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Abstract. We derive a set of algorithms for simulating the diffusion-limited growth of faceted crystals using
local cellular automata. This technique has been shown to work well in reproducing realistic crystal mor-
phologies, and the present work provides a more rigorous physical foundation that connects the numerical
code to the physics of attachment kinetics and diffusion dynamics. We then apply these algorithms to examine
a novel morphological transition in the growth of thin plate-like crystals.

1. Introduction

The formation of complex structures during solidification often results from a subtle interplay of nonequilib-
rium, nonlinear processes, for which seemingly small changes in molecular dynamics at the nanoscale can produce
profound morphological changes at all scales. One popular example of this phenomenon is the formation of snow
crystals, which are ice crystals that grow from water vapor in an inert background gas. Although this is a relatively
simple, monomolecular system, snow crystals display a remarkable variety of columnar and plate-like forms, and
much of the phenomenology of their growth remains poorly understood, even at a qualitative level [1].

Viewed broadly, snow crystal structures result from diffusion-limited crystal growth in the presence of strongly
anisotropic attachment kinetics, and similar circumstances occur in a large class of solidification problems. We
can break such problems down into two main physical components: 1) the attachment kinetics that describes the
molecular growth dynamics at the solid surface, and 2) particle transport via diffusion to the growing crystal. In the
present paper we focus on the latter problem – numerically solving the diffusion equation to model faceted crystal
growth.

Computational models of diffusion-limited solidification have typically been divided into two broad camps –
‘front-tracking’ models, in which one keeps track of the solidification interface explicitly (e.g. [2, 3, 4]), and ‘phase-
field’ models, in which the solidification front is numerically smoothed and not explicitly tracked (e.g. [5, 6]). To
date, both techniques have had considerable success in modeling simple dendritic growth, but neither has been able
to satisfactorily model complex morphological structures in the presence of strong faceting [7, 8, 9, 10], owing to the
appearance of dynamical and numerical instabilities.

A third computation technique - local cellular automata (LCA) - has recently been applied to the problem of
modeling faceted crystal growth with excellent initial success, and LCA models have produced realistic-looking
snow crystal growth simulations in both 2D [11, 12] and 3D [13]. To date, however these local lattice models have
incorporated largely ad hoc growth rules (albeit physically motivated to some extent), so the connection between
the resulting simulations and real crystal growth remains tenuous. These algorithms yielded structures that bear a
striking resemblance to many features seen in real snow crystals, but the similarities are largely qualitative. As a
result, these models cannot be directly compared with crystal growth measurements to provide quantitative insights
into growth dynamics.

The goal of this paper is to produce more accurate, physically derived rules for modeling with cellular automata,
thus providing a direct connection between the numerical code and the physics of attachment kinetics and diffusion
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dynamics governing faceted crystal growth. The algorithms derived below provide a more rigorous physical founda-
tion for using LCA techniques in crystal growth models. After deriving growth algorithms below for the case of snow
crystal formation, we then examine the properties of the LCA model and describe a novel morphological transition
seen in plate-like growth.

2. Crystal Growth Dynamics

We focus our discussion on the growth of snow crystals, as this is perhaps the most studied example of strongly
faceted, diffusion-limited crystal growth. Having such a focus allows a more direct look at the relevant physics,
which becomes somewhat obscured in a more general discussion. Extending the algorithms to other materials should
be relatively straightforward, provided the growth dynamics are of a similar character.

We begin by assuming the "standard model" of snow crystal growth [1], for which we can first write the growth
velocity normal to the surface in terms of the Hertz-Knudsen formula

vn = α
csat
csolid

r
kT

2πm
σsurf (1)

= αvkinσsurf

where the latter expression defines the velocity vkin. In this expression kT is Boltzmann’s constant times temperature,
m is the mass of a water molecule, csolid = ρice/m is the number density for ice, σsurf = (csurf − csat)/csat is the
supersaturation just above the growing surface, csurf is the water vapor number density at the surface, and csat(T ) is
the equilibrium number density above a flat ice surface. The dimensionless parameter α is known as the condensation
coefficient, and it embodies the surface physics that governs how water molecules are incorporated into the ice lattice,
collectively known as the attachment kinetics.

The attachment kinetics can be nontrivial, so in general α will depend on T , σsurf , and perhaps on the surface
structure and geometry, surface chemistry, and other factors. If molecules striking the surface are instantly incorpo-
rated into it, then α = 1; otherwise we must have α ≤ 1. The appearance of crystal facets indicates that the growth
is limited in part by attachment kinetics, so we must have α < 1 on faceted surfaces.

This model assumes that the attachment kinetics are purely local, without significant large-scale surface diffusion,
especially around corners between facets. It also assumes that all complex aspects of the molecular dynamics at
the ice surface, which may include surface melting and any number of other details, can be absorbed into some
parameterization of α as a function of external parameters. There is currently no evidence that this "standard model"
is incorrect [1], but at the same time we cannot prove that the attachment kinetics is always well described by Equation
1. For the present discussion, we will assume that this expression is valid for circumstances relevant to snow crystal
growth.

Particle transport through the air surrounding a growing crystal is described by the diffusion equation
∂c

∂t
= D∇2c (2)

where c(x) is the water molecule number density surrounding the crystal and D is the diffusion constant. The
timescale for diffusion to adjust the vapor concentration in the vicinity of a crystal is τdiffusion ≈ R2/D, where
R is a characteristic crystal size. This is to be compared with the growth time, τgrowth ≈ 2R/vn, where vn is
the growth velocity of the solidification front normal to the surface. The ratio of these two timescales is the Peclet
number, p = Rvn/2D. For typical growth rates of snow crystals we find p . 10−5, which means that diffusion
adjusts the particle density around the crystal much faster than the crystal shape changes. In this case the diffusion
equation reduces to Laplace’s equation, ∇2c = 0, which must be solved with the appropriate boundary conditions.
Using this slow-growth limit often simplifies the problem considerably in comparison to much of the literature on
diffusion-limited solidification [14].
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The continuity equation at the interface gives

vn =
D

csolid

³bn ·−→∇c´
surf

=
csatD

csolid

³bn ·−→∇σ´
surf

(3)

where σ(x) = [c(x)− csat]/csat and we are assuming the isothermal case, so csat is independent of spatial position.
The latter assumption means we will be ignoring effects that arise when a growing crystal experiences a temperature
increase associated with the latent heat of solidification. These effects are generally small and produce results that
are similar to a simple decrease in the supersaturation surrounding the crystal [1]. Thus we believe we will not be
sacrificing much interesting physics by using the isothermal approximation. We then write the diffusion equation in
terms of the supersaturation field (since csat is constant) as

∂σ

∂t
= D∇2σ (4)

The attachment coefficient α is not well known for ice, but on facet surfaces it appears to be well described by
nucleation-limited growth [1, 15, 16], which gives

α(σ) ≈ A exp (−σ0/σ) (5)

where A and σ0 are parameters that depend on temperature and are different for the basal and prism facets. For
growth governed by spiral dislocations, we expect [17]

α(σ) ≈ Cσ (6)

where C is independent of σ (but depends on external parameters such as temperature), which gives vn ∼ σ2.

3. Derivation of Growth Algorithms

3.1 The 1D Problem

Because of its simplicity, it is instructive to begin with the 1D crystal growth problem, for which we assume a linear
array of grid elements, or pixels, of width ∆x. Each pixel is assumed to be filled with either ice or air at any given
time, and each air pixel has a well-defined supersaturation σ(x, t) associated with it. The discrete form of the 1D
diffusion equation is

∂σ

∂t
= D

d2σ

dx2
(7)

σ(x, t+ dt)− σ(x, t)

dt
= D

∙
σ(x+ dx)− 2σ(x) + σ(x− dx)

dx2

¸
which yields

σ(x, t+∆t) = ∆τσ(x−∆x, t) + (1− 2∆τ)σ(x, t) +∆τσ(x+∆x, t) (8)
where ∆t is the physical time step in our simulation code and ∆x is the grid spacing (assumed uniform). The
quantity

∆τ =
D∆t

(∆x)
2 (9)

is a dimensionless time-step parameter. We note that (∆x)2 /D is one natural time scale of the problem, equal the
time required for diffusion to adjust the supersaturation field over a distance ∆x. We define τ =

P
∆τ to be the

dimensionless physical time in our problem.
We use Equation 8 to effectively relax the supersaturation field to a suitable solution of the diffusion equation.

Choosing∆τ too small will require an excessive amount of computer time, while taking∆τ > 1 leads to instabilities
near sharp edges (e.g., at physical boundaries) in σ. It appears that∆τ = 0.5 is close to optimal, yielding the simple
algorithm

σ(x, τ +∆τ) =
1

2
σ(x−∆x, τ) + 1

2
σ(x+∆x, τ) (10)

for the 1D case. This expression is used to propagate σ in time for regions away from the growing crystal surface,
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where diffusion alone affects the particle dynamics.
Our model crystal grows as water molecules diffuse in from the outer boundaries of the system and attach to the

ice surface. For boundary pixels (i.e., air pixels that are adjacent to ice pixels), we see physically that the ice surface
effectively "drains" the supersaturation as water vapor condenses, which in turn causes the solidification front to
move with a velocity v = αvkinσ. This "draining" reduces the supersaturation of boundary pixels according to

σ(τ +∆τ) = σ(1− α∆ξ∆τ) (11)

where∆ξ = ∆x/X0 is a dimensionless pixel size in the problem and

X0 =
csat
csolid

D

vkin
(12)

= D

r
2πm

kT

≈
µ

D

Dair

¶
(0.15 μm)

is the natural physical scale of the problem. Here Dair = 2 × 10−5 m/sec2 is the diffusion constant for air at one
atmospheric pressure, and the numerical value pertains to ice crystal growth.

We can combine Equation 11 with Equation 8 to create a new propagation algorithm for boundary pixels

σ(x, τ +∆τ) = ∆τσsolid(τ) + (1− 2∆τ)σ(x, t) +∆τσ(x+∆x, τ) (13)

where the boundary pixel is at x and the ice pixel is at x = x−∆x, and

σsolid(τ) = σ(x, τ)(1− α∆ξ) (14)

With this, the same algorithm can be used for all air pixels, including boundary pixels, provided one substitutes σsolid
in the appropriate place for boundary pixels.

For the conversion of boundary pixels to ice, mass conservation suggests that we define an accumulated mass
parameter λ that begins as λ = 0 for each air pixel. For boundary pixels, we increment λ using

λ→ λ+ ασ∆λ (15)

for each time step, where
∆λ =

csat
csolid

∆τ∆ξ (16)
When λ ≥ 1, that pixel converts from air to ice.

For ice we have csat/csolid ≈ 10−6, while the dimensionless parameters σ, ∆τ , α, ∆ξ will all be of order unity
or perhaps substantially smaller. Thus it would take more than a million time steps before a boundary pixel becomes
an ice pixel. This situation reflects the small Peclet number in our problem, so the growth is much slower than the
time it takes diffusion to adjust the supersaturation field. We speed up the code by taking

∆λ = Λ∆τ∆ξ (17)

where Λ is an input constant, discussed further below.

3.2 The 2D problem in Cartesian Coordinates

Following the 1D analysis, the discrete form of the 2D diffusion equation gives

σ(τ +∆τ) = ∆τ [σ(x−∆x) + σ(x+∆x) + σ(y −∆y) + σ(y +∆y)] + (1− 4∆τ)σ (18)

where we have dropped indices when doing so does not confuse the expression. If we take our time parameter to be
∆τ = 1/4, this becomes

σ(τ +∆τ) =
1

4
[σ(x−∆x) + σ(x+∆x) + σ(y −∆y) + σ(y +∆y)] (19)

For boundary pixels, we again use this expression and substitute

σsolid = σ(1− α∆ξ) (20)
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for each neighboring ice pixel, as with the 1D case, and we have further assumed a uniform grid with∆x = ∆y.
We again define an accumulated mass parameter λ and increment it with

λ→ λ+
X

ασ∆λ (21)

for each time step, where the sum is over the number of ice neighbors. When λ ≥ 1, that pixel converts from air to
ice.

In both these expressions we must choose α with some care, as its value will depend critically on the number
and orientation of neighboring solid pixels. We label a boundary pixel with (Nx, Ny), where Nx is the number of
neighboring ice pixels in the x direction and Ny is the number of ice neighbors in the y direction. Both Nx and Ny

can take values 0, 1, or 2, giving nine cases for (Nx, Ny). The cases are:
(0,0) - the pixel is an air pixel
(0,1) - one ice neighbor in the y direction, so α = αy, the physical value appropriate for a y facet surface.
(1,0) - one ice neighbor in the x direction, so α = αx for an x facet surface.
(1,1) - a kink site, where the growth will not be nucleation-limited, since the corner provides a source of molecular

steps. We do not know a priori what value to use for α on this site, but assume a constant α = α11.
(0,2), (1,2), (2,0), (2,1), (2,2) - these are all unusual cases where the growth will be fast, so it shouldn’t matter

much what we choose for α, as long as it is large.
We can index these possibilities with a single number by computing a boundary parameter B = 2N2

x + N2
y ,

where Nx is the number of x neighbors (0, 1, or 2) and Ny is the number of y neighbors. We then have B = 0 for an
air pixel, B = 1 for a y facet, B = 2 for an x facet, B = 3 for a (1,1) kink location, and B > 3 for all other cases.

If we consider the special case where α is equal to some constant value, independent of the orientation of the
surface with respect to the crystal lattice, then the growth velocity should equal v = αvkinσ for all surfaces. For the
(01) or (10) facet surfaces 2 in this constant-α case, we take αx = αy = α, while an analysis of the growth of a (11)
surface shows that we must take α11 = α/

√
2 if the above algorithm is to produce the correct growth velocity.

3.3 The 2D Problem in Cylindrical Coordinates

The discrete version of the Laplacian in cylindrical coordinates yields

σ(τ +∆τ) = ∆τ

∙µ
1− ∆r

2r

¶
σ(r −∆r) +

µ
1 +

∆r

2r

¶
σ(r +∆r) + σ(z −∆z) + σ(z +∆z)

¸
+ (1− 4∆τ)σ

(22)
where we have assumed ∂σ/∂θ = 0 to reduce the problem to 2D, thus yielding cylindrically symmetric crystal
structures. The problem then proceeds essentially as with the 2D case in rectangular coordinates, and similar (1 −
∆r/2r) correction factors are needed for σsolid and∆λ. With the preferred value of∆τ = 1/4 we have

σ(τ +∆τ) =
1

4

∙µ
1− ∆r

2r

¶
σ(r −∆r) +

µ
1 +

∆r

2r

¶
σ(r +∆r) + σ(z −∆z) + σ(z +∆z)

¸
(23)

In our model, we define the first row of pixels to have r = 0, for which we cannot evaluate the above expression.
Instead we revert to the Cartesian form of the Laplacian to give

σ(τ +∆τ) = ∆τ [4σ(r +∆r) + σ(z −∆z) + σ(z +∆z)] + (1− 6∆τ)σ (24)

for those pixels. If we take∆τ = 1/4 (the same as for r 6= 0), this becomes

σ(τ +∆τ) =
1

4
[4σ(r +∆r) + σ(z −∆z) + σ(z +∆z)]− 1

2
σ (25)

and the negative term leads to instabilities. We could correct this by choosing a smaller∆τ , but this would make the
code run more slowly. An alternative is to use ∆τ = 1/6 for the r = 0 special case only, giving

σ(τ +∆τ) =
1

6
[4σ(r +∆r) + σ(z −∆z) + σ(z +∆z)] (26)

2 The notation here – integers in parentheses without commas – refers to the usual Miller indices defining specific crystal surfaces. This should
not be confused with our previous notation – integers in parentheses with commas – which we used to label boundary pixels.
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Figure 1. A mapping of a hexagonal grid onto a rectangular grid. Corresponding pixels are numbered, showing the
arrangement of nearest neighbors in each case.

for r = 0 pixels. This isn’t a perfect solution, but we find it does not cause significant problems in the code, because
it is only applied to a single row of pixels.

3.4 The 2D Problem in Hexagonal Coordinates

We can model planar snow crystal growth using a hexagonal lattice, which can be mapped onto a rectangular lattice
as shown in Figure 1 [13]. The discrete diffusion equation becomes

σ(τ +∆τ) =
2

3
∆τ

6X
i=1

σi + (1− 4∆τ)σ (27)

where the index i refers to the six nearest neighbors around each pixel. For boundary pixels, we again use this
expression and substitute

σsolid = σ(1− α∆ξ) (28)
for each neighboring boundary pixel, as above, and we have taken∆x to be the distance between nearest neighbors.

We again define an accumulated mass parameter λ and increment it with

λ→ λ+
2

3

X
ασ∆λ (29)

for each time step, where the sum is over the number of ice neighbors. When λ ≥ 1, that pixel converts from air to
ice.

We label each boundary pixel with (N), where N is the number of nearest neighbors:
(0) - an air pixel
(1) - a boundary pixel at the tip of a hexagon. The growth will be low here, and it likely doesn’t matter much what

value is chosen for α. The growth should be sufficient, however, to allow the crystal to grow from its initial seed.
(2) - this case refers to the normal growth of a prism facet, and an analysis shows that we much choose α =¡√
3/2
¢
αprism so the growth equals v = αprismvkinσ for this surface.

(3) - this refers to growth at a kink site, and the choice of α here has a strong effect on the transition from faceted
to branched growth [13].

(4), (5), (6) - these are unusual cases where the growth is not much affected by the choice of α as long as it is
large (of order unity).

3.5 The 3D Problem in Hexagonal Coordinates

The discrete diffusion equation becomes

σ(τ +∆τ) =
2

3
∆τ

6X
i=1

σi +∆τ
2X

j=1

σj + (1− 6∆τ)σ (30)
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where the index i refers to the six nearest neighbors around each pixel in the basal (xy) plane and j refers to the
two neighbors perpendicular to this plane (the z direction). For boundary pixels, we again use this expression and
substitute

σsolid = σ(1− α∆ξ) (31)
for each neighboring boundary pixel, as above. We have taken ∆x to be the distance between nearest neighbors,
which is the same in the basal plane as in the z direction.

We again define an accumulated mass parameter λ and increment it with

λ→ λ+
2

3

6X
i=1

ασ∆λ+
2X

j=1

ασ∆λ (32)

for each time step, where the sums are over ice neighbors. When λ ≥ 1, that pixel converts from air to ice.
We label each boundary pixel with (Ni,Nj), where Ni is the number of nearest neighbors in the basal plane and

Nj is the number of neighbors in the z direction. We will assume that neighbors in the basal plane are contiguous.
Non-contiguous cases are unusual, and it shouldn’t matter much how we assign growth rates in those cases, as long
as α is large.

(0,0) - an air pixel
(1,0) - a boundary pixel at the tip of a hexagon, with no z neighbors. This is similar to the case (1) in the 2D

hexagonal problem above.
(2,0) - similar to the (2) case in the 2D hexagonal case above, and we take α =

¡√
3/2
¢
αprism.

(3,0) - growth at a kink site, similar to the (3) case above, and again the value of α chosen will have a strong
effect on the transition from faceted to branched growth [13].

(0,1) - growth of the basal facet; so we take α = αbasal.

(1,1) - not well determined, but faster than (1,0) or (0,1)
(2,1) - not well determined, but faster than (1,1) or (2,0)
(3,1) - again not well determined, but faster than (2,1). The values of α used for the (Ni, 1) sites will strongly

affect the transition from faceted growth to structure formation on the basal facet [13].
The values of α used for the remaining sites should be high, and the details will likely not affect the growth

dynamics significantly.

4. Using the Algorithms

4.1 Intrinsic Anisotropies

To test our code, we modeled the growth of spherical crystals with isotropic attachment kinetics, where there is a
simple analytic result for the growth rate. We limited the growth in our models to small changes in radius, to minimize
non-spherical growth that eventually arises from the Mullins-Sekerka instability [17]. Our numerical model followed
the prescriptions above for the 2D problem in cylindrical coordinates, with αx = αy = α = constant for the facet
surfaces and α11 = α/

√
2 for a (1,1) kink site. All higher-order sites with B > 3 are irrelevant for this problem,

because of the convex geometry of the spherical surface.
We found that our code generated growth rates that were always a few percent larger than the analytic theory

for all (reasonable) choices of α, ∆ξ, Λ, and other input parameters. Upon closer investigation, we found that our
algorithm produces growth of a (12) surface that is approximately 8 percent faster than the (01), (10), or (11) surfaces
(the latter surfaces all grow at the same rate, which, by design, is the correct rate).

This demonstrates that our choice of a fixed rectangular grid, along with only a small number of growth rules,
yields an intrinsic anisotropy in the growth algorithm. This anisotropy could be reduced by adding higher-order cor-
rections that specify slightly different α values for different boundary pixels, depending on the surface configuration
beyond just the nearest neighbors, but such corrections would be difficult to implement.
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This intrinsic anisotropy should not be a significant effect for strongly faceted growth, but we expect that our
LCA approach would not produce accurate morphological results for cases where the anisotropy in the attachment
kinetics is less than approximately 10 percent.

4.2 Scaling Behavior

If we run a growth code and produce some complex crystal shape, the interpretation of our result still contains an
ambiguity. The crystal size is given in pixels, where ∆x = ∆ξX0 is the pixel size. The parameter ∆ξ was fixed in
the code, but X0 depends on the diffusion constant D, which is not otherwise specified. Similarly, a single time step
in the code corresponds to a physical time

∆t =
(∆x)2

D
∆τ (33)

=
X2
0∆ξ

2∆τ

D
∼ D

Thus we see that the growth behavior at different air pressures (different D) is determined once we know the
growth at a single pressure (provided σ∞ is the same at the different pressures). If the air pressure is half an
atmosphere, the growth morphology (however complex) will be the same as at one atmosphere, except in the former
case the crystal will be double the size in double the time. This scaling behavior nicely explains why snow crystal
morphology is generally simpler for smaller crystals and/or for lower air pressures, which has long been observed
[1]. To my knowledge, this scaling behavior has not been identified in previous investigations of snow crystal growth.

4.3 Limitations on the Grid Size

The physical size of the grid is∆x = ∆ξX0, and there are limits to how coarse the grid can be without affecting the
growth or causing instabilities in the code. Taking ∆ξ > 1/α would cause σsolid to become negative, which causes
some concern in that it may produce instabilities in the code. With this limitation, the grid spacing could not be larger
than∆x = X0/α. For air at a pressure of one atmosphere and α ≈ 1, this gives∆x = 0.15 μm. Modeling a 1.5 mm
snow crystal would then require a grid with at least 10,000 pixels on a side, which is something of a computational
challenge.

We can do better by realizing that a negative σsolid is not itself sufficient to cause instabilities. A closer look
at the algorithm reveals that problems only begin when σ(τ + ∆τ) becomes negative in a single timestep, which
happens when the supersaturation is "drained" to a negative value according to Equation 11. This puts a limitation
of ∆ξ > 1/α∆τ on the grid size, so we are able to use a coarser grid spacing if we also use a finer time step.
Whatever the limit, it is important to note that our choice of grid spacing is not simply limited by a desire to produce
a physically accurate model of crystal growth, but also by intrinsic instabilities in the code.

Physically, we can gain some insights into these limitations from dendrite growth theory [1]. We haveX0 ≈ Rkin

(the latter from Equation 28 in [1]), and a growing dendrite has a tip radius

Rtip =
B

αs
Rkin (34)

≈ X0

αs
where s is the dimensionless solvability parameter, which is of order unity for ice crystal growth [1]. The stability
of the code (with ∆τ ≈ 1) thus limits the grid spacing to be no greater than the tip radius of a growing dendritic
structure. Interestingly, it appears that the code can only function properly when the grid spacing is fine enough to
allow the growth of physically realistic dendritic structures, the scale of which is given by solvability theory.

4.4 Adaptive Time Steps

We wish to choose Λ in Equation 17 as large as possible, so the code runs quickly, while not altering the growth
appreciably. Our first criterion is that the growth be slow over a single time step, so that it takes at least N0 ≈ 10
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time steps before a boundary pixel turns to ice, which means we must take

Λ <
1

ασ∆ξ∆τN0
(35)

Another criterion is that the Peclet number should be small, as dictated by the physics of the growth problem, for
which we find

Λ <

µ
∆x

R

¶
∆τ

∆ξ

1

ασ
(36)

where R is a characteristic size of the crystal. Since Ri = R/∆x is typically larger than N0, the latter requirement
is the more stringent of the two.

We can speed up the code further by taking

Λ = A
1

Ri,max

1

(ασ)max
(37)

where A < 1 is a constant, Ri,max is the current maximum size of the crystal (in pixels), and (ασ)max is the
maximum product of α and σ over all current boundary pixels. This speeds up the code considerably when the
growth is strongly diffusion limited (so σ ¿ σ∞) or when α is small on the crystal surface.

This choice of Λmeans essentially using an adaptive time step, where the physical time for each step is equal to

∆t = Λ∆ξ2∆τ∆t0 (38)

where

∆t0 =
2πm

kT
D
csolid
csat

(39)

≈
µ

D

Dair

¶
(1 msec)

and the latter value is for growth at T = −15 C [1].

5. A Morphological Transition in Plate-like Growth

We have applied the algorithms derived above to examine a key problem in snow crystal growth (and, by ex-
tension, other examples of faceted crystal growth) - understanding how small changes in extrinsic parameters like
temperature and supersaturation can produce rather dramatic changes in the resulting crystal morphologies. Using
our new LCA growth algorithms, we discovered an interesting example of a morphological transition in the growth
of plate-like snow crystals.

We modeled the growth of small snow crystal plates in the limit of cylindrical symmetry, so we could use the
2D algorithm in cylindrical coordinates described above. This is much simpler computationally than the full 3D
problem, and the approximation is a reasonable one for small plates without dendritic branching [18]. Instead of six
prism facets, the cylindrical model produces one continuous "facet" which is the perimeter of the plate. Thus, for
example, hollowing of the six prism faces is replaced by hollowing of the perimeter "facet". Aside from geometrical
factors of order unity, we believe the cylindrical model is a good approximation for the growth of simple plate-like
snow crystals.

In our model we used a grid of Nr = 200 by Nz = 100 pixels with ∆ξ = 1, corresponding to a physical grid
spacing of ∆x = 0.15 μm. The boundary condition on the z = 0 plane guaranteed symmetry about that plane.
We began each growth run with a single ice pixel at r = z = 0, and we ran the code until the maximum crystal
radius reached 20 μm. For the basal surface, we assumed that the growth was nucleation-limited with α(σ) =

min[1, A exp(−σ0/σ)] with A = 2 and σ = 0.021, following the latest ice crystal growth measurements [16].
Accurate prism growth measurements do not yet exist, so we assumed nucleation-limited growth with A = 5 and
σ0 = 0.01. For non-facet surfaces we chose α11 = 0.7 for the kink site with B = 3 and α = 1 for all sites with
B > 3. We believe that the morphological transition we observed is insensitive to the exact values of these growth
parameters, as long as they produce plate-like structures with nucleation-limited growth on both facets.
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Figure 2. Modeled growth time (top panel) and final thickness (lower panel) of a crystal as a function of the su-
persaturation at the outer boundary. For all crystals the growth was terminated when the diameter reached 40 μm.
Growth parameters are described in the text. The numbers in the lower panel correspond to those in Figure 3 showing
the crystal morphology.

Our results are shown in Figures 2 and 3 as we varied only the supersaturation σ∞ in the model. The figures
show a clear morphological transition from simple, thin-plate growth at low σ∞ to concave (hollowed) growth at
intermediate σ∞ and convex growth at high σ∞.

The growth of thin plates at low σ∞ (number 1 in the figures) is easy to understand from simple considerations
of the growth dynamics. At low σ∞, α is small and the growth is largely limited by attachment kinetics, so σ ≈ σ∞
at the crystal surface. The relative growth velocities of the prism and basal faces is then

vprism
vbasal

≈ Aprism

Abasal
exp [(σ0,basal − σ0,prism) /σ∞] (40)

Since σ0,basal > σ0,prism for our case, this ratio increases rapidly as σ∞ decreases, producing thinner plates at lower
σ∞.

As σ∞ increases, the higher σ values at the corners causes hollowing of both the prism and basal facets, as seen
in Figure 3, number 2. For this concave growth, we see that steps are generated at the edges of the basal facets and
propagate inward as the crystal grows.

As σ∞ increases still further, the growth undergoes a rather sudden transition to convex growth, seen in Figure
3, number 3. This transition is accompanied by a reduction in crystal thickness and growth time, as seen in Figure 2.
These two are related in that a thinner crystal requires less mass for a given radius, and thus grows to a given radius
(20 μm in this case) in less time. For this convex growth, steps are generated at the centers of the basal facets and
propagate outward, in contrast to the concave case.

At the highest σ∞ shown, the basal growth has increased until additional structure is seen at the center of the
basal facet. Similar structures appear when the growth rates of the prism and basal facets are comparable, and this
growth behavior reflects the fact that αbasal/αprism increases with increasing σ∞ as the surface values of σ begin to
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Figure 3. Full cross-sections of four plate-like crystals at the end of their growth, at which time the diameter was 40
μm. The numbers beside each crystal correspond to those in Figure 2. This shows the transition from simple plate
growth (1) to concave growth (2) to convex growth (3 and 4) as σ∞ is increased.

exceed the critical supersaturations σ0 for the facets.
The transition from concave to convex growth as the supersaturation increases is well-known in snow crystal

growth [1], because it is one of the most studied examples of faceted crystal growth. Other crystal systems may
exhibit similar morphological transitions as the growth drive is increased. The morphologies that result certainly
depend on the attachment kinetics, so the detailed modeling must be tailored to each individual system.

The LCA algorithms described above have proven to be quite robust and numerically stable in these calculations,
while being simple to code with reasonably fast execution times. It is straightforward to change the attachment
kinetics and other growth parameters to investigate different regimes. The LCA method is particular well-suited to
modeling the horizontal propagation of macrosteps on a flat surface, which appears to be a key element of faceted
growth. Further studies are needed to identify whatever numerical idiosyncrasies are inherent in the LCA method
(such as the intrinsic anisotropy described above), but so far it appears to be a powerful and flexible approach for
modeling faceted crystal growth.
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