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Abstract. We report measurements of the growth rates of the basal (0001) and prism (1010) facets
of ice as a function of surface supersaturation, in a regime where the growth dynamics are dominated
by the presence of surface melting. Our measurements were made using freely falling columnar ice
crystals, growing in a solvent gas of air at a pressure of one atmosphere, with ambient supersaturation
levels 1 < 0o, < 11 percent. Condensation coefficients for the two facets were inferred by modeling
the effects of both particle and heat diffusion, which also yielded surface supersaturation levels
0.75 < 0gury < 2.2 percent. Our results show a strong supersaturation dependence in the crystal
growth, as for both facets the condensation coefficient exhibited a precipitous drop below g5 ~ 1
percent. In addition, the condensation coefficient for the basal facet was found to be nearly a factor
of 10 larger than for the prism facet. These results support a model in which the ice growth rates are
governed by 2D nucleation at the interface between the crystalline solid and a quasi-liquid surface
layer.
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1. Introduction

Many solids exhibit surface melting near the bulk melting temperature, and it is widely believed
that the dynamics of crystal growth from the vapor phase is strongly influenced by the presence of
surface melting [1-5]. Our theoretical understanding of crystal growth mechanisms in such cases is
quite poor, however, owing to the complex nature of the disordered “quasi-liquid” layer (QLL) at
the solid/vapor interface [6]. Ice provides an excellent system in which to investigate the effects of
surface melting on crystal growth, since there is evidence that a QLL exists on both the prism and
basal facets for temperatures above 7'~ —10 C [7]. In addition, for these same temperatures the
crystal growth forms are nearly always strongly faceted, indicating the absence of surface roughening
(exceptions include the prism facets for T > —2 C, and very high supersaturations which produce
kinetic roughening [8]). Ice is, in addition, an extremely well studied substance, and many aspects
of the growth and surface structure of ice have been characterized using a host of experimental and
theoretical techniques.

It is believed that surface melting is the dominant factor giving rise to the dramatic variation of
ice crystal growth morphology with temperature: growth forms are plate-like at -2 C, columnar near
-5 C, plate-like again at -15 C, and columnar near -30 C [8]. The vapor/quasi-liquid/solid (V/Q/S)
model developed by Kuroda, Lacmann and collaborators [3-5, 8] proposes that the temperature
dependence of the quasi-liquid layer thickness, which is different for the basal and prism facets,
affects crystal growth rates in such a way as to produce the observed temperature-dependent growth
morphologies. This intriguing, but speculative, model makes several predictions for the growth rates
of ice as a function of surface supersaturation which to date have been largely untested. The aim
of the present investigation is to examine the V/Q/S model using quantitative measurements of the
condensation coefficients as a function of supersaturation.
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At T = —5.5 C, where the present measurements were obtained, the QLL thickness at the
ice/vapor interface is approximately 20 nm thick, and models of surface melting often counsider
effectively distinct solid/QLL and QLL/vapor interfaces [7]. In this case we can calculate the
growth rates at the two interfaces separately, subsequently setting them equal to one another for
the actual growth rate. Following Kuroda and Lacmann [3], the growth velocity at the QLL/vapor
interface is given by the Hertz-Knudsen equation

VQLL/vapor — ®QLL & [psurf — p(é‘)}
V2mmkT

where agpy is the condensation coefficient of the QLL/vapor interface, 2 is the molecular volume
in the QLL, ¢ is the QLL thickness, p,,, s is the vapor pressure just above the surface, and p(¢) is
the quasi-equilibrium vapor pressure above a QLL of thickness ¢ (defined as the vapor pressure for
which the growth rate goes to zero). At equilibrium § = §g and p(6p) = po, the true equilibrium
vapor pressure of the ice surface, while for a growing crystal § > 6o and p(6) > pg. We have assumed
that the QLL/vapor interface is effectively rough (no nucleation barriers), and for further discussion
here we will assume that agr;, = 1. This latter assumption appears to be a reasonable one, given the
long history of measurements of the growth of liquid water droplets, which indicate a condensation
coefficient that is at least close to unity [9] (there remains, however, some contradictory evidence in
favor of a small condensation coefficient [10]).

In contrast to the QLL/vapor interface, the solid/QLL interface is not rough, as evidenced by the
strongly faceted ice crystal growth forms. For the growth conditions considered here, it is thought
that the dislocation density at this interface is low [11], and that the growth is limited primarily by
2D nucleation. Then the growth rate is given by a multinucleation model as [12]

5/6
Usolid/QLL = B (A:u'solid/QLL/kT) / exp [~AG3/3kT
where AGS ~ Wﬂgozid/QLLfO/ANsolz’d/QLL is the formation free energy of a 2D nucleus, Kyo1iq/QLL
is the edge free energy at the solid/QLL interface, fy is the area occupied by a molecule, and
Aptsoriasqrr(6) is the chemical potential difference at the solid/QLL interface.

The growth dynamics contained in the prefactor B are not well understood, owing to the com-
plexity of the solid/QLL interface. If we assume that the growth is similar to that of a normal
solid/liquid interface, we can write [3,5] B = nDgpL/h, where Dgpy, is the diffusion constant in
the QLL, h is the step height, and 7 is a phenomenological factor which relates D¢y, to interfa-
cial transport [13]. One expects D¢rr to be considerably smaller than the diffusion constant in the
bulk liquid, as has been observed in measurements of rare-gas crystal growth [14].

We define the overall condensation coefficient o by
OéQ [psu'rf - pO}
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where v = VgL L jvapor = Usolid/QLL i the measured surface growth velocity and ogyry = (Psury —
po)/po- For the growth conditions of our measurements we find «« <« 1, which from the above
implies that p(6) =~ psurs. Thus the chemical potential difference across the QLL/vapor sur-
face, Apigrrivapor = KT'10g(Psur/p(6)), is small, so that the chemical potential drop is nearly
all at the solid/QLL layer, giving Apyora/orr = Ap = KT10g(psury/po). More quantitatively,
ARGLLjvapor/ Al = af/aqgrr < 1in the limit o4y < 1, which again implies Ap,g0/00L = A
With this we have

v =

v~ B(Ap/ET)*® exp [~ AGy/3kT]
with AGS ~ mﬁo” 4/QLL fo/Ap. Given this model, measurements of crystal growth rates can be
used to infer B and kgoq/@rr- A specific prediction of the V/Q/S model is that the threshold
value of pgyrr (below which growth is strongly inhibited by a 2D nucleation barrier) will be fairly
low, reflecting the fact that kgoq/qrr is considerably smaller that Kgoiq/vapor, the latter being a
theoretical quantity calculated for a surface without surface melting.



2. Free-Fall Crystal Growth Measurements

Figure 1 shows a schematic diagram of our ice crystal growth chamber, which was used to grow
freely falling crystals, thus avoiding systematic errors introduced by substrate interactions [15].
The large volume of the chamber facilitated rapid convective mixing, and thus produced a large
supersaturated region in the chamber center, far from the chamber walls. Since the convection was
strongly turbulent (Reynolds number ~ 10%), mixing produced nearly isothermal conditions within
the tank: the air temperature 1 cm above the heated water surfaces was measured to be no more
than 1-2 degrees above the temperature in the rest of the tank, and the temperature 10 cm above
the water surface was within a few tenths of a degree of the temperature at the tank center. From
these and other measurements we confirmed that the ambient temperature throughout most of the
central region of the chamber was constant to within a few tenths of a degree. All the data shown
here were taken with the tank center temperature equal to -5.5 C (£0.1 C), which is the temperature
at which the growth rate of the prism facets is a local minimum [8,19)].

The ambient water vapor supersaturation relative to ice, 0o = (Poo — Po)/Po, Within the cham-
ber necessarily peaked above the heated water reservoirs, and went to zero at the chamber walls,
which were covered with frost. Since convective mixing in the chamber was rapid, and the air tem-
perature nearly constant, this implies that there was a large volume in middle of the tank where
the supersaturation was nearly constant during our growth measurements. We measured the su-
persaturation at the geometrical center of the tank, immediately before and after crystal growth
data were taken, using the differential technique described in [20]. The volume of air sampled was
much less than the tank volume, and care was taken that the supersaturation was not substantially
perturbed by the measurement process [20]. The supersaturation profile was not directly measured
throughout the tank, and the variation in supersaturation seen by the growing crystals remains a
source of possible systematic error in our measurements (see below).

After the chamber was allowed to reach a stable state (several hours), very few droplets or
crystals formed inside the chamber without first being intentionally nucleated. A small fleck of dry
ice was dropped into the chamber to nucleate a number of ice crystals, which then grew as they
drifted and slowly fell through the chamber. The sizes of the larger crystals that fell onto a small
observing window at the bottom of the chamber were subsequently recorded as a function of time
after the nucleation event. Figure 2 shows typical data from several growth runs, taken 5-10 minutes
apart.

At a given time we observed a substantial number of crystals falling onto the window with sizes
considerably smaller than those recorded and shown in Figure 2. We believe that these smaller
crystals grew near the walls of the growth chamber, or near other falling crystals, where the super-
saturation was lower and the growth rates correspondingly smaller. We observed after a series of
growth runs, however, that there was clearly an upper bound to the crystal size at each given time.
We believe the upper bound was defined by those crystals which, by chance, spent most of their
time in relative isolation drifting through the center of the chamber, where the supersaturation was
high. Since we expect a large volume in the tank center with nearly constant supersaturation, it is
not surprising that a well-defined upper bound was observed. The effects of competition between
growing crystals were observed by varying the number of nucleated crystals in a given run. Care
was taken to nucleate a small enough number of crystals so that competition did not affect the
observed upper bound in crystal size as a function of time.

Observations were made using two different microscope magnifications. A low-magnification
view was used to spot falling crystals, and a high-magnification view was used to zoom in on the
larger crystals, which could then be accurately measured from a videotape of the growth run. This
procedure produced quite consistent results on a given day, during which time the conditions of the
tank were stable. The observed crystal morphologies were predominantly simple hexagonal prisins,
always with negligible hollowing of the prism facets. The basal facets did exhibit some hollowing for
the larger crystals at the higher supersaturations. We rejected crystals with more complex (usually
polycrystalline) morphologies.



Growth data from a series of runs, producing a set of data like those shown in Figure 2, were
combined by drawing power-law curves delineating the approximate maximum crystal size as a
function of time. Specifically, we approximated this data by the functional form L(t) = Lygo(t/7)?
with 7 = 100 seconds, and independent parameters Lygg and 8 were chosen for each of the two crystal
facets. Length measurements are defined such that L. is the length of the columnar prism, and L, is
the tip-to-tip width of the prism. Note that a power-law behavior is expected from consideration of
simpler growth forms — for example for spherical crystals limited purely by diffusion R(t) ~ t'/2, and
for needle-like growth L(t) ~ ¢ (when L is large compared to the needle diameter). The situation is
more complex for the columnar crystals observed, but we found that all our data were well described
by power-law fits.

Figure 3 shows the results of our growth measurements at ambient supersaturation levels in
the range 1 < 0, < 11 percent, all taken at a temperature of -5.5 C. These measurements can
be compared directly with previous free-fall growth measurements obtained at the water vapor
supersaturation level only [21-23]. These other data sets were extrapolated to ¢ = 100 seconds by
assuming growth of the form L(t) = Ligg(t/7)?, with 3, = 0.46 and 3, = 0.83, as these exponent
values were determined by the present measurements. The data sets by Yamashita [21] and Ryan
et al. [22] yielded Lygg values that agreed fairly well with each other and with the present results,
as is shown in Figure 3. This good agreement supports our supposition that convection mixes the
ambient gas sufficiently to produce a large region of nearly constant supersaturation in the center
of our growth chamber.

The data by Takahashi et al. [23]yielded the values of L, 100 = 42 pm and L. 190 = 57 pm, which
are substantially different from Yamashita [21], Ryan et al. [22], and the present data. However,
the levitation technique used by Takahashi et al. was quite different in comparison to the free-fall
measurements used by the other authors, and this technique was clearly not intended or well-suited
for observing very small crystals; thus it is perhaps not too surprising that the Takahashi et al. data
set yielded inconsistent crystal sizes at ¢ = 100 seconds.

We combined all our growth data by drawing curves through the parameters in Figure 3,
which yielded the curves: L 100(000) = 135[10g;0(1 + 000)]1?%, La,100(0o0) = 30[logyo(1 + 000)] 22,
Bo(0s) = 0.750%% and B, (o) = 0.30%:25) which are plotted with the data in Figure 3. Here the
L1gp values are in microns, 0, is the ambient supersaturation in percent, and the functional forms
where chosen simply to fit the data well over the range of our measurements (1 < 0o, < 11). We
then used these functions to infer the growth of ideal crystals at 0, = 1,2,4,7, and 11 percent, and
these smoothed data points were used in the subsequent analysis.

3. Modeling Crystal Growth

The above measurements of crystal size, giving L,(t) and L.(t), provide a good approximation
to the ideal case of an isolated, hexagonal ice prism growing in a medium which has an ambient
supersaturation 0., and temperature T,,. From the fit parameters describing L (t, 0s) for the two
facets (x = a,c) we can derive the perpendicular surface growth velocities v, (t,0o0) = (dL,/dt)/2
(ignoring a slight geometrical correction for the prism facet). The time dependence here arises
because the surface supersaturation og,,s is itself changing with time, as it depends on the size and
morphology of the growing crystal. In order to extract quantitative information on surface kinetics
from these velocities, we must model the growth process to obtain the surface supersaturation, thus
yielding the physically relevant function v, (0surs) (or equivalently ag(osurr)) for the two facets.
The growth of an isolated crystal is governed by three physical processes: particle diffusion, heat
diffusion, and surface kinetics. Particle diffusion limits the rate at which molecules can reach the
growing crystal, and thus reduces the water vapor pressure just above the crystal surface to a value
substantially lower than ambient, s0 psurf < Poo. Heat diffusion through the ambient gas carries
away the latent heat deposited as the crystal grows, and the balance of the inward and outward heat
fluxes raises the crystal temperature to a value greater than ambient, Ty, > Too. The increased



temperature results in an increased equilibrium vapor pressure pg of the crystal surface relative
to that of a non-growing crystal, since pg surf = Po(Lsurf) > Po(To). Both these processes affect
the supersaturation just above the crystal surface, 0ourf = (Psurf — P0,surf)/Po,surf. The intrinsic
physics behind particle and heat diffusion is of course well understood, and the conditions under
which our data were taken allow a number of simplifications which make it possible to calculate the
effects of both these diffusion processes. By modeling these processes we can then infer quantitative
information about surface kinetics. We note that since the Reynolds number associated with the
velocity of the falling crystal through the medium is quite small -~ Re ~ (0.005 m/sec)(10™* m)/(1.5x
1073 m?/ sec) ~ 0.03 — we are justified in neglecting the so-called ventilation effects of this motion
on crystal growth [24].

Crystal heating from the deposition of latent heat during growth was modeled by assuming that
generated latent heat is carried away solely by conduction, and in this case the temperature rise of
a growing crystal can be estimated as
(2vq L. + eveLy) Lo pU

2(LaLo)Y? K

where v, are the measured surface growth velocities of the two facets, p is the density of ice, U
is the latent heat of condensation, and « is the thermal conductivity of air. The parameter ¢ is a
correction factor to take into account the observed hollowing of the basal facets. The high thermal
conductivity of ice relative to air, together with the small growth velocities, insures that the crystal
temperature is essentially constant throughout the solid. Since the quantities on the right side of the
above equation are all known or were measured, it was straightforward to calculate AT for a given
growing crystal. For our worst case of growth at o, = 11 percent we find AT ~ 0.5 C, which is
substantial, while for smaller values of o, the temperature correction was correspondingly smaller.

To model particle diffusion we used a cylindrically symmetric Green’s function technique [19],
which was further extended to include the effects of surface tension. With this method two approx-
imations are used to greatly simplify the diffusion problem, namely cylindrical symmetry (which
reduces the dimensionality of the problem), and the slow-growth approximation (for which the diffu-
sion equation reduces to Laplace’s equation). Given that our observations show negligible hollowing
of the prism facets in all cases, the first approximation mainly introduces a small geometrical cor-
rection. The latter approximation is justified by the fact that the diffusion time 7 ~ \? /D, where
A is a typical crystal size and D is the diffusion constant in air, was much smaller than the crystal
growth time in our experiments.

The diffusion equation in this case is V2o = 0, where o = (p — po)/po, p is the water vapor
partial pressure, and py is evaluated at T, ¢, which includes the temperature correction above. For
this equation we have the mixed boundary condition

Po ~ o
D ) sur
Nice kT (n v {T) !

AT =~

K Osurf =
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and the surface growth velocity is v = K0 syur. The functional form of K (6), where 6 is the angle of
the surface normal relative to the crystal axis, was taken to be cusp-like, with deep local minima for
growth in the basal and prism directions, thus producing faceted growth [19]. We define a.is, and
Qpgsal tO be the values of « at the cusps for the two facets. These quantities dominate the growth
rates of faceted crystals, which are insensitive to the width of the cusps [19].

For a solution to the diffusion equation we input the ambient supersaturation o.,, the crystal
dimensions, L, and L., and the two condensation coeflicients apasai and cpyism. From the solution
we obtained 0,.,f, and thus the growth velocities of the two facets. The condensation coefficients
were adjusted until the derived growth velocities agreed with the observed values. As a check we
compared the results of our code with results using a commercial code which could solve cylindrically
symmetric heat diffusion problems [25]. The present particle diffusion problem could easily be cast
into the heat diffusion format, provided we used the so-called convective boundary conditions (also

K=«



known as boundary conditions of the third kind).

A modeling approach which produced robust results from our data was to interpolate the data
taken at a given supersaturation o, to that point in time when the crystal size is L, = 50 pm. In this
way we are looking at the supersaturation dependence of the growth of crystals of nearly identical size
and shape, which reduces modeling errors. The L, values are known at these times, as are the surface
growth velocities. For these fixed-L. crystals the modeling proceeded by choosing condensation
coefficients, apgsqr and Qppism, for which the model reproduced the observed growth velocities, with
the results shown in Figure 4. In these calculations we assumed simple right cylindrical crystals,
and assumed that the observed crystal growth velocity was equal to the highest velocity calculated
along the length of a given facet. The calculation also produced the supersaturation og,,; at the
crystal surface as a function of spatial position.

Since our aim was to produce quantitative measurements of the condensation coefficients, the
effects of a number of possible systematic errors were explored in our analysis. The effects of
hollowing of the basal facets (which was observed in the larger crystals at the higher supersaturation
levels) introduced some uncertainty in our inferred apgsqr, which arose from inherent modeling
effects [19], as well as from changes in the temperature correction described above. We investigated
these uncertainties by varying the amount of hollowing input into our model. We also explored
how possible systematic errors in our ambient supersaturation measurements may have affected
our results. Introducing plausible systematic effects like these typically resulted in changes in the
scaling of our inferred apgsal, Qprism, and oy, essentially changing the axes in Figure 4 by small
multiplicative factors. However, the essential features derived from our measurements, particularly
the rapid increase in apgsqr and aprism above a critical supersaturation, were found to be quite
robust, insensitive to modeling details and other potential systematic errors.

4. Discussion

A first conclusion from our investigation is that growth measurements like those described above
are an effective tool for obtaining quantitative measurements of condensation coefficients describing
crystal growth. The free-fall technique allows the growth of small, isolated, single crystals, unfettered
by the presence of a substrate. By measuring the upper bound of crystal size as a function of time,
one greatly reduces the deleterious effects of competition between growing crystals, and effects
from the boundary walls of the growth chamber, since these both act to reduce crystal growth.
For isolated crystals we find that particle and heat transport can be adequately modeled using a
cylindrically symmetric approximation, allowing the condensation coefficients, cpasar and aprism, to
be extracted as a function of o4, f, the supersaturation just above the growing surface.

A second conclusion from our investigation is that measurements of growth as a function of
surface supersaturation provide an excellent test of the V/Q/S model. Our measured values of the
condensation coefficients, pasa; and qprism shown in Figure 4, clearly show a pronounced increase
for osury 2 1 percent, a result which proved to be quite insensitive to modeling uncertainties
and other plausible potential systematic errors [26]. We attribute this threshold behavior to a 2D
nucleation barrier at the solid/QLL interface, as was proposed in the V/Q/S model of Kuroda and
Lacmann [3]. Using the multinucleation model described above, we expect that the condensation

coefficients can be described by
vV 2rmkT —1/6
on surf

B vV 2rmkT —1/6
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where we have used o,y ~ Ap/kT. Fitting this functional form to our data yields the curves

~1/6 -1/6 .
Opgsal ~ 0.1rrsw/f exp(—1/0gurf) and appism = 0.03frsw/f exp(—1.3/0surf), (Where o4y ¢ is in per-

cent) as shown in Figure 4. The threshold behavior in the data is clearly even more pronounced than
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the model. From the fit we find Kso1i0/Q L1 pasat = 1.1x1072 J/m and Ksoria Qi prism =~ 1.3x 10712
J/m. These values are only slightly larger than the value kyoiq/iiquic = 7 X 107 J/m de-
rived from measurements of ice growth from the liquid [3], and are considerably smaller than
Ksolid/vapor = 4 X 10~ J/m [3]. This result strongly supports the V/Q/S model, and that a QLL
does exist on both the prism and basal faces at T' = —5.5 C. Nevertheless, we must acknowledge
that the V/Q/S model is not necessarily the correct explanation of our data, since we do not know
the QLL thickness at this temperature with any real accuracy.

An interesting feature of the V/Q/S model is that the threshold surface supersaturation (below
which the growth is strongly limited by 2D nucleation) is expected to be approximately equal for
the basal and prism facets, since we expect Kgoiq/¢rr to be only weakly dependent on ¢, the QLL
thickness [3]. Our measurements support this expectation. From these observations we see that
surface melting substantially reduces the 2D nucleation barrier (relative to that of a bare solid /vapor
interface), which in turn enhances crystal growth. But in contrast to surface roughening, which
completely eliminates the nucleation barrier, for the case of surface melting we see that the location
of the 2D nucleation barrier is moved to the solid/QLL interface.

From the fit values of the prefactors B, we find (nDgrL)y,eq = 29 x 1071 m?/sec and
(UDQLL)pTism ~ 4.4 x 1071% m?/sec. Assuming 7, ~ 1, we see these values are comparable to
Dgrr ~ 3 x 107 m?/sec obtained from NMR measurements of polycrystalline ice [5,27]. This
also confirms Dgrr, < Dyiguia, consistent with the results obtained from measurements of rare gas
crystal growth [14]. According to the V/Q/S model, the different values of D¢y, we infer for the
two facets reflect the different structures of the two surfaces, since Dgy 1, is expected to be strongly
dependent on the QLL thickness.

The qualitative and quantitative agreement between our measurements and the V/Q/S model
is encouraging, although clearly the ice surface structure and growth dynamics are quite complex.
We are currently undertaking experiments to systematically measure ice crystal growth rates as a
function of supersaturation over a range of different temperatures and in different solvent gases,
which we believe will help shed new light on the relationship between surface structure and crystal
growth.
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earlier, since the prism facets exhibit negligible hollowing under these conditions.

Y. Mizuno and N. Hanafusa, in: Proc. Tth Symp. on Physics and Chemistry of Ice, Grenoble,
1986 [J. Physique Collog. 48 (1987) C1-511].
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Figure 1. Schematic diagram of the chamber used for growing ice crystals in free-fall. Cooling coils
refrigerate the chamber, while heated water supersaturates the air. Mixing via convection maintains
a uniform air temperature within the chamber. A fleck of dry ice is dropped into the top of the
chamber to nucleate ice crystals. The crystals grow while falling in the chamber, and some land on
a window where they can be observed with a microscope.
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Figure 2. Measurements of the sizes of individual ice crystals as a function of time after nucleation,
taken at an ambient supersaturation of 2.95 percent. Different point symbols represent different
growth runs. Only the larger crystals were recorded at a given time, in order to measure the upper
cut-off of the size distribution function. The lines indicate the approximate maximum crystal size
as a function of time, representing crystal growth near the center of the growth chamber.
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Figure 3. Fit parameters derived from growth data taken at different supersaturation levels, as
described in the text. The open diamonds and circles show data by Ryan et. al [22] and Yamashita
[21], respectively, taken at the water supersaturation level.
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Figure 4. Inferred values of the condensation coefficients describing growth of the basal and prism
faces of ice, as a function of supersaturation at the crystal surface. The curves show two-parameter
fits to the data using the multinucleation model described in the text.
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