
Probabilistic Engineering Mechanics 40 (2015) 25–35
Contents lists available at ScienceDirect
Probabilistic Engineering Mechanics
http://d
0266-89

n Corr
E-m

jimbeck
journal homepage: www.elsevier.com/locate/probengmech
General network reliability problem and its efficient solution by Subset
Simulation

Konstantin M. Zuev a,n, Stephen Wu b, James L. Beck b

a University of Liverpool, United Kingdom
b California Institute of Technology, United States
a r t i c l e i n f o

Article history:
Received 18 July 2014
Received in revised form
14 January 2015
Accepted 2 February 2015
Available online 4 February 2015

Keywords:
Network reliability
Technological networks
Markov chain Monte Carlo
Subset Simulation
Small-world network models
x.doi.org/10.1016/j.probengmech.2015.02.002
20/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: zuev@liverpool.ac.uk (K.M. Zuev
@caltech.edu (J.L. Beck).
a b s t r a c t

Complex technological networks designed for distribution of some resource or commodity are a per-
vasive feature of modern society. Moreover, the dependence of our society on modern technological
networks constantly grows. As a result, there is an increasing demand for these networks to be highly
reliable in delivering their service. As a consequence, there is a pressing need for efficient computational
methods that can quantitatively assess the reliability of technological networks to enhance their design
and operation in the presence of uncertainty in their future demand, supply and capacity. In this paper,
we propose a stochastic framework for quantitative assessment of the reliability of network service,
formulate a general network reliability problem within this framework, and then show how to calculate
the service reliability using Subset Simulation, an efficient Markov chain Monte Carlo method that was
originally developed for estimating small failure probabilities of complex dynamic systems. The effi-
ciency of the method is demonstrated with an illustrative example where two small-world network
generation models are compared in terms of the maximum-flow reliability of the networks that they
produce.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Complex technological networks are a pervasive feature of
modern society. The worldwide increase in urbanization and glo-
balization, accompanied by rapid growth of infrastructure and
technology, has produced complex networks with ever more in-
terdependent components. These networks are designed for dis-
tribution of some resource or commodity. Examples include
transportation networks (e.g. networks of roads or rail lines, or
networks of airline routes), communication networks (e.g. tele-
phone networks or the Internet), and utility networks (e.g. net-
works for delivery of electricity, gas or water).

Technological networks are so deeply integrated into the in-
frastructure of megacities that their failures, although rare, often
have serious consequences on the wellbeing of society. Societal
dependence on technological systems and networks is constantly
growing, giving an ever increasing vulnerability to their failure. As
a result, there is an increasing demand for modern technological
networks to be highly reliable in their operations. The degree to
which a network is able to provide the required service needs to
), stewu@caltech.edu (S. Wu),
be quantitatively assessed during its design and operation, taking
into account uncertainty in the future demand, supply and net-
work operational capacity.

Traditional methods for network reliability analyses are based
on graph theory and mostly look at small scale networks. These
methods aim to exactly compute the network reliability and can
be roughly classified by the following (not mutually exclusive)
three categories: enumeration methods, direct methods, and de-
composition methods. Enumeration methods are typically based on
either complete state enumeration or more sophisticated methods
such as minpath or mincut enumeration, e.g. [1]. Direct methods
are intended to compute the reliability of a network from the
structure of the underlying graph, without a preliminary search for
the minpaths and mincuts, e.g. [13]. In decomposition methods, the
main idea is to divide the network into several subnetworks, and
the overall reliability is then calculated based on the reliabilities of
the corresponding subnetworks, e.g. [21]. A detailed review of
traditional methods for reliability analysis of small scale networks
is provided in [15]. All these methods in one way or another are
based on combinatorial exhaustive search through the network.

On the other hand, one of the inherent characteristic features of
modern technological networks is their very large size. Today the
complexity of real-world networks can reach millions or even
billions of vertices and edges with incomprehensible topology.
Fig. 1 shows a visual representation of a small portion
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Fig. 1. Man-made “galaxy”: a visual representation of a small portion ( 1%∼ ) of a
California road network. Intersections and road endpoints are represented by
vertices and the roads connecting these intersections or endpoints are represented
by undirected edges. The network data is available for free at http://snap.stanford.
edu/data/roadNet-CA.html. Visualization was done using the Network Workbench
Tool (available for free at http://nwb.slis.indiana.edu).
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(approximately 1%) of a California road network. In this network,
intersections and road endpoints are represented by vertices and
the roads connecting these intersections or endpoints are re-
presented by undirected edges.

This dramatic change of scale induces a corresponding change
in the philosophy of reliability analyses. Many of the exhaustive
search algorithms that have been applied to small networks are
simply not feasible for large networks, since essentially all relia-
bility problems of interest are NP-hard [27] and the exhaustive
algorithms grow in complexity very rapidly as a function of the
network size. It has been thus recognized that the classical
methods of reliability and risk analysis fail to provide the proper
instruments for analysis of actual modern networks [32]. As a
result, a new field of research has recently emerged with the focus
shifting away from the combinatorial exhaustive search metho-
dology to the study of statistical properties of large networks, to-
gether with the study of their robustness to random failures, er-
rors, and intentional attacks.

In this paper, we propose a stochastic framework for quanti-
tative assessment of network reliability in the presence of un-
certainty, formulate a general network reliability problem within
this framework, and show how to solve this problem using Subset
Simulation [5], an efficient Markov chain Monte Carlo method that
was originally developed for estimating small failure probabilities
of complex dynamic systems, such as civil engineering structures
at risk from earthquakes. The new theory was first presented in
the conference paper [36] but here we give a fuller explanation
and extended results. We remark that Subset Simulation has also
been used previously for evaluating origin–destination con-
nectivity reliability of lifeline networks [9].

We proceed as follows. In the next section, we highlight the
similarity between reliability problems for complex systems and
complex networks, and formulate a general network reliability
problem subjected to several realistic conditions that make this
problem computationally difficult. In Section 3, we describe the
Subset Simulation algorithm for solving the network reliability
problem. An illustrative example that demonstrates how Subset
Simulation can be effectively used for solving the maximum-flow
reliability problem and for finding reliable network topologies is
provided in Section 4. Concluding remarks are made in Section 5.
2. From complex systems to complex networks

Complex networks are often viewed as the structural skeletons
of complex dynamic systems. While networks are a relatively new
object of study in reliability engineering, the reliability of dynamic
systems is a well-established and deeply researched problem. The
engineering research community has developed several very effi-
cient methods for estimation of reliability of complex dynamic
systems such as tall buildings, bridges, and aircraft
[4,5,18,7,8,16,34,35]. Moreover, it can be shown (see, e.g. [33]) that
the system reliability problem is mathematically equivalent to two
other extensively researched problems: finding the free energy of
a physical system (statistical mechanics), and finding the marginal
likelihood of a Bayesian statistical model (Bayesian statistics). All
three problems can be considered as the problem of estimating the
ratio of normalizing constants for a pair of probability
distributions.

As a first step towards efficient network reliability methods,
this paper focuses on the development of a network analog of the
system reliability method, Subset Simulation [5]. In Section 2.1, we
briefly review the system reliability problem to demonstrate its
similarity with the network reliability problem which is discussed
in Section 2.2.

2.1. System reliability problem

Calculation of the reliability, or equivalently the probability of
failure pF, of a dynamic system under given excitation conditions is
one of the most important and challenging problems in reliability
engineering. The uncertainty in the input excitation x m∈ is
quantified by a joint probability density function (PDF) x( )π . The
performance of the dynamic system under this input is quantified
by a performance function  : mμ → through a dynamic input–
output model of the system. For example, if our system corres-
ponds to a tall building, the input x may represent an uncertain
earthquake excitation sampled at discrete times over some inter-
val and the performance x( )μ may represent the corresponding
maximum roof displacement over this duration, or the maximum
interstory drift over all stories for the duration, calculated from the
dynamic model.

Define the failure domain F m⊂ as the set of inputs (“failure
points”) that lead to the exceedance of some prescribed critical
threshold μ ∈⁎ :

F x x{ ( ) } (1)m μ μ= ∈ | > ⁎

In the above example, the critical threshold μ⁎ represents the
maximum permissible roof displacement or maximum permis-
sible interstory drift and so the failure domain F represents the set
of all earthquake excitations that lead to unacceptable deforma-
tion of the tall building.

The system reliability problem is then to compute the prob-
ability of failure that is given by the following integral:

 


p x F x dx x I x dx I( ) ( ) ( ) ( ) [ ], (2)F F
F Fm∫ ∫π π= ∈ = = = π

where π denotes expectation with respect to the distribution x( )π
and IF is the indicator function of the failure domain F: I x( ) 1F = if
the system subject to excitation x fails (i.e. the output x( )μ is not
acceptable according to the performance criterion, x( )μ μ> ⁎) and
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I x( ) 0F = otherwise.
The following set of realistic assumptions makes this problem

computationally very challenging:
S1.
 The relationship between x and IF(x) is not explicitly known. Al-
though for any x we can check whether it is a failure point or
not by numerical analysis using a model of the dynamic sys-
tem, i.e. calculate the value IF(x) for a given x, we cannot
usually obtain an explicit analytical formula for x( )μ or its
gradient with respect to x.
S2.
 The computational effort for the dynamic system analysis needed
to evaluate x( )μ for each value of x is significant so that it is
essential to minimize the number of such function evaluations.
Complex dynamic systems (e.g. bridges or aircraft) are re-
presented by complex models. In this context, complexity
means, in particular, that the evaluation of x( )μ for any x is
very time-consuming. Thus, it is important to reduce the
number of such function evaluations.
S3.
 The dimension m is large, i.e. m 1⪢ , because the stochastic input
time history is discretized in time. For example, m∼103 is not
unusual in the reliability literature.
S4.
 The probability of failure pF is very small, i.e. p 1F ⪡ . In other
words, the system is assumed to be designed properly, so that
failure is a rare event. In the reliability engineering literature,
p 10 10F

9 2∼ –− − have been considered.
Fig. 2. The undirected graph on the top is equivalent to the directed graph at the
bottom. Both graphs are described by the adjacency matrix A.
Due to these conditions, both numerical integration and standard
Monte Carlo are computationally infeasible for estimating the
high-dimensional integral in (2).

Over the past decade, the engineering research community has
realized the importance of advanced stochastic simulation meth-
ods for reliability analysis. As a result, many efficient algorithms
have been recently developed, e.g. Subset Simulation by Au and
Beck [5], Line Sampling by Koutsourelakis et al. [18], Auxiliary
Domain method by Katafygiotis et al. [16], Horseracing Simulation
by Zuev and Katafygiotis [34], Bayesian Subset Simulation by Zuev
et al. [35], to name but a few.

Since complex networks can be viewed as the structural ske-
letons of complex systems, it is natural to expect that the above
techniques can be adapted for efficient estimation of network
reliability.

2.2. Network reliability problem

A network topology is represented as a graph G V E( , )= , where
V v v{ , , }n1= … and E e e{ , , }m1= … are sets of n nodes (or vertices)
and m links (or edges), respectively. Any graph G with n nodes can
be represented by its n�n adjacency matrix A(G), where A 1ij = if
there is a link directly connecting vi to vj (i j≠ ) and A 0ij =
otherwise. The degree of a node v Vi ∈ , denoted d v( )i , is the
number of links incident to the node and it is equal to the ith row
sum of A. The graph G may be either undirected or directed. In the
latter case, the adjacency matrix A(G) is not necessarily symmetric.
In this case, node degree d(v) is replaced by in-degree din(v) and
out-degree dout(v), which count the number of links pointing in
towards, and out from, a node, respectively. In general, any un-
directed network can be considered as directed after replacement
of every undirected link by two corresponding opposing directed
links. The concept of adjacency matrix and the equivalence of
undirected graphs to directed ones are demonstrated in Fig. 2.

In what follows we assume that nodes are perfectly reliable, i.e.
they have zero failure probability. It can be shown that any net-
work with node failures is polynomial-time reducible into an
equivalent directed network with link failures only [10]. Thus, this
assumption does not, in fact, limit the generality, and networks
with link failures only are sufficiently general.
A network state is defined as an m-tuple s s s( , , )m1= … with
s [0, 1]i ∈ , where si¼1 if link ei is fully operational (or “up”) and
si¼0 if link ei is completely failed (or “down”). If s (0, 1)i ∈ , then
link ei is partially operational. The network state space is then an
m-dimensional hypercube:

{ }s s s( , , ) [0, 1] [0, 1] (3)m i
m

1= … | ∈ =

Let s( )π be a probability distribution on the network state space
which provides a probability model for the occurrence of dif-

ferent network states. We write s s( )π∼ . For example, if we as-
sume that each link ei is either up (si¼1) or down (si¼0) and that
links fail independently of each other with failure probabilities pi,
then this induces a discrete probability distribution s( )π on : each
state s s s( , , )m1= … with s 0, 1i = has occurrence probability

s q p( ) ,
(4)i

m

i
s

i
s

1

1i i∏π =
=

−

where q p1i i= − is the link reliability; partially operational links
do not occur in this case.

In this work, we focus on the more general case of continuous
state spaces where s( )π denotes a PDF on . Furthermore, we
define a performance function :μ → that quantifies the degree
to which the network provides the required service. In the context
of networks, μ is typically interpreted as a utility function, i.e.
higher values of μ correspond to better network performance.
Similar to the system case (1), the failure domain ⊂ is defined
as follows:



Table 1
Notation.

G V E( , )= Graph representing a network

V v v{ , , }n1= … Set of nodes (or vertices)

E e e{ , , }m1= … Set of links (or edges)

A(G) Adjacency matrix of G
d v d v d v( ), ( ), ( )in out Degree, in-degree, and out-degree of node v

s s s( , , )m1= … A network state, where s [0, 1]i ∈ , i¼1,…,m

[0, 1]m= Network state space (set of all network states)

s( )π Probability distribution on
:μ → Network performance function

⊂ Failure domain
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s s{ ( ) }, (5)μ μ= ∈ | < ⁎

where μ⁎ is the critical threshold. The notation is summarized in
Table 1.

The network reliability problem is to compute the probability of
failure p that is given by the following integral:

 p s s I s ds I( ) ( ) ( ) [ ]. (6)∫ π= ∈ = = π

Several classical reliability problems [6,27,10] are special cases
of the above general formulation, e.g. Source-to-Terminal Con-
nectedness, Network Connectedness, Traffic to Central Site, to
name but a few.

To mirror the systems framework S1–S4, we make the follow-
ing real-life assumptions:
N1.
 The relationship between s ∈ and I s( ) is not explicitly known.

N2.
 The computational effort for evaluating the network performance

function s( )μ for each state s ∈ is significant, thereby making
the indicator function I s( ) expensive to compute. Therefore, it
is essential to minimize the number of such function
evaluations.
N3.
 The number of links m is large, i.e. m 1⪢ . Many actual networks
have millions (e.g. road networks), or even billions, of links
(e.g. the Internet).
N4.
 The probability of failure p is very small, i.e. p 1⪡ . Real-life
networks are reliable to some extent (otherwise they would
not be in use), and their failures are usually rare events.
Fig. 3. A schematic representation of the intermediate failure domains
L0 1= ⊃ ⊃ ⋯ ⊃ = in the network state space [0, 1]m= , where m¼2.
These assumptions make the network reliability problem
computationally very challenging. Due to N3, the integral in (6) is
taken over a high-dimensional hypercube and, due to N2, the in-
tegrand is expensive to compute. Therefore, the exact computation
of the failure probability p is infeasible.

The expression of p as a mathematical expectation (6) renders
standard Monte Carlo method theoretically applicable, where p is
estimated as a sample average of I s( ) over independent and
identically distributed samples of s drawn from distribution s( )π :

p
N

I s s s
1

( ), ( )
(7)

MC

i

N
i i( )

1

( ) ( )∑ π^ = ∼
=

This estimate is unbiased and the coefficient of variation, serving
as a measure of the statistical error, is

p

Np

1

(8)
MCδ =

−

Although standard Monte Carlo is independent of the dimension
m of the network state space , it is inefficient in estimating small
probabilities because it requires a large number of samples
( p1/∼ ) to achieve an acceptable level of accuracy. For example, if

p 10 4= − and we want to achieve an accuracy of 10%MCδ = , then
we need approximately N 106= samples. Therefore, due to con-
ditions N2 and N4, standard Monte Carlo becomes computation-
ally prohibitive for our problems of interest involving small failure
probabilities.

The basic strategy that is often employed in this situation is to
generate more samples in the “important region” of the failure

domain, i.e. in the region ′ ⊆ that contains most of the prob-
ability mass and, therefore, contributes mostly to the integral (6).

More formally, we want to sample from distribution s( )ψ on ′,
where s( )ψ is the conditional distribution s s( ) ( )ψ π= | ′ or, possi-
bly, some other importance sampling distribution with support

ssupp ( )ψ = ′. To achieve this goal, we can use Markov chain
Monte Carlo (MCMC) methods, a class of algorithms for sampling
from complex probability distributions. In MCMC, samples from a
given (up to a normalizing constant) distribution s( )ψ are gener-
ated by simulating a Markov chain whose state distribution con-
verges to the target distribution s( )ψ as its stationary distribution.
Markov chain Monte Carlo sampling originated in statistical phy-
sics, and now is widely used in solving statistical problems [20,26].
In the next section we show how MCMC can be employed for
solving the network reliability problem.
3. Subset Simulation

The main idea of Subset Simulation [5] is to represent a small
failure probability p as a product p pj

L
j1= ∏ = of larger prob-

abilities p pj > , where the factors pj are estimated sequentially,

p pj j≈ ^ to obtain an estimate p̂ for p as p pj
L

j1
^ = ∏ ^

= . To
achieve this goal, let us consider a sequence of nested subsets of
the network state space , starting from the entire space and
shrinking to the failure domain:

(9)L0 1= ⊃ ⊃ ⋯ ⊃ =

Subsets , , L0 1… − are called intermediate failure domains. They
are schematically shown in Fig. 3. The failure probability can be
written then as a product of conditional probabilities:
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p p( ) ,
(10)j

L

j j
j

L

j
1

1
1

∏ ∏= | =
=

−
=

where p ( )j j j 1= | − is the conditional probability at the ( j 1− )th
conditional level. Clearly, by choosing the intermediate failure
domains , , L1 1… − appropriately, all conditional probabilities
p p, , L1 … can be made sufficiently large. The original network re-
liability problem (estimation of the small failure probability p ) is
thus replaced by a sequence of L intermediate problems: estima-
tion of the larger failure probabilities pj, j¼1,…,L.

The first probability  p ( ) ( )1 1 1= | = can be simply esti-
mated by standard Monte Carlo simulation (MCS):

p p
N

I s s s s
1

( ), ( ) ( )
(11)i

N
i i i i d

1 1
1

0
( )

0
( ) . . .

01∑ π π≈ ^ = ∼ | ≡
=

We assume here that 1 is chosen in such a way that p1 is relatively
large, so that the MCS estimate (11) is accurate for a moderate
sample size N. Later in this section, we will discuss how to chose
intermediate failure domains j adaptively.

For j 2≥ , to estimate pj using MCS one needs to simulate i.i.d.
samples from the conditional distribution s( )j 1π | − , which, for general

s( )π and j 1− , is not a trivial task. For example, it would be inefficient
to use MCS for this purpose (i.e. to sample from s( )π and accept only
those samples that belong to j 1− ), especially at higher levels. Sam-
pling from s( )j 1π | − for j 2≥ can be done by a specifically tailored
MCMC technique at the expense of generating dependent samples.

The Metropolis–Hastings (MH) algorithm [22,14] is perhaps the
most popular MCMC algorithm for sampling from a probability
distribution that is difficult to sample from directly. In this algo-
rithm, samples are generated as the states of a Markov chain,
which has the target distribution, i.e. the distribution we want to
sample from, as its stationary distribution. In our case, the target
distribution is s s I s( ) ( ) ( )/j j1 1j 1π π| =− −− , where ( )j j1 1=− − is

a normalizing constant. Let s j
i

1
( )

− be the current state of the Markov

chain at level (j�1) and q s s( )j
i

1
( )| − , called the proposal PDF, be anm-

dimensional PDF on the network state space that may depend
on s j

i
1

( )
− and can be readily sampled. Then the MH update

s sj
i

j
i

1
( )

1
( 1)→− −

+ of the Markov chain works as follows:
1.
 Generate a candidate state ξ ∈ according to q s s( )j
i

1
( )| − .
2.
 Compute the acceptance probability I ( ) minj 1α ξ= −

{ }q s s q s1, ( ) ( )/ ( ) ( )j
i

j
i

j
i

1
( )

1
( )

1
( )π ξ ξ π ξ| |− − − .
Sub

In

▹
▹

Al
3. Accept ξ as the next state of the Markov chain, i.e. set s j
i

1
( 1) ξ=−

+ ,

with probability α, or reject it, i.e. set s sj
i

j
i

1
( 1)

1
( )=−

+
− with the

remaining probability 1 α− .

It is easy to show that this update leaves s( )j 1π | − invariant, i.e. if
s j

i
1

( )
− is distributed according to s( )j 1π | − , then so is s j

i
1

( 1)
−
+ , and if

the Markov chain is run for sufficiently long time (the “burn-in
period”), starting from essentially any “seed” s j j1

(1)
1∈− − , then for

large N the distribution of s j
N

1
( )

− will be approximately s( )j 1π | − .
Note, however, that usually it is very difficult to check whether the
Markov chain has converged to its stationary distribution. But if
the seed s s( )j j1

(1)
1π∼ |− − , then all states of the Markov chain will

be automatically distributed according to the target distribution,
s s i N( ), 1, ,j

i
j1

( )
1π∼ | = …− − . The absence of the burn-in period (i.e.

the absence of the convergence problem) is often referred to as
perfect sampling [26] and Subset Simulation has this property
because of the way the seeds are selected.
It was observed in [5] however that the original Metropolis–
Hastings algorithm suffers from the curse of dimensionality.
Namely, it is not efficient in high-dimensional conditional prob-
ability spaces, because it produces a Markov chain with very
highly correlated states. Therefore, if the total number of network
links m is large, then the MH algorithm will be inefficient for
sampling from s( )j 1π | − , where [0, 1]j

m
1 ⊂ =− . In Subset Si-

mulation, the Modified Metropolis algorithm (MMA) [5], a com-
ponent-wise MCMC technique based on the original MH algo-
rithm, is used instead for sampling from the conditional dis-
tributions s( )j 1π | − . MMA differs from the MH algorithm in the
way the candidate state ( , , )m1ξ ξ ξ= … is generated. Instead of
using an m-dimensional proposal PDF on to directly obtain the
candidate state, in MMA a sequence of univariate proposal PDFs is
used. Namely, each component ξk of the candidate state vector ξ is
generated separately using a univariate proposal distribution
q s s( )k k j k

i
1,

( )| − dependent on the kth component s j k
i

1,
( )

− of the cur-

rent state sample s j
i

1
( )

− . Then a check is made whether the m-
variate candidate ξ ∈ generated in such a way belongs to the
subset j 1− in which case it is accepted as the next Markov chain
state; otherwise it is rejected and the current MCMC sample is
repeated. For details on MMA, we refer the reader to the original
paper [5] and to [35] where the algorithm is discussed in depth.

Let us assume now that we are given a seed s s( )j j1
(1)

1π∼ |− − ,
where j¼2,…,L. Then, using MMA, we can generate a Markov chain
with N states starting from this seed and construct an estimate for pj
similar to (11), where MCS samples are replaced by MCMC samples:

p p
N

I s s s
1

( ), ( )
(12)

j j
i

N

j
i

j
i MMA

j
1

1
( )

1
( )

1j∑ π≈ ^ = ∼ |
=

− − −

Note that all samples s s, ,j j
N

1
(1)

1
( )…− − in (12) are identically distrib-

uted in the stationary state of the Markov chain, but are not
independent. Nevertheless, these MCMC samples can be used for
statistical averaging as if they were i.i.d., although with some
reduction in efficiency [11].

Subset Simulation uses the estimates (11) for p1 and (12) for pj,
j 2≥ , to obtain the estimate for the failure probability:

p p p
(13)j

L

j
1

∏≈ ^ = ^
=

The remaining ingredient of Subset Simulation that we have to
discuss is the choice of intermediate failure domains , , L1 1… − .
Recall that the “ultimate” failure domain L= ∈ is defined as

s s{ ( ) }μ μ= ∈ | < ⁎ . The sequence of intermediate failure do-
mains can then be defined in a similar way:

s s{ ( ) }, (14)j jμ μ= ∈ | < ⁎

where L L 1 1μ μ μ μ= < < ⋯ <⁎ ⁎
−

⁎ ⁎ is a sequence of intermediate
critical thresholds. Intermediate threshold values jμ ⁎ define the

values of the conditional probabilities p ( )j j j 1= | − and, there-
fore, affect the efficiency of Subset Simulation. In practical cases it
is difficult to make a rational choice of the valuesjμ −⁎ in advance,
so the jμ ⁎ are chosen adaptively (see (15) below) so that the
estimated conditional probabilities are equal to a fixed value
p (0, 1)0 ∈ . In [35], p0 is called the conditional failure probability.
S

set Simulation algorithm for network reliability problem.

put:
p0, conditional failure probability;
N, number of samples per conditional level.
gorithm:
et j¼0, number of conditional level
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et N j( ) 0= , number of failure samples at level j

ample s s s, , ( )N i i d
0
(1)

0
( ) . . . π… ∼

or i¼1,…,N do

if s( )i i( )
0
( )μ μ μ= < ⁎ do

N j N j( ) ( ) 1← +
end if
nd for
hile N j Np( ) 0< do

j j 1← +

Sort { }i( )μ : i i i( ) ( ) ( )N1 2μ μ μ≤ ≤ ⋯ ≤
Define the jth intermediate critical threshold:
2 (15)j

i i( ) ( )Np Np0 0 1
μ μ μ= +⁎

+

for k Np1, , 0= … do

Starting from s s s( )j
k

j
i

j
(1),

1
( )k π= ∼ |− , generate p1/ 0 states

of a Markov chain s s s, , ( )j
k

j
p k

j
(1), (1/ ),0 π… ∼ | , using

MMA.
end for

Renumber: s s s s{ } , , ( )j
i k

k i
Np p

j j
N

j
( ),

1, 1
,1/ (1) ( )0 0 π↦ … ∼ |= =

for i¼1,…,N do

if s( )i
j
i( ) ( )μ μ μ= < ⁎ do

N j N j( ) ( ) 1← +
end if

end for
nd while
tput:

p̂ , estimate of p :
▶

p p
N j

N
( )

(16)
j

0
^ =
The adaptive choice of valuesjμ −⁎ in (15) guarantees, first, that

all seeds s j
k(1), are distributed according to s( )jπ | and, second, that

the estimated conditional probability ( )j j 1| − is equal to p0.
Here, for convenience, p0 is assumed to be chosen such that Np0
and p1/ 0 are positive integers, although this is not strictly neces-
sary. It was demonstrated in [35] that choosing any p [0.1, 0.3]0 ∈
will lead to similar efficiency and it is not necessary to fine tune
the value of the conditional failure probability as long as Subset
Simulation is implemented properly.
4. Illustrative example: maximum flows in small-world
networks

In this section, we demonstrate how Subset Simulation can be
used for efficient solution of the maximum-flow reliability problem
for networks generated from small-world models.

4.1. The maximum-flow reliability problem

Network flow problems naturally arise in many real world appli-
cations such as coordination of vehicles in a transportation network,
distribution of water in a utility network, and routing of packets in a
communication network. The maximum-flow problem, where the
goal is to maximize the total flow from one node of a network to
another, is one of the classical network flow problems [12].
Suppose that in addition to a network G V E( , )= , a dis-
tinguished pair of nodes, the source a V∈ and the sink b V∈ , is
specified. Also assume that each link e v u E( , )= ∈ has a non-ne-
gative flow capacity s v u( , ) 0≥ . A quadruple G a b s( , , , { }) is often
referred to as a flow network. A flow on G is non-negative function

f E: → + that satisfies the following properties:
�
 Capacity constraint: the flow along any link cannot exceed
the capacity of that link:

f v u s v u v u E( , ) ( , ) for all ( , ) (17)≤ ∈

Flow conservation: the total flow entering node v must equal
�

the total flow leaving v for all nodes except a and b:

f u v f v u v V a b( , ) ( , ) for all \{ , }
(18)u V u V

∑ ∑= ∈
∈ ∈

For convenience, it is assumed in (18) that f v u( , ) 0= if
v u E( , ) ∉ (no link from node v to node u).
The value f| | of a flow f is the net flow out of the source:

f f a v f v a( , ) ( , )
(19)v V v V

∑ ∑| | = −
∈ ∈

It is easy to show that f| | also equals the net flow into the sink:

f f v b f b v( , ) ( , )
(20)v V v V

∑ ∑| | = −
∈ ∈

The value of a flow represents how much one can transport from
the source to the sink.

The maximum-flow problem is that of finding the maximum
flow f farg max= | |⋆ over all possible flows f in a given flow net-
work G a b s( , , , { }). There is a simple algorithm called the aug-
mented path algorithm (also called the Ford–Fulkerson algorithm)
that calculates the maximum flows between nodes in polynomial
time. The theory of maximum flow algorithms is well covered in
[2].

The maximum-flow reliability problem considered in this paper
is motivated by the maximum-flow problem. Assume for con-
venience that all link capacities s s, , m1 … are normalized, s0 1i≤ ≤ ,
and suppose that, instead of being prescribed, they are uncertain
with their uncertainty quantified by a probability model π for all
link capacities, i.e. a probability distribution on the network state
space s s s s{ ( , , ) 0 1}m i1= = … | ≤ ≤ . For a given realization
s s( )π∼ , we define the max-flow network performance function to
be equal to the value of the corresponding maximum flow:

s f s( ) ( ) (21)MFμ = | |⋆

The failure domain ⊂ can now be defined as before,
s s{ ( ) }MFμ μ= ∈ | < ⁎ , where μ⁎ is the critical threshold. Thus, the

introduction of uncertain link capacities brings us into the general
network reliability framework described in Section 2.2.

One of the fundamental questions in network science and re-
liability theory is the following: given n nodes and m links, how
should they be combined into the most reliable network? This is a
computationally challenging optimization problem. In the next
section we analyze a simpler but related question: given two
network models that generate componentwise equivalent but to-
pologically different networks, how do we find out which network
model produces more reliable networks?

4.2. Small-world network models

One of the most important breakthroughs in modeling real-
world networks was a shift from classical random graph models,
where links between nodes are placed purely at random, to
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models that explicitly mimic certain statistical properties observed
in actual networks. Small-world network models were originally
inspired by the counter intuitive phenomenon observed by the
social psychologist Stanley Milgram in human social networks
[23]. In his famous experiment, each of the participants (randomly
chosen in Nebraska) was asked to forward a letter to one of their
friends in an attempt to get the letter ultimately to a desired target
person (who lived in Boston, Massachusetts). The obtained results
were very surprising: the average number of people needed to
transmit the letter to the target was approximately six. This gave
birth to the popular belief that there are only about six handshakes
between any two people in the world, so-called “six degrees of
separation”. Milgram's experiment was one of the first quantita-
tive observations of the small-world effect, the fact that despite
their often large size and high level of clustering, in most actual
networks there is a relatively short path between almost any two
nodes. The small-world effect has been observed in many real
networks [30,24], including technological ones such as power
grids [31], airline routes [3], and railways [28].

In their seminal paper [31], Watts and Strogatz proposed the
first network model (the WS model) that generates “small-
worlds”, i.e. networks with small average shortest-path lengths
and high levels of clustering. The original WS model is a one-
parameter model which interpolates between a regular lattice and
a random graph. The model starts from a one-dimensional lattice
of n nodes with periodic boundary conditions, i.e. a ring lattice.
Each node is then connected to its first k2 neighbors (k on either
side), with k n⪡ . Thus we obtain a regular symmetric lattice with
m¼nk links. The small-world network is then created by taking
each link in turn and, with probability p, rewiring one end of that
link to a new node chosen uniformly at random. The rewiring
process generates on average pnk long-range connections. Note
that, as p goes from 0 to 1, the model moves from a deterministic
regular lattice to a random graph. For p0 1< < , the WS model
generates networks with the small-world property.

Since the pioneering work of Watts and Strogatz, many mod-
ifications of the WS model have been proposed and studied. Other
Fig. 4. Road networks in (a) Beijing, China and (b) Los Angeles, USA. Both plots are obt
model (like Fig. 5(a)) and the torus model (like Fig. 5(b)), respectively.
small-world network models that have become popular include
the Newman–Watts model [25], where, instead of rewiring links,
new links connecting randomly chosen pairs of nodes are added,
and the Kleinberg model [17], where small-world networks are
built on a d-dimensional lattice and the probability that two nodes
are connected by a long-range link depends on the distance be-
tween them in the lattice. In general, small-world models can be
constructed on lattices of any dimension and any topology. For a
state-of-the-art review of the subject, we refer the reader to [24].

In this paper, we consider two small-world network models
that are built on one- and two-dimensional lattices with periodic
boundary conditions, the small-world ring model and the small-
world torus model, respectively.
�

aine
Small-world ring model n k( , )⊗ : As with the WS model, n k( , )⊗
starts with a ring lattice of n nodes. This lattice has n un-
directed links, which equivalently can be considered as n2 di-
rected links (recall Fig. 2). Next, for each node v, the model
generates k additional directed links connecting that node with
k other nodes v v, , k1 … chosen uniformly at random. Note that
for each selected vi, either link v v( , )i or v v( , )i is constructed
with equal probabilities.
�
 Small-world torus model n k( , )⊠ : This model starts with a
square n�n lattice. Periodic boundary conditions make it to-
pologically equivalent to a 2-D torus, hence the name of the
model. This torus has 2n2 undirected links, or, equivalently, 4n2

directed links. The small-world torus n k( , )⊠ is then created by
adding k directed links per each node in the same way as in the
case of n k( , )⊗ above.

Small-world network models are often used to study practical
problems in various fields, such as transportation, biology, and
social science [19]. For example, [29] reviews recent research that
has been done in social science and management using small-
world networks. Another important application is the reliability
study of transportation networks. The development of a trans-
portation network usually starts with a fixed plan to connect some
d from Google Maps. The Beijing and LA networks can be modeled by the ring



Fig. 5. (a) Realization of the small-world ring model n k( , )⊗ , with n¼16 and k¼3. Solid and dashed lines represent regular links and random shortcuts, respectively. For
visibility, only random shortcuts that correspond to nodes 1, 5, 9, and 13 are shown. (b) Realization of the small-world torus model n k( , )⊠ , with n¼4 and k¼1. Solid and
dashed lines represent regular links and random shortcuts, respectively. For visibility, only random shortcuts that correspond to nodes 1, 4, 13, and 16 are shown.
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regions in a city, and then more roads are built as the city grows
and the demand of roads increases. The small-world network re-
sembles this process very well. The similarity between real
transportation networks and synthetic realizations of small-world
models can often be visually observed. For example, Fig. 4
(a) shows part of the transportation network in Beijing, China, that
can be represented by the small-world ring model; Fig. 4(b) shows
part of the transportation network in Los Angeles, USA, that can be
represented by the small-world torus model.

Hereafter, we refer to deterministic lattice links as the regular
links and to the randomly generated links as the random shortcuts.
Realizations of (16, 3)⊗ and (4, 1)⊠ are schematically shown in
Fig. 5(a) and (b), respectively.

In Table 2, the total number of network components is pro-
vided for both models. It is easy to see that n k( , )1 1⊗ and n k( , )2 2⊠
produce componentwise equivalent networks if and only if n n1 2

2=
and k k 21 2= + . Topologically, however, the network realizations of
these models will still be different, since the underlying lattices
have different dimensions. Thus, we have

n k n k

n k n k

Componentwise: ( , 2) ( , )

Topologically: ( , 2) ( , ) (22)

2

2

⊗ + = ⊠

⊗ + ≠ ⊠

The small-world torus model n k( , )⊠ has more regular links,
while the small-world ring model n k( , 2)2⊗ + has more random
shortcuts. This split between the number of regular links versus
random shortcuts, which represents the tradeoff between local
Table 2
Componentwise comparison of two small-world models, n k( , )⊗ and n k( , )⊠ .

Model # of nodes # of regular
links

# of random
shortcuts

Total # of links

n k( , )⊗ n n2 kn n k( 2)+
n k( , )⊠ n2 4n2 kn2 n k( 4)2 +
connectivity and global reachability, has the potential to yield
significantly different reliability properties for the two network
models. Fig. 6(a) and (b) shows an example for both models when
n is large. To demonstrate the effectiveness of Subset Simulation
for network reliability estimation, we investigate the following
question: Which model, n k( , 2)2⊗ + or n k( , )⊠ , produces more
reliable networks where reliability is understood as the max-
imum-flow reliability?

4.3. Simulation results

Reliabilities of two network models with different topologies
can be compared in the following way. Given a network realization

n k( , 2)2⊗̂ ∼ ⊗ + , a source–sink pair (a,b), and the critical
threshold μ⁎, we can estimate the network failure probability

p a b( ; ( , ); )μ⊗̂ ⁎ with respect to the max-flow performance
function (21), using Subset Simulation described in Section 3. By
averaging over different network realizations and source–sink
pairs, we obtain the expected failure probability for a given critical
threshold for the small-world ring model:

p p a b

M
p a b

( ) [ ( ; ( , ); )]

1
( ; ( , ); )

(23)

a b

i

M

i i i

, ,( , )

1

∑

μ μ

μ

¯ = ⊗̂

≈ ⊗̂

⊗
⁎

⊗
⁎

=

⁎

Similarly we can estimate the expected failure probability for the
small-world torus model:

p p a b

M
p a b

( ) [ ( ; ( , ); )]

1
( ; ( , ); ),

(24)

a b

i

M

i i i

, ,( , )

1

∑

μ μ

μ

¯ = ⊠̂

≈ ⊠̂

⊠
⁎

⊠
⁎

=

⁎

where n k( , )i⊠̂ ∼ ⊠ are i.i.d, and node pairs a b( , )i i are chosen
uniformly at random.



Fig. 6. (a) Realization of the small-world ring model n k( , 2)2⊗ + , with n¼40 and k¼2. (b) Realization of the small-world torus model n k( , )⊠ , with n¼40 and k¼2.
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Since our goal is to compare reliabilities of networks that are
produced by the two network models, we are interested not in the
functions p ( ), μ¯ ⊗

⁎ and p ( ), μ¯ ⊠
⁎ per se, but rather in their relative

behavior. We can achieve this by treating the critical threshold μ⁎

as a parameter and plotting p ,¯ ⊗ versus p ,¯ ⊠. The resulting curve
will lie in the unit square, since both probabilities are between
0 and 1; it starts at (0, 0), since both probabilities converge to 0, as
μ → − ∞⁎ ; and it ends at (1, 1), since both probabilities converge to
1, as μ → + ∞⁎ . We refer to this curve as the relative reliability
curve. We are especially interested in the behavior of the relative
failure probability curve in the vicinity of the origin (0, 0), since
this region corresponds to highly reliable networks, and an accu-
rate estimation of failure probabilities in this region is especially
challenging.

In this paper, we compare the reliability properties of
n k( , 2)2⊗ + and n k( , )⊠ for two values of n, namely, n¼5 and

n¼8. For each n, we consider several values of k, i.e. several dif-
ferent numbers of random shortcuts per node. The number of
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Fig. 7. The relative reliability curve in the linear scale (left panel) and log scale (right p
samples used in each Subset Simulation run is N¼2000 per level,
and the conditional failure probability is p0¼0.1. Figs. 7 and 8
show the resulting relative reliability curves for n¼5 and n¼8,
respectively.

For n¼5, k 0, 1, 2,= and 3 are studied. For both small-world
ring and small-world torus models, M¼200 network realizations
{ }i⊗̂ and { }i⊠̂ and source–sink pairs a b{( , )}i i are generated to
estimate the expected failure probabilities in (23) and (24). A fine
grid of valuesμ −⁎ between 0.1 and 3 is used to obtain the relative
reliability curve in Fig. 7. For n¼8, k 0, 1, 2,= and 4 are con-
sidered. In this case, M¼100 network realizations and source–sink
pairs are simulated to estimate p ( ), μ¯ ⊗

⁎ and p ( ), μ¯ ⊠
⁎ in (23) and

(24), respectively. A fine grid of valuesμ −⁎ between 0.1 and 6 is
used to obtain the relative reliability curve in Fig. 8.

For both n¼5 and n¼8, we observe the following results:
1.
10

10

10

1

p 2

anel
The relative reliability curve lies below the equal reliability
line, i.e. below the diagonal that connects the origin (0, 0)
10−6 10−4 10−2 100
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Relative Reliability Curve (Log Scale)

k =0
k =1
k =2
k =3
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), for n¼5. Here, p p1 ,= ¯ ⊗ and p p2 ,= ¯ ⊠ as in (23) and (24) for (0.1, 3)μ ∈⁎ .
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Fig. 8. The relative reliability curve in the linear scale (left panel) and log scale (right panel), for n¼8. Here, p p1 ,= ¯ ⊗ and p p2 ,= ¯ ⊠ as in (23) and (24) for (0.1, 6)μ ∈⁎ .
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with (1,1). This indicates that, on average, the small-world
torus model produces more reliable (in the max-flow sense)
networks than the small-world ring model.
2.
 When k increases, the relative reliability curve shifts towards
the equal reliability line. This result is expected because as k
increases, both network models become topologically closer
to each other (both converge to a random graph), and,
therefore, their reliability properties become similar.
3.
 The relative reliability curve is approximately linear in the
log-scale, i.e.

p p( ) , 1 (25), , α¯ ≈ ¯ >α
⊠ ⊗

This suggests that when both models produce highly reliable
networks, i.e. when the critical threshold μ⁎ is very small, the
small-world torus model produces substantially more reliable
networks than the small-world ring model does.
Thus, our simulation results show that the small-world torus
model is more efficient in producing reliable networks than the
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. The expected average distance between distinct nodes L for two network models
3.
small-world ring model, where reliability is understood as the
maximum-flow reliability.

It is important to highlight that the efficiency of a model in
generating reliable networks depends on the definition of relia-
bility and, therefore, on the underlying network performance
function. As shown above, for the max-flow network performance
function MFμ in (21), the torus model is more efficient. However,
for some other performance functions, the ring model may turn
out to be more efficient. Consider, for example, the average dis-
tance between distinct nodes as a measure of network perfor-
mance:

L
n n

v v
2

( 1)
dist( , ),

(26)i j
i j∑=

− ≠

where v vdist( , )i j is the length of the shortest path between vi and
vj, and n is the number of nodes in the network. It is well known
that in small-world networks, L scales logarithmically with the
network size [30], i.e. L nlog∝ . For the small-world ring model
01 102

= 1

ng (n2,k+2)
rus (n,k)

100 101 102
1
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n

L

k = 2

SW−ring (n2,k+2)
SW−torus (n,k)

as a function of network size n for different numbers of random shortcuts k 0, 1,=
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n k( , 2)2⊗ + and small-world torus model n k( , )⊠ , the estimated
values of L are shown in Fig. 9 for different values of n and k. It
follows from this plot that, if n 10> , then, on average, the ring
model produces networks with smaller average distance between
nodes, and, thus, it is more efficient in this sense than the torus
model.
5. Conclusions

In this paper, we propose a framework for quantitative as-
sessment of network reliability, formulate a general network re-
liability problem within this framework, and show how to solve
this problem using Subset Simulation, an efficient Markov chain
Monte Carlo method for rare event simulation that was originally
developed for estimating small failure probabilities of complex
dynamic systems. The efficiency of the method is demonstrated
with an illustrative example where the small-world torus model
and the small-world ring model are compared in terms of relia-
bility of networks they produce, where reliability is understood as
the maximum-flow reliability. Simulation results suggest that the
small-world torus model is more efficient in producing reliable
networks.
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