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Abstract. The development of an efficient MCMC strategy for sampling from complex dis-
tributions is a difficult task that needs to be solved for calculating small failure probabilities
encountered in high-dimensional reliability analysis of engineering systems. Usually different
variations of the Metropolis-Hastings algorithm (MH) are used. However, the standard MH
algorithm does generally not work in high dimensions, since it leads to very frequent repeated
samples. In order to overcome this deficiency one can use the Modified Metropolis-Hastings
algorithm (MMH) proposed in [1]. Another variation of the MH algorithm, called Metropolis-
Hastings algorithm with delayed rejection (MHDR) has been proposed by [2]. The key idea
behind the MHDR algorithm is to reduce the correlation between states of the Markov chain.
In this paper we combine the ideas of MMH and MHDR and propose a novel modification
of the MH algorithm, called Modified Metropolis-Hastings algorithm with delayed rejection
(MMHDR). The efficiency of the new algorithm is demonstrated with a numerical example
where MMHDR is used together with Subset simulation for computing small failure proba-
bilities in high dimensions.
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1 INTRODUCTION

One of the most important and challenging problems in reliability engineering is to compute
the failure probability given by the following expression:

�� �

�
��

�� ��������� (1)

Here ���� is the joint probability density function (PDF) of a random vector � � �
� , which

represents the uncertain parameters of the problem; � � �
� is the failure domain that is usually

defined as � � �� � �
� ����� � ��, where � is called limit-state function; �� is the indicator

function of � , i.e. �� ��� � � if � � � and �� ��� � � if � 	� � . Throughout this work we
assume that the parameter space �� is high-dimensional and the failure probability �� is very
small.

Each advanced stochastic simulation algorithm for computation of small failure probabili-
ties (1) encountered in reliability analysis of engineering systems consists of two main steps.
At first, we need to specify some artificial PDF(s) �� from which we are going to sample dur-
ing the run of the algorithm. For example, in Importance Sampling, Subset Simulation [1]
and Adaptive Linked Importance Sampling [3] we sample from the important sampling den-
sity ���, family of conditional distributions ����� � and family of intermediate distributions ��

respectively. The second step is the development of the Markov chain Monte Carlo (MCMC)
strategy for sampling from the above specified artificial PDF(s). Usually different variations
of the Metro-polis-Hastings (MH) algorithm are used. Schematically the structure of advanced
simulation algorithm is shown in Fig. �.

Figure 1: Structure of a general advanced simulation method.

The main objective of this paper is to develop a novel effective MCMC algorithm for sam-
pling from complex high-dimensional distributions.

Our starting point is the standard MH algorithm [4, 5]. It has been shown in [1] that the
standard MH algorithm does generally not work in high dimensions, since it leads to extremely
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frequent repeated samples. A geometric understanding of why this is true is given in [6]. In
order to overcome this deficiency of the MH algorithm one can use the modified Metropolis-
Hastings algorithm (MMH) proposed in [1] for sampling from high-dimensional distributions.
It should be emphasized that MMH algorithm is suitable only for sampling from very specific
distributions, namely, from the conditional distributions ����� �, where unconditional PDF �
can be factorized into a product of easy to sample from one-dimensional distributions. To the
best of our knowledge, at the moment there does not exist any efficient algorithm for sampling
from an arbitrary high-dimensional distribution.

Another variation of the MH algorithm, called Metropolis-Hastings algorithm with delayed
rejection (MHDR) has been proposed in [2]. The key idea behind the MHDR algorithm is
that when a Markov chain remains in the same state for some time, the estimate obtained by
averaging along the chain path becomes less efficient. For the MH algorithm this happens when
a candidate generated from the proposal distribution is rejected. Therefore, we can improve the
MH algorithm by reducing the number of rejected candidates. A way to achieve this goal is
the following: whenever a candidate is rejected, instead of taking the current state of a Markov
chain as its new state, as the case in the standard MH algorithm, we propose a new candidate.
Of course, the acceptance probability of the new candidate has to be adjusted in order to keep
the distribution invariant.

To address high-dimensional reliability problems, in this paper we combine the ideas of
both the MMH and MHDR algorithms. As a result we obtain an efficient algorithm, called
Modified Metropolis-Hastings algorithm with delayed rejection (MMHDR), for sampling from
high-dimensional conditional distributions.

Different variations of the standard MH algorithm are schematically shown in Fig. 2.

Figure 2: Modifications of the standard Metropolis-Hastings algorithm.
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2 MODIFICATIONS OF THE METROPOLIS-HASTINGS ALGORITHM

Throughout this work all the variations of the MH algorithm are discussed in the context of
high-dimensional conditional distributions.

2.1 Standard Metropolis-Hastings algorithm

The MH algorithm is the most common MCMC method for sampling from a probability
distribution that is difficult to sample from directly. The algorithm is named after Nicholas
Metropolis, who proposed it in 1953 for the specific case of the Boltzmann distribution, and W.
Keith Hastings, who generalized it in 1970.

In this method samples are simulated as the states of a Markov chain, which has the target
distribution, i.e., the distribution we want to sample from, as its equilibrium distribution. Let the
target distribution be ����� � � ������ ���	
, where 
 � � �� � is a normalizing constant; �� be
the current state of the Markov chain; and �������, called proposed PDF, be an 
 -dimensional
PDF depended on ��. Then the MH update �� � �� of the Markov chain works as follows:

1) Simulate � according to �������,

2) Compute the acceptance probability

����� �� � ��	

�
��

�����������

������������
�� ���

�
� (2)

3) Accept or reject � by setting

�� �

�
�� with prob. ����� ��;

��� with prob. �� ����� ��.
(3)

One can show that such update leaves ����� � invariant, i.e. if �� is distributed according to
����� �, then so is ��:

�� 	 ����� �
 �� 	 ����� �� (4)

Hence the chain will eventually converge to ����� � as its equilibrium distribution. Note, that
the MH algorithm does not require information about the normalizing constant 
. Assuming
a symmetric proposal distribution, i.e. ������ � ������, one obtains the original Metropolis
algorithm [4]. The MH update is schematically shown in the Fig. 
.

Figure 3: Standard Metropolis-Hastings algorithm.
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2.2 Metropolis-Hastings algorithm with delayed rejection

Rejecting the candidate state � with probability � � ����� �� in (3) is necessary for keeping
the target distribution ����� � invariant under the MH update. However, remaining in the current
state �� for some time affects the quality of the corresponding Markov chain by increasing
the autocorrelation between its states and, therefore, it reduces the efficiency of any simulation
method that uses the standard MH algorithm. Thus, reducing the number of rejected candidate
states will improve the standard MH algorithm.

Metropolis-Hastings algorithm with delayed rejection (MHDR), proposed in [2], allows to
achieve this goal: when a reject decision in (3) is taken, instead of getting a repeated sample, we
generate a second candidate state using a different proposal distribution and accept or reject it
based on a suitably computed probability. So, the Markov chain update �� � �� in the MHDR
algorithm when dealing with conditional distribution ����� � works as follows:

1) Simulate �� according to ��������,

2) Compute the acceptance probability

������ ��� � ��	

�
��

��������������

��������������
�� ����

�
� (5)

3) Accept or reject �� by setting

�� �

�
��� with prob. ������ ���;

go to step 4) with prob. �� ������ ���.
(6)

4) Simulate �� according to �������� ���,

5) Compute the acceptance probability

������ ��� ��� � ��	

�
��

��������������

��������������
�

��������� ������ ������ ����

��������� ������ ������ ����
�� ����

�
�

(7)

6) Accept or reject �� by setting

�� �

�
��� with prob. ������ ��� ���;

��� with prob. �� ������ ��� ���.
(8)

An interesting feature of this algorithm is that the proposal distribution �� at the second stage
is allowed to depend on the rejected candidate �� as well as on the current state �� of the chain.
Allowing the proposal PDF �� to use information about previously rejected candidate does not
destroy the Markovian property of the sampler. So all the asymptotic Markov chain theory used
for the standard MH algorithm can be used for the MHDR method as well. The MHDR update
is schematically shown in Fig. �.

Whether MHDR algorithm is useful depends on whether the reduction in variance achieved
compensates for the additional computational cost.
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Figure 4: Metropolis-Hastings algorithm with delayed rejection.

2.3 Modified Metropolis-Hastings algorithm

The standard MH algorithm does not generally work in high dimensions meaning that with
extremely high probability the update of the Markov chain leads to the repeated sample, �� � ��
[1, 6]. Clearly, the MHDR update has the same problem. Thus, a Markov chain of practically
meaningful length constructed in high dimensions having applied either MH or MHDR algo-
rithm may consist of as few as a single sample. This renders simulation methods, such as Subset
Simulation, practically inapplicable.

The modified Metropolis-Hastings algorithm (MMH) was developed in [1] especially for
sampling from high-dimensional conditional distributions. The MMH algorithm differs from
the standard MH algorithm in the way the candidate state � is generated. Instead of using an

 -dimensional proposal PDF � to directly obtain the candidate state �, in the MMH algorithm a
sequence of one-dimensional proposals � ������

�
�� � � � � � � 
 is used. Namely, each coordinate

�� of the candidate state is generated separately using a one-dimensional proposal distribution
�������

�
� depended on the �th coordinate ��

�
of the current state. Finally, we check whether the

generated candidate belongs to the failure domain or not. Thus, the MMH update of the Markov
chain works as follows:

1) Generate candidate state �.
For each � � � � � � 
 :

1a) Simulate ��� according to �������
�
�

1b) Compute the acceptance probability

�����
�
� ���� � ��	

�
��

�����
�������

�
�����

����
�
�
����������

�
�

�
� (9)

1c) Accept or reject ��� by setting

�� �

�
���� with prob. �����

�
� ����;

��
�
� with prob. �� �����

�
� ����.

(10)

2) Accept or reject � by setting

�� �

�
�� if � � � ;

��� if � 	� � .
(11)
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It can be easily seen that the MMH algorithm overcomes the deficiency of standard MH algo-
rithm by producing distinct Markov chain states, rather than repeated samples [1, 6]. The MMH
update is schematically shown in Fig. 5.

Figure 5: Modified Metropolis-Hastings algorithm.

2.4 Modified Metropolis-Hastings algorithm with delayed rejection

In this paper we propose a new MCMC method, called modified Metropolis-Hastings algo-
rithm with delayed rejection (MMHDR), which combines the ideas of both MMH and MHDR
algorithms.

Let �� � ���
�
� � � � � ��

�
� be a candidate state generated during the MMH update. Divide the

set of all indexes � � ��� � � � � 
� into two disjoint subsets: � � � � � , where � � �� � � 

��
�
� ���

�
� and � � �� � � 
 ��

�
� ��

�
�. So, � is a set of all indexes such that the corresponding

coordinates of the candidate state were really transformed and � is a set of all the remaining
indexes.

Following the MMH algorithm after the candidate is generated we need to check whether it
belongs to the failure domain or not. In the former case we accept the candidate as a new state
of the Markov chain, in the latter case we reject the candidate and get a repeated sample. In the
MMHDR algorithm when a reject decision in (11) is taken, instead of getting a repeated sample,
we generate a second candidate state �� using a different one-dimensional proposal distribution
��
�

for each � � � and take ��
�
� ��

�
for all � � � . In other words, at the second stage we try

to update only those coordinates of the current state �� that have been transformed at the first
stage already. Schematically this is shown in Fig. 6.

Figure 6: MMHDR update at the second stage.
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Finally, when the second candidate is generated, we check whether it belongs to the failure
domain, in which case we obtain a really new state of the Markov chain, or not, in which case
we still get a repeated sample.

So, the MMHDR update �� � �� of the Markov chain works as follows:

1) Generate candidate state ��.
For each � � � � � � 
 :

1a) Simulate ���
�

according to ��
�
�����

�
�

1b) Compute the acceptance probability

��
�
���

�
� ���

�
� � ��	

�
��

�����
�
�
���

�
���

�
����
�
�

����
�
�
���

�
����

�
���

�
�

�
� (12)

1c) Accept or reject ���
�

by setting

��
�
�

�
���
�
� � � � with prob. ��

�
���

�
� ���

�
�;

��
�
� � � � with prob. �� ��

�
���

�
� ���

�
�.

(13)

2) Accept or reject �� by setting

�� �

�
��� if � � � ;

go to step 3) if � 	� � .
(14)

3) Generate candidate state ��.
For each � � � � � � 
 :
If � � � , set ��

�
� ��

�
; if � � � , do

3a) Simulate ���
�

according to ��
�
�����

�
� ��

�
�

3b) Compute the acceptance probability

��
�
���

�
� ��

�
� ���

�
� � ��	

�
��

�����
�
�
���

�
���

�
����
�
�

����
�
�
���

�
���

�
���

�
�
�

��
�
���

�
����
�
� ��

�
���

�
����

�
� ��

�
�

��
�
������

�
�
� ��

�
���

�
���

�
� ��

�
�

�
�

(15)

3c) Accept or reject ���
�

by setting

��
�
�

�
���
�
� with prob. ��

�
���

�
� ��

�
� ���

�
�;

��
�
� with prob. �� ��

�
���

�
� ��

�
� ���

�
�.

(16)

4) Accept or reject �� by setting

�� �

�
��� if �� � � ;

��� if �� 	� � .
(17)
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Figure 7: Modified Metropolis-Hastings algorithms with delayed rejection.

The MMHDR update is schematically shown in the Fig. 7.
It can be proved that if �� is distributed according to ����� �, then so is ��, i.e. the MMHDR

update leaves distribution ����� � invariant. The formal proof will be given in the corresponding
journal paper.

The MMHDR algorithm preserves an attractive feature of the MHDR algorithm. Namely,
one-dimensional proposal distributions at the second stage are allowed to depend on the corre-
sponding coordinates of the first rejected candidate. The usage of information on the previously
rejected candidate potentially can help us to generate a better candidate at the second stage
that will be accepted as a new state of the Markov chain. This certainly reduces the overall
probability of remaining in the current state if compare with the MMH algorithm, and therefore
leads to an improved sampler. However, this improvement is achieved at the expense of an
additional computational cost. Whether the MMHDR algorithm is useful for solving reliability
problems depends on whether the gained reduction in variance compensates for the additional
computational effort.

3 EXAMPLES

To demonstrate the advantage of the MMHDR algorithm over the MMH algorithm we apply
Subset simulation (SS) [1], with both MMHDR and MMH algorithms for evaluating the small
failure probabilities of high-dimensional failure domains of different shapes.
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3.1 Linear failure domain

At first, we consider a linear failure domain. Let 
 � ���� be the dimension of the linear
problem, �� � ���� be the failure probability and the failure domain � is defined as

� � �� � �
� 
 
�� �� � ��� (18)

where � � �
� is a random unit vector drawn from uniform distribution and � � �������� � �

����� is the reliability index. Here � denotes the CDF of the standard normal distribution. Note,
that �� � �� is the design point of the failure domain � .

All one-dimensional proposal distributions in both MMH and MMHDR algorithms are set
to be normal distributions with unit variance and centered at the corresponding coordinates of
the current state:

�������
�
� � ��

�
�����

�
� � ��

�
�����

�
� ��

�
� � �

�
�
�
��
��� (19)

Here, when MMHDR algorithm is used, we do not change the second stage proposal distri-
butions. How to generate a better candidate at the second stage based on the information on
the first rejected candidate is in need of additional research. In this example we want just to
check which one of the following two strategies is more effective: to have more Markov chains
with more correlated states (MMH) or to have fewer Markov chains with less correlated states
(MMHDR).

The coefficient of variation (CV) of the failure probability estimates obtained by SS method
against the number of runs are given in Fig. 8.
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Figure 8: The CV of the estimates obtained by Subset simulation with MMH and MMHDR algorithms.

10



Konstantin M. Zuev, Lambros S. Katafygiotis

The curve denoted as MMH(1) corresponds to the SS with MMH algorithm where for each
intermediate subset � � ���� samples are used. We refer to the total computational cost of
this method, i.e., the mean of the total number of samples used, as �. The curve denoted as
MMHDR(1.4) corresponds to the SS with MMHDR algorithm where � � ���� of MMHDR
updates are performed per each intermediate subset. It turns out that the total computational
cost of MMHDR(1.4) is ��� higher than MMH(1) and the reduction in CV achieved is about
��� (based on ��� of runs). Finally, the curve MMH(1.4) corresponds to the SS with MMH
algorithm where for each intermediate subset � � ���� samples are used. The total computa-
tional cost of MMH(1.4) is the same as for MMHDR(1.4), i.e. ��� higher than for MMH(1).
However, the the reduction in CV achieved with MMH(1.4) compared to MMH(1) is about ���
only.

3.2 Nonlinear failure domain of parabolic shape

Next, we consider a paraboloid in 
 -dimensional space defined as follows:

� 
 �� � �
��
���

��� � �� (20)

and define the failure domain as the interior of this paraboloid:

� �

�
� � �

� 
 �� � �
��
���

��� � �

�
� (21)

where � � �����, � � ����� and 
 � ����. The probability of this parabolic failure domain
calculated using standard Monte Carlo simulation (��� samples and ��� runs) is equal to �� �
���� ���� with CV Æ � ����.

The CV of the failure probability estimates obtained by SS method against the number of
runs are given in Fig. 9.

Here, similar to the previous example, we use the following notation:

� MMH(�)[��] denotes SS with MMH algorithm, where � is the total computational cost
of this method (� � � corresponds to the total cost, when � � ���� samples are used for
each intermediate subset), and �� is the variance of the proposal distribution, � ������

�
� �

�
�
�
�
�	�
���;

� MMHDR(�)[��
�
,��

�
] denotes SS with MMHDR algorithm, where � is the total computa-

tional cost of this method, and ��

�
and ��

�
are variances of the first and the second stage

proposal distributions correspondingly, � �
�
�����

�
� � �

�
�
�
�	�

�

���, ��
�
�����

�
� � �

�
�
�
�	�

�

���;

The total computational cost of MMHDR(1.45)[1,��

�
] is ��� higher than MMH(1)[1] and the

maximum reduction in CV achieved (when ��

�
� �) is about ��� (based on �� of runs). The

total computational cost of MMH(1.45)(1) is the same as for MMHDR(1.45)[1,��

�
], however,

the reduction in CV achieved is about �� only. It is important to mention, that parabolic failure
domain (21) provides an example when the change of the second stage proposal distribution is
useful.

So, in the considered numerical examples SS with MMHDR algorithm outperforms SS with
MMH algorithm. In other words, “quality” (fewer Markov chains with less correlated states)
defeats “quantity” (more Markov chains with more correlated states).
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Figure 9: The CV of the estimates obtained by Subset simulation with MMH and MMHDR algorithms.

4 CONCLUSIONS

In this paper a novel modification of the MH algorithm, called Modified Metropolis-Hastings
algorithm with delayed rejection (MMHDR), is proposed. Based on the well-known sampling
techniques: modified Metropolis-Hastings algorithm [1] and Metropolis-Hastings algorithm
with delayed rejection [2] the new algorithm is designed specially for sampling from high di-
mensional conditional distributions. The efficiency of the MMHDR algorithm is demonstrated
with a numerical example where MMHDR is used together with Subset simulation for comput-
ing small failure probabilities in high dimensions.

5 ACKNOWLEDGMENTS

This research has been supported by the Hong Kong Research Grants Council under grant
614008. This support is gratefully acknowledged.

REFERENCES

[1] S.K. Au, J.L. Beck, Estimation of small failure probabilities in high dimensions by subset
simulation. Probabilistic Engineering Mechanics, 16(4), 263–277, 2001.

[2] L. Tierney, A. Mira, Some adaptive Monte Carlo methods for Bayesian inference. Statis-
tics in Medicine, 18, 2507–2515, 1999.

12



Konstantin M. Zuev, Lambros S. Katafygiotis

[3] L.S. Katafygiotis, K.M. Zuev, Estimation of small failure probabilities in high dimensions
by Adaptive Linked Importance Sampling, COMPDYN 2007, Rethymno Crete Greece,
13-16 June 2007.

[4] N. Metropolis et al, Equation of State Calculations by Fast Computing Machines. J. Chem-
ical Physics, 21, 1087–1092, 1953.

[5] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57, 97–109, 1970.

[6] L.S. Katafygiotis, K.M. Zuev, Geometric insight into the challenges of solving high-
dimensional reliability. Probabilistic Engineering Mechanics, 23, 208-218, 2008.

13


