluchowski equation [4]
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where ¢(7") is the solute density and D is a scaler diffusion constant. In this we
have assumed that the particle mobility and diffusion constant are related via the
usual Einstein relation. Ignoring interface kinetics, the continuity equation at the
interface yields the normal component of the surface growth rate v,
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where cs,;4 is the solid density and the right-hand side is evaluated at the solidi-
fication front [4].

We now consider a specific external force, namely that which arises when an
electrical potential is applied to the growing dendrite (assumed to be an electrical
conductor), and the solute molecules are electrically polarizable. We assume the
limit of a low solute density and unpolarizable solvent molecules, so the applied
electric fields and field gradients do not depend on ¢(7”). In this case the force
F can be expressed in terms of the gradient of a potential, F = ?(ﬁ) . E)) =
a?(f . f) = a?@, where « is the electric polarizability. Assuming the den-
drite defines an electrical equipotential surface which is nearly a paraboloid of
revolution, the force potential is simply ® ~ 4¢2n~"(n+ &)~ 'log™%(n,/R) in par-
abolic coordinates, where ¢, is the applied electrical potential, n = R defines the
dendrite surface, and 7 = 7, is defined by the outer limit of the experimental
apparatus, which is assumed to be at ¢(n;) = 0.

While techniques exist for numerically addressing the problem of dendrite
growth [5], an illuminating analytic solution for the dendrite tip velocity v can
be obtained by assuming axial symmetry for the growing crystal and using the
approximation ® =~ 4¢2n ?log™?(n,/R). The latter approximation formally holds
only near the dendrite tip, but we believe it does not obscure any essential physics
in the problem. With this the equations separate in parabolic coordinates, giving
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where c¢55t = ¢(R) is the solute density near the surface, Ay = [c(,) — Csat)/Csotid
is the supersaturation level, and
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This solution, for which we have taken dc/0t = 0 in the diffusion equation, is ap-
propriate in the limit 1, < ¢, where £ = 2D /v is the diffusion length, which is the
case for the experiments described below. In the limit R.j.. — 0 this reduces to the
well-known Ivantsov relation for growing dendrites [6]. For moderate molecular
polarizabilities it is possible to achieve R... > R under reasonable experimental
conditions; hence the dendrite growth is found to be strongly influenced by the
applied electrical potential.

It can be seen from this expression that the substantive effect of the electri-
cal potential is to add an R-dependent term to the supersaturation, yielding an
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effective Aj(R) = Ag(1+ R?,_,/R?). At the same time the applied electrical poten-
tial does not alter the surface capillarity, so physically we expect that the crystal
growth will be modified primarily by the effects of this electrically enhanced super-
saturation. One of the main results from 3D selection theory, however, provides

that the stability parameter
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is independent of supersaturation (but depends on crystalline anisotropic roughly
as o ~ €/* for small €), where dy = Rerito/2 is the capillary length, proportional

to the isotropic part of the surface tension, with R..;; equal to the critical radius for
homogenous nucleation. Thus we argue on physical grounds that o is expected to
be at most weakly dependent on ¢, at a level which we will ignore in comparison
to the effects of enhanced diffusion. With this assumption we then use relation
(5) from 3D selection theory, together with the modified Ivantsov relation (3), to
select both v and R.

Combining these yields an approximately quadratic equation for R

R> -~ RyR+R?%,.=0 (6)

where Ry is the normal selected dendrite tip radius when R = 0 (since 1, > R,
log(n,/R) depends only very weakly on R). For R... < Ry this gives the tip radius
R~ Ry(1— R?,,/R2) and tip velocity v & vo(1+2R?,,/R2%). The radius decreases
with increasing Reje. until a limit is reached at Ry, = Ro/2 and vyax = 4vg. The
quadratic equation has no real roots for Ree.. > Ry/2, indicating that the above
modified solvability theory cannot be used for large Rejec.

The lack of real roots for large applied potentials is related to the familiar
phenomenon of nucleation in a cloud chamber. For uncharged droplets there
exists a critical radius, R..;, below which the Gibbs-Thomson effect prevents
spontaneous growth. Sufficiently charged droplets, however, can grow at all radii,
which can be seen from a spherically symmetric solution to the Smoluchowski
equation. In the present case of dendrite growth, above a threshold potential we
find that surface tension can no longer stabilize the tip radius. At this point the tip
experiences runaway growth as R — 0 under the influence of the Mullins-Sekerka
instability (here enhanced by electric forces). The tip velocity thus increases until
it is stabilized by some other mechanism.

An experimental demonstration of this growth instability was realized by grow-
ing ice dendrites from water vapor, in a solvent gas of ordinary air at 1-atm pres-
sure [7, 8]. Although surface kinetic effects are important in ice crystal formation,
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often producing strongly faceted crystal growth, we find at -15 C (the peak of the
dendrite growth regime for ice) and supersaturations Ay = (Csoria/Csat) Do 2 0.4
the prism faces are rough, resulting in dendrites with approximately parabolic
tips. In this parabolic regime the growth of the prism faces is described by the
Hertz-Knudsen relation [9], and is no longer dominated by surface kinetics. Thus
in this regime we expect the dendrite growth to be approximately described by
the above modified solvability theory.

An electrical potential was applied after establishing the growth of a single
normal (¢, = 0) dendrite, which had a tip velocity of typically v ~ 3 um/sec;
the finite conductivity of ice, along with the very low current flow [7] ensured
that the dendrite possessed an equipotential surface. Occasionally the applied
potential resulted in dendrites with a large uniform sidebranch spacing [8], but
more typically the growth remained qualitatively similar to that of normal growth
at low potentials, with v increasing with ¢, up to a threshold potential. An
example of this behavior is shown in Figure 1. A comparison of the data and
theory can be made by combining Eqns. (5) and (6) above into v = 4v[l +
(1 — @2/p2. )% 72, where vg = 2Ddy /o R? is the normal tip velocity. In Figure
1 the two parameters vy and ¢, .. were adjusted via least-squares to best fit
the measured points. This fit gave ¢, .. = 1450 volts, which was in reasonable
agreement with the observed threshold value.

Above the threshold potential the enhanced dendrite growth behavior became
unstable. If the potential were slowly raised above threshold with A; < 0.6, the
dendrite tip would sometimes make a smooth transition to a rapid growth behav-
ior, shown in Figure 2a. This resulted in a thin, featureless needle-shaped crystal,
with a diameter of ~20-30 pm, moving at velocities typically 20-70 um/sec along
the original a-axis direction (although velocities as fast as 200 pm/sec were ob-
served). The needle velocities were observed to show considerable variation, which
remains inexplicable since it was not simply correlated with the external growth
conditions.

If the potential were slowly raised at higher saturations (0.6 < A; < 2), the
dendrite tip often underwent the tip-splitting instability shown in Figure 2b. This
resulted in a restructuring of the crystal at the dendrite tip, so that further growth
occurred from an appended crystal whose [1100] axis was approximately collinear
with the a-axis of the original crystal [8]. We are uncertain of the cause of this
peculiar behavior, which may be related to electrofreezing phenomena [10].

If a potential value above threshold were suddenly applied at any saturation,
the result was usually the copious production of thin needle crystals, similar to



that shown in Figure 2a, which typically appeared from the sharp corners of
faceted crystals. We believe this “hyper-electric” needle growth is stabilized by
heating at the needle tip, which is substantial owing to the large latent heat of
sublimation of ice. Calculations show that the degree of heating is sufficient,
given dissipation via conduction to the surrounding air, to significantly raise the
temperature of the growing tip and thus to halt further increase of the tip velocity.

It is conceivable that the mobility of water molecules on the growing crystal
surface may be affected by the strong electric field gradients near the sharp den-
drite tip [11], and thus may be responsible for some of the phenomena reported
here. We believe, however, that such effects are minor in comparison to the en-
hanced diffusion described above. First of all, the surface fields, while substantial,
are small compared to intrinsic crystal surface fields [12]. And second, we observed
that none of the phenomena described here exhibited any dependence on the sign
of the applied potential. This observation also allows us to effectively rule out
ionization effects near the dendrite tip as playing any significant role in the growth
dynamics.

In summary, we suggest a new class of dendrite growth instabilities, brought
about when the presence of the dendrite itself affects the diffusion of material to its
surface, adding a nontrivial external force term to the diffusion equation. Within
this class we have examined dendrite growth from polar molecules in the presence
of an applied electrical potential, which is well described by a modified solvability
theory. The principal result of this theory is the existence of a threshold potential,
above which dendrite growth can no longer be stabilized by surface tension effects.

We note that the enhanced diffusion brought about by an applied potential
is well understood at a fundamental level, and is straightforward to compute.
Thus the applied potential provides the experimenter with a convenient, con-
tinuously adjustable parameter with which to alter dendrite growth. Further
studies on other polar systems with less complex surface properties in compari-
son to ice should provide new insights into pattern formation in diffusion-limited
growth. Such studies may shed light on remaining problems in understanding
the dependence of the stability parameter on crystal anisotropy [13], and should
also contribute to the general theory of morphological transitions during non-
equilibrium growth [14]. Qualitatively similar morphological transitions are well-
known in studies of electrodeposition [15], but in these cases the physical mecha-
nisms driving the transitions remains poorly understood. The transition we have
described here is currently more amenable to quantitative theoretical analysis.

A particularly interesting outcome of the dendrite instability described above



is the stable production of thin, featureless needle crystals, which can in principle
be grown to any length. The growth dynamics of these needles is qualitatively
different from needles grown via more conventional means, for example via single
screw dislocations at needle tips [16], or via the vapor-liquid-solid mechanism [17],
and may be of some practical interest, particularly for large organic molecules,
which can have substantial electric polarizabilities.
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Figure 1, Libbrecht and Tanusheva
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Figure 0.1: Data points show measurements of the tip velocity of a single growing
dendrite as a function of the applied electrical potential. The solid line is a fit to
the points using the modified solvability theory described in the text. The two
free parameters in the theory, vy and ¢, .., were adjusted in a least-squares fit
to the data, which gave a best fit ¢, = 1450 volts. This dendrite underwent a
tip-splitting instability when the potential was raised from 1300 to 1400 volts.
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Figure 0.2: Images of electrically induced dendrite instabilities, which occurred
as the applied potential was slowly raised above its threshold value. Both images
were passed through a solarizing filter for edge and contrast enhancement. In (a)
the dendrite tip transformed from its normal form, with vy, ~ 3 um/sec and
exhibiting sidebranches, to a rapid electric needle growth with v, ~ 30 pum/sec
and suppressed sidebranching. In (b) the dendrite tip underwent a tip-splitting
instability which rotated the crystal axis by 30 degrees; after further growth the
same instability repeated on the two advancing branches.
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