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ABSTRACT

The solar oscillation data of Libbrecht are inverted, and it is found that there is a sharp radial gradient in
the Sun’s rotation at the base of the convection zone. The existence of a sharp radial gradient there may be
used to suggest that it is the site of the dynamo which drives the sunspot cycle.

Subject headings: Sun: interior — Sun: oscillations — Sun: rotation

I. INTRODUCTION

The well-studied 22 yr sunspot cycle is generally expected to
be a consequence of dynamo action arising from the interplay
of internal rotation, magnetism, and convection. We do not
know precisely where this dynamo is buried. In recent years,
however, we have been able to determine relevant internal
properties of the Sun.

Helioseismology is the new science developed to determine
internal properties of the Sun, like rotation, by studying solar
oscillations. Duvall, Harvey, and Pomerantz (1986) used oscil-
lation data to demonstrate that the convection zone rotates
with the surface differential rate—meaning there is no appar-
ent radial gradient in rotation in that zone. Brown et al. (1988)
used the oscillation data of Brown and Morrow (1987) to show
that there apppears to be a gradual gradient in rotation from
the convection zone to the radiative interior. The more certain
result of Brown et al. (1988) is that dQ/dr > 0 at low latitudes
and the less certain result is that dQ/dr < 0 at higher latitudes.
Since the standard a — Q dynamo theories require a radial
gradient, it seems that the dynamo must be at least as deep as
the base of the convection zone. Helioseismological data have
also been used, by Christensen-Dalsgaard et al. (1985), to
determine the location of the base of the convection zone.
Unfortunately, efforts like that of Dziembowski and Goode
(1986), to use oscillation data to determine the internal mag-
netic field have not enjoyed comparable success. The problem
here is that even if the magnetic field and rotation energies
were comparable, rotation would be easier to determine. The
point is that advection is linear in the rotation rate, while the
lowest order magnetic field perturbation is quadratic in the
field.

It is our purpose to use the data of Libbrecht (1989) to
improve the description of the gradient in solar rotation near
the base of the convection zone. We also show a consistency
between the point of inflection of this gradient and the location
of the base of the convection zone. We further use this oscil-
lation data to place a limit on the magnetic field in the region
near the base of the convection zone.

II. DATA

Libbrecht (1989) presents his frequency splitting data in the
form introduced by Duvall, Harvey, and Pomerantz (1986) as

modified by Brown and Morrow (1987). That is,

5
Vaim = Vnio = lz a; P|<?> > (1)
i=1
where the (nl)-multiplets are labeled by n, the radial order, and
I, the angular degree. Rotation and/or magnetism induce a fine
structure in each (nl)-multiplet. The fine structure is labeled by
m, the angular order. The odd-a coefficients reflect the fine
structure due to rotation as given by, for instance,

Qr, ) = Qo(r) + Qi (Ip* + Qy(r)ut, @

where u is the cosine of the polar angle. The odd-a coefficients
of Libbrecht (1989) are shown in Figure 1 as a function of I.
The data in the figure are weighted averages, in bins five [
values wide, with the variance being shown. There is a rela-
tively large dispersion in the averaged results presumably due to
random errors and finite lifetime effects—nonetheless, the trends
in the data are regarded as being meaningful. A mean rotation-
law, from the data of Libbrecht (1989), with Q, = 460.2 + 0.2,
Q; = —583 + 18, and Q, = —73.1 + 2.6 nHz is used to cal-
culate the a-values represented by the solid lines in the figure.
This mean rotation law exhibits surface-like differential rota-
tion. For the a, and a; coefficients, the high- data lie above the
calculated values, while those for the low-I data lie below. Since
I > 40 oscillations are largely confined to the convection zone
and lower degree oscillations sample more deeply, we antici-
pate a radial gradient in the true rotation near the base of the
convection zone. In that region, the decrease in the magnitude
of the a; and a5 coefficients with decreasing ! leads us to expect
a trend away from differential rotation to solid body rotation.
Oscillations of degree 10-60 sample best the region between
0.4 and 0.9 of the solar radius.

III. THE REGULARIZED INVERSION
To determine €X(r, 6), we solve the inverse problem posed by

2 R
Vaim — Voo =M ZO b Knlms(r)ﬂs(r)dr s (3)

where the left-hand side of the equation is given by the fre-
quency splitting data as represented in equation (1). The quan-
tity K is the splitting kernel which is calculated using a
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F1G. 1.—Odd-a splitting coefficients (nHz) vs. I. The solid line represents the determination of the coefficients from the mean rotation law.

standard solar model. For a detailed formulation and dis-
cussion of equation (3) see, for instance, Durney, Goode, and
Hill (1987) or Brown et al. (1988). We connote Q as a frequency
rather than a rate—our only nonstandard notation—to avoid
making that conversion explicit with (2n)-factors. Usually Q(r)
is obtained from equations (1) and (3) by minimizing xZ. For all
but the coarsest grids, the resulting solutions for Q(r) will
exhibit short-wavelength variations which reflect the ill-
conditioned nature of the problem rather than the internal
rotation of the Sun. We employ the method of regularization,
as reviewed by Goncharski, Cherepashczuk, and Yagola (1978)
and Craig and Brown (1986) to better condition the problem.
We invoke the a priori constraint that Q(r) is a slowly

varying function. Formally, we impose this by minimizing
P =1: + A, MP,, )

rather than y2, where M is the number of (n]) multiplets in the

data and
dQ,
F= f ’ dr

and we vary A, until 2 = 1. When y? (per degree of freedom)
is unity, the calculated Q((r) is precisely consistent with the 1 ¢
observational errors. To examine the robustness of features in

2
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© American Astronomical Society * Provided by the NASA Astrophysics Data System



.53D

.337L.

1989ApJ. .

No. 1, 1989 RADIAL GRADIENT IN SUN’S ROTATION L55
A N I O O O
. 1 -
10 —
°r 7
Qs [ _
0__’——-0 j
M | [ 773
_10._

Cldcr b o brnnn b rrrn ol
10 20 30 40 50 60

7

FiG. 1c

Q(r), we reduce A, in our calculations until short-wavelength
variations begin to appear.

IV. THE RESULTS OF THE INVERSION

The rotation frequency Q(r) is better determined than Q,(r)
or Q,(r) because it alone depends on the a, coefficient which is
the most accurately determined splitting coefficient. For Q(r),
the monotonic function, p2, varies by more than an order of
magnitude when 4, changes from zero to infinity. For A, much

less than 1077, short-wavelength features begin to appear in
Qq(r), Q,(r) and Q,(r). Figure 2 shows roughly consistent Q(r)
values for a wide range of A, values. The inversions were per-
formed using a grid with steps of 0.03 of the solar radius from
0.4 to 1.0. The error bars in the figure are the least-squares
errors from the inversion with 4, = 10”7, Each of the three
continuous lines in the figure—included to aid in viewing the
results—is fit to smoothly connect the 21 calculated fre-
quencies between 0.4 and 1.0. It is clear that the most robust
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FIG. 3.—Q(r), Q,(r), and Q,(r) vs. fractional radius

feature is the radial gradient in Q(r). We note that the point of
inflection for this gradient coincides with 0.73 of the radius—
the base of the convection zone as located by Christensen-
Dalsgaard et al. (1985). Secondary robust features are the dip
in rotation at 0.85 of the radius and the gradual inward
increase in Q,(r) below the convection zone. We regard the
inversion with 1, = 10”7 as our result because it shows the
robust features while being properly stiffened by the constraint.

Figure 3 shows our result for Qu(r), Q,(r), and Q,(r) with

A, = 1077 The regularized inversion has translated the signifi-
cant trends in large variance a versus | data into significant
trends in large error Q versus r results. The radial gradient in
Q,(r), at the base of the convection zone, is quite sharp even
though it has been smoothed. The frequency Q,(r), with less
certainty, shows a sharp gradient inflected at 0.73 of the radius.
The most uncertain frequency is Q,(r), and it shows no struc-
ture. These gradients are much sharper and better specified in
radius than those reported by Brown et al. (1988), reflecting
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our improved resolution. Nonetheless, it would be no surprise
if the true gradient were even sharper than the smoothed one
we report. Our overall rotation law is consistent, at 1 ¢, with
surface differential rotation through the convection zone and a
sharp transition to rigid rotation below. We note that p? is
better minimized if a discontinuity is allowed in rotation at the
base of the convection zone. The result then is an abrupt
change in rotation at the discontinuity from surface-like rota-
tion to rigid rotation beneath the convection zone. In particu-
lar, Qy(r) drops, going inward, from 462 to 442 nHz, and Q,(r)
and Q,(r) exhibit much larger drops in magnitude with less
relative certainty. This last inversion also preserves the other
robust features of rotation illustrated in Figure 3.

If the sharp radial gradient is used as the criterion for locat-
ing the solar dynamo, then that dynamo is seated near the base
of the convection zone. We speculate that the dip in rotation
could be due to either a propagating torsional wave induced
by dynamo action below it or the back torque due to a local
propagating toroidal field. If either speculation were true, this
dip should move on the time scale of the solar cycle and could
be associated with the surface torsional oscillations discovered
by Howard and LaBonte (1980).

Fi1G. 3¢

V. SECOND-ORDER EFFECT OF ROTATION AND MAGNETISM

The a, and a, data of Libbrecht (1989) are consistent with
zero; however, they are also systematically negative and posi-
tive, respectively. The observed a, coefficients become increas-
ingly negative with decreasing [ value. If we use the mean
rotation law following from A, = 1 in the calculation of the
effect of the centrifugal stretching, we find that this dominant
second-order effect of rotation accounts for the values of and
the trend in a,. The same mean rotation law was used in the
calculation of the solid lines in Figure 1. Centrifugal stretching
makes virtually no contribution to any a, coefficient because
surface-like rotation does not cause an appreciable P, distor-
tion. The a, and a, coefficients could also be due, in part, to a
magnetic field near the base of the convection zone. A sizable
toroidal field could be generated there by the shear of differen-
tial rotation acting on a minuscule poloidal field. Dziembowski
and Goode (1989) showed that such a toroidal field would have
an upper limit of about 1 MG. Such a limit is probably too
large to place an interesting limit on the dynamo field.

This work was partly supported by AFOSR 89-0048 (P. R.
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