An automated model reduction tool to guide the design and analysis of synthetic biological circuits

Ayush Pandey¹; Richard M. Murray¹
¹Control and Dynamical Systems, California Institute of Technology

Motivation

A reduced order model is

- a lower dimensional model that has a simple representation,
- computationally efficient, and
- easier to use for system design compared to any other higher order, more complex mathematical model.

We aim to use a reduced model to

- better understanding of key processes,
- improving parameter identifiability, and
- guide experimental design.

Results

Problem Formulation

Mathematical model

\[\dot{x} = f(x, \theta) \]

\[y = \xi x \]

Algorithm

Model input

<table>
<thead>
<tr>
<th>Full Model</th>
<th>Reduced Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear dynamics</td>
<td>Nonlinear dynamics</td>
</tr>
<tr>
<td>n states (x)</td>
<td>r states (x)</td>
</tr>
<tr>
<td>p outputs (y)</td>
<td>q outputs (y)</td>
</tr>
</tbody>
</table>

Solution

Post reduction analysis

<table>
<thead>
<tr>
<th>Reduced model 1</th>
<th>Reduced model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Model 1</td>
<td>Reduced Model 2</td>
</tr>
</tbody>
</table>

Theoretical results

From [1], we have,

\[\max_{\lambda_{H}} \| p \|^2 = \max \{ \lambda_{H} \} \]

\[Q = \left[\begin{array}{cccc} T_1 P_{11} T_1 + T_2 P_{21} T_1 + P_{12} \ T_2 P_{12} + P_{22} T_2 \end{array} \right] \]

Our work extends this to include bounds on sensitivity of error for both linear and nonlinear dynamics. The full biofilm paper for our work is available at [2].

References

Acknowledgements

We would like to thank Chelsea Hu for the population control circuit figure used. The project or effort depicted was or is sponsored by the Defense Advanced Research Projects Agency (Agreement HR0011-17-2-0008). The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Contact

Ayush Pandey
California Institute of Technology
Email: apandey@caltech.edu