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Preface

The bright future has arrived for inelastic scattering studies of materials, molecules,
and condensed matter. The international science community and national sci-
ence agencies have invested heavily in new instruments and new sources of
neutrons and x-rays that are overcoming many of the historical limitations of
inelastic scattering research. The newest generation of transmission electron
microscopes offers highly monochromatic electrons that enable measurements
of thermal excitations that would otherwise be buried beneath the elastic line.
A new family of inelastic laser scattering experiments are now possible, such
as those that couple vibrations of the cavity itself to photons in from laser.

Higher intensities and instrument sensitivities are major and obvious im-
provements. Experimental inelastic scattering has been particularly constrained
by low countrates, forcing experimental compromises in energy resolution and
intensity. The ARCS inelastic neutron spectrometer with its location at the
high-power target station of the Spallation Neutron Source and with its high
detection efficiency, for example, provides unprecedented experimental pro-
ductivity, overcoming many of the restrictions caused by the low countrates
that have accompanied inelastic neutron scattering experiments to date.

As features in the data from inelastic scattering experiments become more
visible, and averaging processes are less necessary, more information can be
extracted from the experimental measurements. The goal of this book is to
describe the underlying scattering physics and dynamic processes in materi-
als, and show opportunities to elevate the level of science done with inelastic
spectrometers. A large body of specialized knowledge is required to design
modern experiments for inelastic instruments such as time-of-flight chopper
spectrometers. This body of knowledge will only grow as new capabilities
become available. Unfortunately, the underlying concepts are scattered over
many disciplines. For example, the books on the theory of thermal neutron
scattering by S. W. Lovesey and G. L. Squires are superb. Similarly, excellent
solid-state physics texts by J. M. Ziman, C. Kittel, U. Rössler, and N. W. Ashcroft
and N. D. Mermin are available for understanding the principles of excitations
in condensed matter. Today the concepts from neutron scattering and con-
densed matter physics are not connected well by existing written texts. It is a
challenge to organize a coherent presentation of this wide body of knowledge,
connected by the needs of experimental inelastic scattering.

This document did not begin as a textbook. The original draft was a manual
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VIII Preface

of specifications for the ARCS data analysis software. Defining specifications
is a major step in planning a software project and setting its scope. Writing a
manual of specifications forces a high degree of detailed planning of classes and
modules. As we struggled with these details on software structure, it became
obvious that they should parallel as closely as possible the science and practice
of experimental inelastic neutron scattering research. Besides the challenge
of organizing the higher-level intellectual concepts, practical problems with
notation became apparent almost immediately. (Should the scattering vector
be Q⃗, κ⃗ or ∆⃗k? What about its sign?)

The present book is intended for a spectrum of readers spanning from grad-
uate students beginning their doctoral research in inelastic neutron scattering,
researchers who need to learn how to use chopper spectrometers and their
data analysis, and ourselves, the authors, who need a reference manual. Our
heartfelt concern, however, is for the graduate student who enters the field of
inelastic neutron scattering with no experience with instruments and only a
sketchy understanding of the scientific principles. This text was designed to
help the reader understand the principles and methods of inelastic scattering,
and do so efficiently.

Explanations are presented at the minimum level of detail required to un-
derstand physical concepts. There is some sacrifice of the care in development
found in The Theory of Neutron Scattering from Condensed Matter by S. W. Lovesey
and Introduction to the Theory of Inelastic Neutron Scattering by G. L. Squires, but
our goal was to provide explanations that are “best buys,” producing the most
physical insight for the amount of intellectual effort required to understand
them. Another goal was to present the field of inelastic scattering as a codified
intellectual discipline, showing inter-relationships between different topics. To
do so, the notation from other books has been altered in places, for example
Q⃗, defined as k⃗i − k⃗f was selected for the scattering vector so that κ could be
consistent with its usage in The Theory of Lattice Dynamics in the Harmonic Ap-
proximation by A. A. Maradudin, et al. (It is an unfortunate, but well-established
convention that the scattering vector in the diffraction literature is of opposite
sign, ∆⃗k ≡ k⃗f − k⃗i.)

Graduate students learning the concepts presented in this book are assumed
to have some understanding of scattering experiments – a good understanding
of x-ray diffraction would be suitable preparation. The student should have
some competence with the manipulation of Patterson functions in Fourier space
to the level developed, for example, in Transmission Electron Microscopy and
Diffractometry of Materials by B. Fultz and J. W. Howe, and should have some
understanding of solid-state physics at the level of Principles of the Theory of
Solids by J. M. Ziman or Solid-State Physics by H. Ibach and H. Lüth.

Brent Fultz
Pasadena
May, 2021
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Chapter 1

Scattering

This chapter on scattering assumes some background knowledge about elastic
scattering as used for diffraction studies of atomic structure. (After all, x-ray
diffraction is common currency for chemists, materials scientists and condensed
matter physicists.) Nevertheless, some of the important concepts in diffraction
physics are developed here, and recast it into a formulation based on Patterson
functions.

We begin with a discussion of coherence and energy, in part because these
concepts are sometimes taken for granted by persons having extensive expe-
rience with diffraction experiments. In Sect. 1.4, elastic scattering from static
potentials is developed in the Born approximation, giving the basic Fourier
transform relationship between the wave and the scattering factor distribution:
ψ(Q⃗) = F f (⃗r). This is followed by a brief explanation that shows how time-
varying potentials cause inelastic scattering by modulating the frequency of
the scattered wave.

More progress in understanding scattering experiments is possible by ana-
lyzing the correlation functions that are derived from the measured intensity,
rather than the neutron wavefunction (which is not measured directly). Section
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2 CHAPTER 1. SCATTERING

4 returns to elastic scattering to develop the concept of the Patterson function,
P(⃗r). The Patterson function is the spatial correlation function that includes all
information about the diffracted intensity, as opposed to the diffracted wave.
The corresponding correlation function for inelastic scattering is the Van Hove
space-time correlation function. It is developed in Sect. 6.1 in Chapter 3 in
a path that parallels the Patterson function, but is more general. The double
Fourier transform of the Van Hove function, G(⃗r, t), provides all information
about the scattered intensity (elastic and inelastic). The Patterson function is a
special case of the Van Hove function for static scattering potentials. Graphical
examples are used to demonstrate fundamental features of the scattered inten-
sity for the elastic case with the Patterson function: I(Q⃗) = Fr⃗P(⃗r), and for the
inelastic case with the Van Hove function: I(Q⃗,E) = Fr⃗FtG(⃗r, t). The two Fourier
relationships between the scattered intensity and the correlation functions are
discussed in detail in this chapter and the next:

• I(Q⃗) = Fr⃗P(⃗r), which relates the diffracted intensity, I(Q⃗), to the Fourier
transform (from space to momentum) of the Patterson function, P(⃗r).

• I(Q⃗,E) = Fr⃗FtG(⃗r, t), which relates the scattered intensity, I(Q⃗,E), to two
Fourier transforms (from space to momentum, and time to energy) of the
Van Hove function, G(⃗r, t).

For purposes of orientation, we begin with an example.

1.1 A Sampler of Scattering Mechanisms

Neutrons are scattered from materials by several mechanisms. Each scattering
mechanism can be taken as independent of the others, since in quantum me-
chanics the scattering either occurs with full effect, or it does not occur at all.
You can usually assume that the scattering mechanisms do not mix, although
the average over many scatterings gives an average behavior predicted by clas-
sical mechanics. Some categorizations of the different mechanisms of scattering
are

• Nuclear or Magnetic. Is the neutron scattered by interaction with the
nucleus, or with unpaired (magnetic) electron spins at the atom?

• Elastic or Inelastic. Is the neutron scattered without change of its kinetic
energy, or is there an energy transfer between the neutron and the sample?

• Coherent or Incoherent. Is the phase of the neutron wavefunction pre-
dictable after scattering, or is there no relationship between the phase of
the incident and scattered wavefunction?

• Multiphonon or single phonon. Does the scattering of the neutron cause
only one phonon to be excited, or are two excited simultaneously?
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• Multiple or single scattering. Is the neutron scattered one time on its way
through the sample, or is it scattered more than once?

Combinations across these categories are possible. There is a mechanism
of coherent inelastic magnetic single scattering, for example. It is, however, an
oxymoron to speak of incoherent coherent scattering.1 Obviously many mecha-
nisms for neutron scattering are possible. The essentials of these processes will
be covered in the next two chapters. For an overview, however, we illustrate
several of these possibilities with Fig. 1.1.

Neutron scattering from vanadium is almost entirely incoherent, meaning
that the scattering works with the intensities of scattering, but not the phases.
This causes a loss of information along the Q direction in Fig. 1.1Va. For exam-
ple, Bragg diffractions are not seen in the data of Fig. 1.1Va for vanadium. On
the other hand, neutron scattering from aluminum is almost entirely coherent,
and Fig. 1.1Ala shows rich, detailed structure in Q, and Bragg diffractions
along the x-axis at E = 0. (The E = 0 corresponds to elastic scattering, which is
essential to diffraction.)

Figures 1.1b-e show the different contributions to the experimental data.
These cannot be measured, but they can be computed with reasonable reliability
today. From Fig. 1.1Vb and 1.1Alc we can see that the dominant contribution
to the scattering is incoherent scattering for V, and coherent scattering for Al.
The coherent scattering from V and the incoherent scattering from Al are both
small.

At higher temperatures, or with higher momentum transfers of the neutron,
there is an increasing possibility of having two or more phonons created by one
scattering event. In essence, the scattering is becoming more “classical,” where
the scattering is considered to produce heat rather than individual phonons.
These measurements of Fig. 1.1 were at low temperatures and with low neutron
energies, however, so the multiphonon contribution makes only small changes
in panels d. Nevertheless, it is easy to see that multiphonon scattering adds
intensity at larger values of Q > 7 Å−1 for both vanadium or aluminum. (in Fig.
1.1, panels d are similar to panels c for Q < 7 Å−1). Finally, the samples were
thin, so multiple scattering was unlikely as the neutron traversed the sample.
Both multiphonon scattering and multiple scattering can be seen to add some
elastic intensity over a broad range of Q.

In this book, all these mechanisms, and more, will be described quanti-
tatively. Methods for optimizing one type of scattering or another will be
described, along with experimental practices for measuring them. Different
materials have different internal excitations, and some important types of mag-
netic and phonon excitations will be explained with enough care so that the
reader is ready to take the next steps and learn how to calculate them in detail.
There is a lot to know about inelastic neutron scattering, and a lot that it can
do.

1With multiple scattering this can be possible, but one of the scatterings is fully incoherent, and
the other is fully coherent.
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Figure 1.1: See description in text. The vertical columns are scattering from
bcc vanadium at left and fcc aluminum at right. For phonon scattering, V
is nearly fully incoherent, and the Al is nearly fully coherent. Simulations
were performed with MCViNE, as described in various parts of this book. (a)
experimental data from polycrystalline V and Al. (b) incoherent phonon scat-
tering (notice small scale for Al) (c) coherent phonon scattering (d) multiphonon
scattering added to both incoherent and coherent scattering from b and c (e)
multiple scattering added to the result of d. This should be comparable to the
experimental data in a, since all effects are included.
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1.2 Coherence and Incoherence

Diffraction requires “coherent scattering,” characterized by a precise relation-
ship between the phases of the incident and scattered waves. The scattered
wave is the sum of component waves, “wavelets” as we call them, emanating
from the different atoms in the sample. In diffraction, phase differences be-
tween these outgoing wavelets cause constructive or destructive interferences
at different angles around the sample, e.g., the appearance of Bragg diffraction
peaks.

1.2.1 Wavefunctions

Phase

A wavefunction ψ(x, t) describes the structure of a wave (its crests and troughs)
along position x, at any time t. The mathematical form ψ(kx − ωt) accounts for
how the wave amplitude shifts in position with increasing time. The argument
of the wavefunction, kx − ωt, is called the “phase” of the wave. It includes
two constants: k (the wavevector), and ω (the angular frequency). The phase
kx−ωt is dimensionless, so it can be used as the argument of a sine function or
a complex exponential, for example. Our mathematical form causes the entire
structure of the wave ψ(kx − ωt) to move to more positive x with increasing t.
This is clear if we recognize that a particular wavecrest inψ exists at a particular
value of phase, so for larger t, the wave amplitude moves to larger x for the
same value of kx − ωt.2

One-Dimensional Wave

One-dimensional waves are simple because they have no vector character.
Suppose the wave is confined a region of length L. The wavefunction and its
intensity are:

ψ1D(x, t) =
1
√

L
e+i(kx−ωt) , (1.1)

I1D = ψ1D(x, t) ψ∗1D(x, t) =
1
√

L
e+i(kx−ωt) 1

√
L

e−i(kx−ωt) , (1.2)

I1D =
1
L
. (1.3)

If ψ1D(x, t) were an electron wavefunction, the intensity, I1D, would be a prob-
ability density. The prefactor in (1.1) ensures proper normalization, giving a
probability of 1 for finding the electron in the interval of length L:

P =

∫ L

0
I1D dx =

∫ L

0

1
L

dx = 1 . (1.4)

2We say ψ(kx − ωt) travels to the right with a “phase velocity” of ω/k. The wave ψ(kx + ωt)
travels to the left.
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Figure 1.2: Plane wave with k⃗ ori-
ented to the right, with orientations
of r⃗ being (a) along the wave crests,
perpendicular to k⃗, (b) parallel to k⃗.

Plane Wave

In three dimensions, a plane wave is:

ψ3Dpl(⃗r, t) =
1
√

V
e+i(⃗k·⃗r−ωt) , (1.5)

which has an intensity and a normalization analogous to those for the one-
dimensional wavefunction. The spatial part of the phase, k⃗ · r⃗, is illustrated for
a snapshot in time in Fig. 1.2 for two orientations of r⃗: with k⃗ ⊥ r⃗, and with
k⃗ ∥ r⃗. Along the direction of r⃗ in Fig. 1.2a there is no change in the phase of the
wave (here ψ3Dpl(⃗r, t) = 1/

√
V e+i(0−ωt)), whereas in Fig. 1.2b the phase changes

most rapidly along r⃗ (here ψ3DPlan(⃗r, t) = 1/
√

V e+i(kr−ωt)). The dot product k⃗ · r⃗
for the phase in (1.5) gives the plane wave its anisotropy in space.

Spherical Wave

By placing the origin of a spherical coordinate system at the center of the
spherical wave, the spherical wave has its simplest form:

ψ3Dsph(⃗r, t) =
1
√

V

e+i(kr−ωt)

r
. (1.6)

If the center of the spherical wave is the distance r⃗′ away from the origin of the
coordinate system:

ψ3Dsph (⃗r, t) =
1
√

V

e+i(k|⃗r−r⃗′ |−ωt)

|⃗r − r⃗′|
. (1.7)

Figure 1.3 shows a vector construction for r⃗ − r⃗′, which can be obtained by
connecting the tail of −r⃗′ to the arrow of r⃗. At distances far from the scattering
center, where the curvature of the spherical wave is not important, it is often
useful to approximate the spherical wave as a plane wave with r⃗ − r⃗′ pointing
along the direction of k⃗.3

3This is often useful because real scatterers typically emit spherical waves, but Fourier trans-
forms require plane waves.
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Figure 1.3: Spherical wave
with k⃗ oriented away from
the center of wave emission.
(a) with coordinate system
for r⃗ having its origin at cen-
ter of wave emission. (b)
with coordinate system for
r⃗ having an arbitrary origin.

Phase Factor

A phase factor, e−i∆⃗k·R⃗ or e−i(∆⃗k·R⃗+ωt), has the mathematical form of a plane wave
(1.5), and is associated with a particular wavelet, but beware. A phase factor
is not a wave. A phase factor proves handy when two or more wavelets are
scattered from different points in space at {R⃗ j}, typically separated by some
atomic distances. What is important after the long path to the detector is how
the wavelets interfere with each other – constructively or destructively – and
this is accounted for by sums of phase factors like this:

ψphf(∆⃗k) =
∑
{R⃗ j}

e−i∆⃗k·R⃗ j . (1.8)

The definition ∆⃗k ≡ k⃗ − k⃗0 (illustrated in the chapter title image) is repeated a
number of times in this book. This ∆⃗k is a difference in the wavevectors of two
actual waves. Dot products like ∆⃗k·R⃗ j give phase differences between wavelets,
but ∆⃗k is not an actual wavevector. Chapter 5 in Fultz and Howe develops these
concepts, but the reader is hereby warned that exponentials containing ∆⃗k are
not waves, but phase factors.

1.2.2 Coherent and Incoherent Scattering

Coherent scattering preserves the relative phases of the wavelets, {ψr⃗ j
}, scattered

from different locations, {⃗r j}, in a material. For coherent scattering, the total
scattered wave, Ψcoh, is constructed by adding the amplitudes of the scattered
wavelets:

Ψcoh =
∑

r⃗ j

ψr⃗ j
. (1.9)

The total coherent wave therefore depends on the constructive and destructive
interferences of the wavelet amplitudes. Diffraction experiments measure the
total coherent intensity, Icoh:

Icoh = Ψ
∗

cohΨcoh =
∣∣∣∣∑

r⃗ j

ψr⃗ j

∣∣∣∣2 . (1.10)
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On the other hand, “incoherent scattering” does not preserve a phase rela-
tionship between the incident wave and the scattered wavelets. For incoherent
scattering it is incorrect to add the amplitudes of the scattered wavelets, {ψr⃗ j

}.
Incoherently-scattered wavelets do not maintain phase relationships, so they
cannot interfere constructively or destructively. The total intensity of incoher-
ent scattering, Iinc, is the sum of individual scattered intensities:

Iinc =
∑

r⃗ j

Ir⃗ j
=

∑
r⃗ j

∣∣∣ψr⃗ j

∣∣∣2 . (1.11)

Because measurable intensities are added in incoherent scattering, the angular
distribution of incoherent scattering from a group of N identical atoms is the
same as for a single atom, irrespective of how these N atoms are positioned in
space. The total intensity is simply N times larger. Some types of incoherent
scattering occur with a transfer of energy from the wave to the material, and
these processes can be useful for spectroscopic analysis of the atom species in
a material.

It is important to emphasize the difference between the right-hand sides
of (1.10) and (1.11). Because the intensity of coherent scattering in (1.10) first
involves the addition of wave amplitudes, coherent scattering depends on the
relative phases of the scattered wavelets and the relative positions of the N
atoms in the group. Coherent scattering is useful for diffraction experiments.
Incoherent scattering is not. This chapter describes in sequence the four types of
scattering having coherent components that allow for diffraction experiments
on materials:

• x-rays, which are scattered when they cause the atomic electrons to oscil-
late and re-radiate,

• electrons, which are scattered by Coulomb interactions when they pene-
trate the positively-charged atomic core,

• neutrons, which are scattered by nuclei (or unpaired electron spins), and

• γ-rays, which are scattered when they resonantly excite a nucleus, which
later re-radiates.

1.2.3 Elastic and Inelastic Scattering

Besides being “coherent” or “incoherent,” scattering processes are “elastic”
or “inelastic” when there is, or is not, a change in energy of the wave after
scattering. We can therefore construct four word pairs:

(coherent elastic) (coherent inelastic)
(incoherent elastic) (incoherent inelastic)

Diffraction experiments need coherent elastic scattering, whereas spectroscopies
that measure intensity versus energy often use incoherent inelastic scattering.
The case of incoherent elastic scattering is also common, and occurs, for ex-
ample, when phase relationships between scattered wavelets are disrupted by
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disorder in the material. Incoherent elastic intensity does not show the sharp
diffractions associated with crystalline periodicities, but has a broad angular
dependence. Finally, coherent inelastic scattering is used in neutron scatter-
ing studies of excitations in materials, such as phonons (vibrational waves) or
magnons (spin waves), that have precise energy-wavevector relationships. In
some phonon studies, a neutron loses energy when creating a phonon (so it
is inelastic), but the scattering amplitude depends on the phases of the atom
movements in the phonon with respect to the neutron wavevectors (so it is
coherent).

A deeper and more rigorous distinction between coherent and incoherent
scattering involves our knowledge about the internal coordinates of the scat-
terer:

• Consider a simple oscillator (a bound electron, for example) that is driven
by an incident wave and then re-radiates. There is a transfer of energy
from the incident wave to the oscillator, and then to the outgoing wave.
Suppose we know in full detail how the coordinates of the oscillator re-
spond to the incident wave. Since the scattering process is determined
fully, the phases of all outgoing wavelets have a precise and known rela-
tionship to the phase of the incident wave. The scattering is coherent.

• On the other hand, suppose the coordinates of this oscillator were coupled
to another system within the material (a different electron, for example),
and furthermore suppose there is freedom in how the oscillator can in-
teract with this other system. (Often differing amounts of energy can be
transferred from the oscillator to the other system because the transfer
occurs by a quantum mechanical process that is not deterministic.) If this
energy transfer is different for different scatterings, we cannot predict
reliably the phase of the scattered wavelet. The scattering is incoherent.

It is therefore not surprising that incoherence is often associated with inelastic
scattering, since inelastic scattering involves the transfer of energy from the
scatterer to another component of the material. Incoherence does not imply
inelastic scattering, however, and inelastic scattering is not necessarily incoher-
ent.

1.2.4 Wave Amplitudes and Cross-Sections

Cross-Sections

X-rays, electrons, neutrons, and γ-rays are detected one-at-a-time in scattering
experiments. For example, the energy of an x-ray is not sensed over many
positions, as are ripples that spread to all edges of a pond of water. Either the
entire x-ray is detected or not within the small volume of a detector. For x-ray
scattering by an individual atomic electron as described in the next section,
the scattering may or may not occur, depending on a probability for the x-ray–
electron interaction.
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Figure 1.4: These 7 scatterers oc-
cupy the fraction 0.2 of the sam-
ple area, A, and therefore remove
the fraction 0.2 of the rays from
the incident beam. From (1.12):
σ = (0.2/7)A. In the thin sample
limit, the number of scatterers and
the amount of scattering increase
in proportion to thickness, x, but σ
remains constant.

An important quantity for scattering problems is the “cross-section,” σ,
which is the effective “target area” presented by each scatterer. With cross-
sections it is handy to think of a number, N, of scatterers in a sample of area A
as in Fig. 1.4. The probability of scattering is equal to the fraction of sample
area “blocked” by all N scatterers. For thin samples when the scatterers do
not overlap, the N scatterers block an area equal to Nσ. The fraction of rays
removed from the incident beam is the blocked area divided by the total area:

N
σ
A
= N

σx
Ax
= ρσx . (1.12)

Here the density of scatterers, ρ ≡ N/(Ax) has units [scatterers cm−3].
To illustrate a salient feature of coherent scattering, consider the elastic

scattering of neutrons through the interaction of their spin with the spin po-
larization of electrons in an antiferromagnet. The total cross-section depends
on the total number of unpaired electrons in the material. As mentioned after
(1.11), for incoherent scattering the picture would then be complete – the spatial
distribution of the scattered intensity is obtained by adding the intensities from
independent scattering events from different atoms.

Coherent scattering requires further consideration of the wave amplitudes
before calculating the cross-section. A hierarchy of wave interference processes
can occur between spin structures on different length scales:

• the unpaired electrons in the same atom (atomic form factor),

• the atoms in the unit cell of the crystal (structure factor),

• the unit cells in the crystal (shape factor), and

• density variations across a material (small angle scattering).

The spatial redistribution of scattered intensity can be spectacularly large
in the case of Bragg diffractions, but the total coherent cross-section remains
constant. By rearranging the atom positions in a material, the constructive and
destructive interferences of coherent scattering are altered and the angles of
scattering are redistributed, but for the same incident flux the scattered energy
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is conserved (for x-rays or γ-rays), or the total number of scattered particles
remains the same (electrons and neutrons).

The flux of scattered x-rays, electrons, neutrons, or γ-rays at the distance r⃗
from the scatterer decreases as 1/r2 along ˆ⃗r. A scattered photon carries energy,
so the radiated energy flux also decreases as 1/r2 from the scatterer. The energy
of a photon is proportional to E∗E, so the electric field, E, has an amplitude
that must decrease as 1/r from the center of scattering. For scattered x-rays, we

relate the electric field alonĝ⃗r to the incident electric field at the scatterer, E0:

E(⃗r) ∝
E0

r
, (1.13)

where the constant of proportionality would include any angular dependence.
The electric fields E(⃗r) and E0 in (1.13) have the same units, of course, so the
constant of proportionality has units of length. The square of this “scattering
length” is the cross section per steradian, as we next show for electron scattering
(but the argument pertains to all waves).

The problem is similar and actually simpler for neutron scattering, for which
this “coherent scattering length” is a constant, b. This b can be converted
to a cross-section by first squaring it (actually taking b∗b because it is often
convenient for b to be a complex number). The second step is to integrate over
all solid angle, which is 4π. For all intents and purposes the nucleus that scatters
a typical 1 Å neutron is a point and has isotropic scattering, so the relationship
between the scattering length and the total coherent cross-section, σcoh, is:

σcoh = 4π
∣∣∣b∣∣∣2 . (1.14)

Cross-Section for Wave Scattering

Here we find the cross-section for wave scattering. Imagine a large sphere
of radius R around the scatterer, and consider the total flux, Jsc(R), scattered
through a unit area of surface of this sphere. The incident beam has a flux Jin
over an area A. The ratio of all scattered electrons to incident electrons, Nsc/Nin,
is:

Nsc

Nin
=

Jsc(R) 4πR2

Jin A
=

v |ψsc(R)|2 4πR2

v |ψin|
2 A

. (1.15)

We consider elastic scattering for which the incident and scattered electrons
have the same velocity, v, but for inelastic scattering these factors do not cancel.
We use the spherical wave (1.6) for ψsc(R) and the plane wave (1.5) for ψin.
For both waves, the exponential phase factors, multiplied by their complex
conjugates, give the factor 1. The normalization factors also cancel, so (1.15)
becomes:

Nsc

Nin
=
| fel|

2 4πR2

R2 A
, (1.16)
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Figure 1.5: The differential scatter-
ing cross-section, dσ/dΩ, for three
paths past a scatterer. The third
path, dσ3/dΩ3, misses the scat-
terer and contributes only to the
forward beam. The paths with ar-
eas dσ1 and dσ2 make contribu-
tions to the total cross-section for
scattering, σ, and these contribu-
tions are included when the inten-
sity is integrated over the differen-
tial solid angles dΩ1 and dΩ2.

where fel/R is the fraction of the incident electron amplitude that is scattered
into a unit area of the sphere at radius R. Figure 1.4 helps demonstrate the fact
that the ratio of the cross-section σ to the area A of the incident beam equals the
ratio of scattered to incident electrons, Nsc/Nin:

σ
A
=

Nsc

Nin
=

4π| fel|
2

A
, (1.17)

σ = 4π| fel|
2 . (1.18)

The scattering of an x-ray by a single atomic electron can be treated in the
same way, but we need to account for the electric dipolar pattern of x-ray
radiation with a factor of 2/3 in the cross-section,

σx1e =
8π
3

∣∣∣ fx1e

∣∣∣2 , (1.19)

where fx1e is the scattering length. This fx1e is the actual constant of propor-
tionality to convert (1.13) into an equality.

Anisotropic scattering is the rule rather than the exception, however, so
simple cross-sections like those of (1.18) are usually inadequate, even if altered
by factors like the 2/3 used in (1.19). The “differential scattering cross-section,”
written as dσ/dΩ, contains the angular detail missing from the total cross-
section, σ.
The differential scattering cross-section, dσ/dΩ, is the piece of area offered by the
scatterer, dσ, for scattering an incident x-ray (or electron or neutron) into a particular
increment in solid angle, dΩ.
The concept of dσ/dΩ is depicted Fig. 1.5. Note that dσ/dΩ relates an increment
in area (on the left) to an increment in solid angle (on the right).

For the simple case of isotropic scattering,

dσ
dΩ
=

∣∣∣ f ∣∣∣2 , (1.20)
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which is a constant. For anisotropic scattering, (1.20) is generalized with a
scattering length, f (⃗k0, k⃗), that depends on the directions of the incident and
outgoing wavevectors, k⃗0 and k⃗, respectively:

dσ
dΩ
=

∣∣∣ f (⃗k0, k⃗)
∣∣∣2 . (1.21)

We recover the total cross-section, σ, by integrating dσ/dΩ over all solid angle,

σ =

4π∫
sphere

dσ
dΩ

dΩ . (1.22)

As a check, substituting the constant (1.20) into (1.22) and integrating gives
(1.18), as expected.

Special Characteristics of Coherent Scattering

Compare the differential scattering cross-sections for coherent x-ray scatter-
ing by a single electron at r⃗ j, dσx1e,⃗r j

/dΩ, and an atom having Z electrons,
dσatom/dΩ:

dσx1e,⃗r j

dΩ
(⃗k0, k⃗) =

∣∣∣ fx1e,⃗r j
(⃗k0, k⃗)

∣∣∣2 , (1.23)

dσatom

dΩ
(⃗k0, k⃗) =

∣∣∣ fatom(⃗k0, k⃗)
∣∣∣2 . (1.24)

In coherent scattering we sum wave amplitudes (cf., (1.9)), so for coherent
scattering we sum the scattering lengths of all Z electrons to obtain the scattering
length of an atom:

fatom(⃗k0, k⃗) =
Z∑
r⃗ j

fx1e,⃗r j
(⃗k0, k⃗) . (1.25)

Note that (1.25) is a sum of the fx1e,⃗r j
, but (1.24) is the square of this sum.

Equation (1.24) can predict that the coherent x-ray scattering from an atom
with Z electrons is Z2 times stronger than for a single electron, and this proves
to be true in the forward direction. However, the total cross-section for coherent
scattering must increase linearly with the number of scatterers (here the number
of electrons, Z). Consequently the coherent scattering is suppressed in other
directions if a scaling with Z2 is allowed in special directions. The angular
distribution of coherent scattering must be different for the atom and for the
single electron. That is, fx1e (⃗k0, k⃗) and fatom(⃗k0, k⃗) must have different shapes
(they must depend differently on k⃗0 and k⃗). The following is an inequality for
coherent scattering (although its analog for incoherent scattering is an equality):

dσatom,coh

dΩ
(⃗k0, k⃗) ,

Z∑
r⃗ j

dσx1e,⃗r j,coh

dΩ
(⃗k0, k⃗) . (1.26)
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Figure 1.6: Vector difference of Q⃗ =
k⃗i − k⃗f, showing inverted −k⃗f with
dashed line, and Q⃗ positioned more
conventionally in image at right.

Integrating (1.26) gives an equality for coherent (and incoherent) scattering:

4π∫
sphere

dσatom,coh

dΩ
(⃗k0, k⃗)dΩ =

4π∫
sphere

Z∑
r⃗ j

dσx1e,⃗r j,coh

dΩ
(⃗k0, k⃗)dΩ , (1.27)

because with (1.22) we see that (1.27) equates the individual electron cross-
sections to the total cross-section of the atom:

σatom,coh = Zσx1e,coh . (1.28)

The process of actually performing the sum in (1.25) evidently requires
delicacy in accounting for the phase relationships between the x-ray wavelets
scattered into different angles, and knowledge about the electron density of the
atom. This is the subject of atomic form factor calculations (see Chapter 3 in
Fultz and Howe, for example, or (1.76)).

1.3 Momentum Transfer and Phase Shifts

1.3.1 Momentum and Energy

All processes of scattering redirect the incident wave, causing a change in
wavevector, Q⃗. Momentum conservation then requires a transfer of momen-
tum, ∆⃗p, from the incident wavefunction to the sample

Q⃗ ≡ k⃗i − k⃗f , (1.29)

∆⃗p = ℏ Q⃗ , (1.30)

where “i” and “f” denote initial and final. Equation 1.29, shown graphically
in Fig. 1.6 is familiar from the elastic scattering in diffraction experiments,
where |⃗kf|=|⃗ki| (and where the quantity ∆⃗k ≡ −Q⃗ is often used). The transfer of
momentum to the sample (Eq. 1.30) occurs in diffraction experiments, but is
rarely considered.

There can be a transfer of energy accompanying a transfer of momentum.
Consider the scattering of a particle such as an electron or neutron. The transfer
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of energy E is

E =
p2

i

2M
−

p2
f

2M
, (1.31)

E =
ℏ2

2M

(
k2

i − k2
f

)
, (1.32)

E = −
ℏ2

2M

(
Q2
− 2k⃗i · Q⃗

)
, (1.33)

where the last line was obtained after substituting k⃗f = k⃗i − Q⃗. These relation-
ships between E and Q⃗ are called the “kinematics” of scattering. Three cases of
Eq. 1.33 are noteworthy

1. When k⃗i = k⃗f and Q⃗ = 0, there is no momentum transfer, and there is
no scattering, either. The particle continues with no deflection along the
path of the forward beam. Here E = 0, of course.

2. When Q⃗ = k⃗i, and k⃗f = 0, the incident particle is stopped by the scatterer.
This gives maximum energy transfer E = + ℏ

2Q2

2M .4

3. When |⃗kf|=|⃗ki|=k and Q = 2k sinθ, the energy transfer E = 0 because the
scattered particle has its original wavevector k, and all of its original
kinetic energy. For this to occur, the mass of the scatterer must be high,
so the scatterer undergoes no recoil.

So one reason why Eq. 1.33 is not used to interpret diffraction experiments
is that many atoms participate in the scattering. The mass that absorbs the
momentum is therefore large, perhaps the weight of a crystal. This causes E to
be small owing to the large M in the denominator of Eq. 1.33. There is little
energy in the recoil of a heavy object5 when it is hit by a light particle, even if
there is a big change in momentum of the lightweight particle. We know that
many atoms participate in the diffraction process because the diffraction pattern
arises from wave interferences from coherent scattering from many different
atoms.

4Three examples of {Q⃗ = k⃗i , k⃗f = 0} are noteworthy:

• In forward scattering by a scatterer of equal mass, the scatterer continues in the forward
direction and the incident particle stops.

• For a lightweight particle scattered by a heavy mass, this would correspond to a k⃗f perpendic-
ular to k⃗i, but this is suppressed because there is no perpendicular component of momentum
in the problem.

• This condition of Q⃗ = k⃗i is also a result when all possible orientations of Q⃗ are averaged over
the 4π steradians over a sphere. This is typical for incoherent scattering of a light particle
from a heavy scatterer.

5The sample then transfers its momentum to the even more massive Earth, which undergoes a
negligible change in its orbit.
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What is more interesting is when the scattering of the particle causes an
excitation within the sample. The classical analog is when the scattering gen-
erates heat, and is called “inelastic scattering” because kinetic energy is not
conserved. The proper accounting for the internal heat allows total energy to
be conserved. Our interest is when the internal heat is quantized, however, and
the creation of individual magnons or phonons is used in the energy balance.
It is appropriate to consider this as “inelastic scattering,” because the incident
particle or wave transfers energy to or from the sample, much as a classical
particle creates heat.

1.3.2 Phase Shifts

A transfer of momentum always occur in scattering. Here we show why all
scattering processes include a factor exp(iQ⃗ · R⃗) in the scattering amplitudes
(where Q⃗ = ∆⃗p/ℏ).

Both elastic scattering and inelastic scattering involve momentum transfer to
the sample, ∆⃗p, as the incident wave (or wavefunction) changes its wavevector
from k⃗i to k⃗f

∆⃗p = ℏ Q⃗ where Q⃗ ≡ k⃗i − k⃗f and k⃗f = k⃗i − Q⃗ , (1.34)

where i and f designate “initial” and “final.” To accommodate this change in
momentum, it is more convenient to work with the momentum representation
of a neutron state ϕα(p⃗), rather than the usual spatial representation ψα(x⃗).
These are related by Fourier transformation

ϕα(p⃗) =
1
√

2π ℏ

∫
∞

−∞

e−ip⃗·x⃗/ℏψα(x⃗) dx⃗ , (1.35)

ψα(x⃗) =
1
√

2π ℏ

∫
∞

−∞

e+ip⃗·x⃗/ℏϕα(p⃗) dp⃗ . (1.36)

The α denotes the state of the neutron, and changes after scattering.

Phase Shifts in Elastic Scattering

Consider first an elastic scattering, where the incident and final waves are
plane waves, and |kf| = |ki|. After scattering, the final wave ϕf(p⃗) is shifted in
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momentum by ∆⃗p = −Q⃗/ℏwith respect to the initial ϕi(p⃗), so Eq. 1.36 becomes

ψf (⃗r) =
1
√

2πℏ

∫
∞

−∞

e+i(p⃗/ℏ)·⃗r ϕi(p⃗ + ℏQ⃗) d3p⃗ , (1.37)

ψf (⃗r) =
1
√

2πℏ

∫
∞

−∞

e+i(p⃗′/ℏ−Q⃗)·⃗r ϕi(p⃗′) d3p⃗′ , (1.38)

ψf (⃗r) =
e−iQ⃗·⃗r

√
2πℏ

∫
∞

−∞

e+i(p⃗′/ℏ)·⃗r ϕi(p⃗′) d3p⃗′ , (1.39)

ψf (⃗r) = e−iQ⃗·⃗r ψi (⃗r) , (1.40)

The change of variable from p⃗ to to p′ = p⃗ + ℏQ⃗ from Eq. 1.37 to Eq. 1.38 has
no effect on the infinite limits of integration, the phase factor e−iQ⃗·⃗r is constant
in p⃗′ for Eq. 1.39, and Eq. 1.36 was recognized in going to Eq. 1.40.

Equation 1.40 gives a general effect of momentum transfer in elastic scatter-
ing, sometimes described as the effect of “Gallilean invariance” of the scattering
process. The amplitude for elastic scattering at a selected Q⃗ is defined as f (Q⃗),
where

f (Q⃗) = K
∫
∞

−∞

ψ∗f (⃗r)ψi(⃗r) d3r⃗ , (1.41)

f (Q⃗) = K
∫
∞

−∞

eiQ⃗·⃗rψ∗i (⃗r)ψi (⃗r) d3r⃗ , (1.42)

The constant K depends on the physical process of scattering. For neutrons,
K might be the coherent scattering length b of a nucleus. For electron scattering
by an atom, K might be 2Z/(a0Q2), where a0 is the Bohr radius, Z is atomic
number, and the Q−2 originates with the Fourier transform of the Coulomb
potential. This f (Q⃗) is often called the atomic form factor for elastic scattering.

Phase Shifts in Inelastic Scattering

After scattering, the final state of the neutron is β, which always differs from
the initial state α owing to a change in energy and wavelength after inelastic
scattering. We seek the inelastic form factor, f (Q⃗,E), which is the amplitude of
ψβ for the incident amplitude ψα. For coherent neutron scattering, this scales
with the scattering length b, and with the integral ⟨β|α⟩. In what follows, we
integrate over momentum coordinates, but the initial and final coordinates are
not the same. The final wavefunction has a shift in its momentum coordinates
(complementary to that of the sample in Eq. 1.34)

−Q⃗ = p⃗f/ℏ − p⃗i/ℏ . (1.43)

We can use the same momentum coordinate for the final state of the neutron if
we make a shift of all momentum coordinates by −ℏQ⃗. Equation 1.36 becomes

ψβf(x⃗) =
1
√

2π ℏ

∫
∞

−∞

e+i(p⃗·x⃗/ℏ−Q⃗·x⃗)ϕβi(p⃗) dp⃗ . (1.44)
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The Q⃗ is fixed by our selection of detector angle and energy transfer, so its
exponential can be removed from the integration over p⃗

ψβf(x⃗) =
1
√

2π ℏ
e−iQ⃗·x⃗

∫
∞

−∞

e+ip⃗·x⃗/ℏϕβi(p⃗) dp⃗ . (1.45)

Comparing Eq. 1.45 to Eq. 1.36 we find that the final state of the sample after
momentum transfer is

ψβf(x⃗) = eiQ⃗·x⃗ψβi(x⃗) . (1.46)

The amplitude of the scattering, or form factor, depends on the overlap of the
initial and final states as

⟨β|α⟩ =
1
√

2π ℏ

∫
∞

−∞

eiQ⃗·x⃗ψ∗βi(x⃗)ψαi(x⃗) dx⃗ . (1.47)

For scattering in general

f (Q⃗) = K⟨f|eiQ⃗·⃗r
|i⟩ , (1.48)

an expression that is often stated with little proof or context. The phase factor
eiQ⃗·⃗r, a complex number of modulus unity, is central to all types of scattering.
It can be extended to assemblages of many atoms, such as a crystal in Eq. 6.48
below. As a word of warning, explained in Chapter 6, for quantum mechan-
ical scattering by exciting of phonons or magnons, the phase factor becomes
an operator expression, where Q⃗ and r⃗ are replaced with operators Q⃗ and r⃗.
Evaluation of the exponential requires its expansion in a power series. Unfor-
tunately, the operators Q⃗ and r⃗ do not commute, so subtlety is required when
doing the quantum mechanics (Sect. 7.2).

1.4 Born Approximation

Almost without a second thought, we treat neutron scattering as a wave phe-
nomenon with the neutron wavefunction satisfying the Schrödinger wave equa-
tion. A neutron diffraction pattern, with its sharp peaks, is certainly evidence
of wave behavior. The interpretation of the neutron wavefunction is different
from that of a simple wave, however. Suppose we were to turn on a monochro-
matic neutron beam and watch the formation of a diffraction pattern, using an
area detector capable of displaying the impacts of individual neutrons. When
the neutron beam is turned on, individual counts are recorded at different pix-
els in the detector array. With time, an obvious bias appears, where the points
of detection are most frequently at the positions of the rings and spots of the
diffraction pattern. This behavior motivates the interpretation of the neutron
wavefunction in terms of probabilities – specifically, the neutron probability is
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the neutron wavefunction times its complex conjugate (which gives a real num-
ber). Usually this probabilistic interpretation can be ignored when we consider
a diffraction pattern from many neutrons, and we can consider neutron diffrac-
tion as the diffraction of any other type of wave. When individual neutron
events are considered, however, we may have to recall the probabilistic inter-
pretation of the neutron wavefunction because individual neutron detections
look like particles rather than waves.

Another point to remember is that the wave behavior is a characteristic of an
individual neutron. When considering a diffraction pattern involving multiple
neutrons, we do not add the amplitudes of multiple wavefunctions. Neutrons
are fermions, and do not form coherent states as in Bose condensation, for
example. At the viewing screen, we add the intensities of individual neutrons.
The interactions between different neutrons are not coherent.

Our picture of scattering begins with one neutron as a wave incident on
an atom. This wave looks like a plane wave because it comes from a distant
source. The wave interacts with the nucleus or magnetic electron cloud of the
atom, and an outgoing wave is generated. This outgoing wave is something
like a spherical wave originating at the atom, although its intensity is not
isotropic. Figure 1.7 shows the geometry, wavevectors and position vectors
for our neutron scattering problem. Here both r⃗ and r⃗′ are large compared to
the size of the scatterer. Our plane wave incident from the left, Ψinc, is of the
standard form:

Ψinc = ei(⃗ki ·⃗r′−ωt) . (1.49)

In what follows we neglect the time dependence to emphasize the manipu-
lations of the spatial coordinates. We later recover the time-dependence by
multiplying our results by e−iωt. A spherical wave,Ψsc, travels outwards from
the center of scattering. The scattered wave has the form:

Ψsc = f (⃗ki, k⃗f)
eikf |⃗r−r⃗′|∣∣∣⃗r − r⃗′

∣∣∣ , (1.50)

where the scattering length f (⃗ki, k⃗f) of Sect. 1.2.4 varies with the orientation of
k⃗i and k⃗f, r⃗′ is now used to locate the center of the scatterer, and the difference,
r⃗− r⃗′, is the distance from the scatterer to the detector. The intensity ofΨsc falls
offwith distance as 1/r2, as we expect:

Isc = Ψ
∗

scΨsc =
∣∣∣ f (⃗ki, k⃗f)

∣∣∣2 e−ikf |⃗r−r⃗′|∣∣∣⃗r − r⃗′
∣∣∣ eikf |⃗r−r⃗′|∣∣∣⃗r − r⃗′

∣∣∣ , (1.51)

Isc =
∣∣∣ f (⃗ki, k⃗f)

∣∣∣2 1∣∣∣⃗r − r⃗′
∣∣∣2 . (1.52)
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Figure 1.7: Wavevectors
and position vectors for
neutron scattering.

1.4.1 Green’s Function

To obtain the scattering length f (⃗ki, k⃗f), we must solve the Schrödinger equation
for the incident neutron inside the scattering atom (the mass of the neutron is
m, and its coordinates in the atom are r⃗′):

−
ℏ2

2m
∇

2Ψ(⃗r′) + V(⃗r′)Ψ(⃗r′) = EΨ(⃗r′) , (1.53)

ℏ2

2m
∇

2Ψ(⃗r′) + EΨ(⃗r′) = V(⃗r′)Ψ(⃗r′) , (1.54)

which we write as: (
∇

2 + k2
i

)
Ψ(⃗r′) = U(⃗r′)Ψ(⃗r′) , (1.55)

after having made the two definitions:

k2
i ≡

2mE
ℏ2 , (1.56)

U(⃗r′) ≡
2mV(⃗r′)
ℏ2 . (1.57)

The formal approach to finding the solution of the Schrödinger equation
in this problem makes use of Green’s functions. A Green’s function, G(⃗r, r⃗′),
provides the response at r⃗ for a point scatterer at r⃗′:(

∇
2 + k2

i

)
G(⃗r, r⃗′) = δ(⃗r′) . (1.58)

We find the Green’s function in a quick way by starting with an identity:

∇
2 eikr

r
= eikr

∇
2 1

r
− k2 eikr

r
, (1.59)(

∇
2 + k2

) eikr

r
= eikr

∇
2 1

r
, (1.60)

Recall that:

∇
2 1

r
= −4πδ(r) , so (1.61)(

∇
2 + k2

) eikr

r
= −eikr4πδ(r) . (1.62)
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The δ-function simplifies the right-hand side, forcing it to zero everywhere
except at r = 0. At r = 0, however, eikr = 1. From our identity (1.59) we
therefore obtain: (

∇
2 + k2

) eikr

r
= −4πδ(r) . (1.63)

We make a shift of the origin: r⃗ → r⃗ − r⃗′ (so we can see more easily how the
outgoing wave originates at the scatterer – see Fig. 1.7). After doing so, we
identify our Green’s function by comparing (1.58) and (1.63):

G(⃗r, r⃗′) = −
1

4π
eikf |⃗r−r⃗′|∣∣∣⃗r − r⃗′

∣∣∣ . (1.64)

With our Green’s function in hand, we construct Ψscatt(⃗r) by integrating.
The idea is that to obtain the total wave amplitude at r⃗, we need to add up
the spherical wavelet amplitudes emanating from all r⃗′ (each of form (1.64)),
weighted by their strengths. This weight is the right-hand side of (1.55). For-
mally, the limits of integration cover all of space, but in fact it is only important
to extend them over the r⃗′ where U(⃗r′) is non-zero (approximately the volume
of the atom).

Ψsc(⃗r) =
∫

U(⃗r′)Ψ(⃗r′) G(⃗r, r⃗′) d3r⃗′ . (1.65)

The total wave at r⃗,Ψ(⃗r), has both incident and scattered components:

Ψ = Ψinc +Ψsc , (1.66)

Ψ(⃗r) = ei⃗ki ·⃗r +
2m
ℏ2

∫
V(⃗r′)Ψ(⃗r′) G(⃗r, r⃗′) d3r⃗′ . (1.67)

1.4.2 First Born Approximation

Up to here our solution is exact. It is, in fact the Schrödinger equation itself,
merely transformed from a differential equation to a integral equation appro-
priate for scattering problems. The problem with this integral equation (1.65)
is thatΨ appears both inside and outside the integration, so an approximation
is generally required to proceed further. The approximation that we use is the
“first Born approximation.” It amounts to using a plane wave, the incident
plane wave, forΨ in the integral:

Ψ(⃗r′) ≃ ei⃗ki ·⃗r′ . (1.68)

The first Born approximation assumes that the wave is undiminished and scat-
tered only once by the material. This assumption is valid when the scattering
is weak.

We simplify (1.64) by making the approximation that the detector is far from
the scatterer. This allows us to work with plane waves at the detector, rather
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than outgoing spherical waves. To do so we align the outgoing wavevector
k⃗f along (⃗r − r⃗′) as shown in Fig. 1.7. The product of scalars, kf

∣∣∣⃗r − r⃗′
∣∣∣, in the

exponential of a spherical wave emitted from r⃗′, is then equal to k⃗f · (⃗r − r⃗′) of a
plane wave,

G(⃗r, r⃗′) ≃ −
1

4π
ei⃗kf·(⃗r−r⃗′)∣∣∣⃗r∣∣∣ . (1.69)

In (1.69) we also assumed that the origin is near the scatterer, so
∣∣∣⃗r∣∣∣ ≫ ∣∣∣⃗r′∣∣∣,

simplifying the denominator of our Green’s function.6

Returning to our exact integral equation (1.67), we obtain the approximate
scattered wave (the first Born approximation for the scattered wave) by using
(1.68) and (1.69) in (1.67):

Ψ(⃗r) ≃ ei⃗ki ·⃗r −
m

2πℏ2

∫
V(⃗r′) ei⃗ki ·⃗r′ e

i⃗kf·(⃗r−r⃗′)∣∣∣⃗r∣∣∣ d3r⃗′ , (1.70)

Ψ(⃗r) = ei⃗ki ·⃗r −
m

2πℏ2

ei⃗kf ·⃗r∣∣∣⃗r∣∣∣
∫

V(⃗r′) ei(⃗ki−k⃗f)·⃗r′d3r⃗′ . (1.71)

If we define:7

Q⃗ ≡ k⃗i − k⃗f , (1.72)

Ψ(⃗r) = ei⃗ki ·⃗r −
m

2πℏ2

ei⃗kf ·⃗r∣∣∣⃗r∣∣∣
∫

V(⃗r′) eiQ⃗·⃗r′d3r⃗′ . (1.73)

The scattered part of the wave is:

Ψsc(Q⃗, r⃗) =
ei⃗kf ·⃗r∣∣∣⃗r∣∣∣ f (Q⃗) , where : (1.74)

f (Q⃗) ≡ −
m

2πℏ2

∫
V(⃗r′) eiQ⃗·⃗r′d3r⃗′ . (1.75)

The factor f (Q⃗) is the scattering factor of (1.50), which we have found to
depend on the incident and outgoing wavevectors only through their difference,
Q⃗ ≡ k⃗i − k⃗f. We recognize the integral of (1.75) as the Fourier transform of the
potential seen by the incident neutron as it goes through the scatterer. In the
first Born approximation:

The scattered wave is proportional to the
Fourier transform of the scattering potential.

6If we neglect a constant prefactor, this assumption of
∣∣∣⃗r − r⃗′

∣∣∣ = ∣∣∣⃗r∣∣∣ is equivalent to assuming that
the scatterer is small compared to the distance to the detector.

7Sadly, the diffraction vector for elastic scattering is defined as −Q⃗ = ∆⃗k ≡ k⃗f − k⃗i
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The factor f
(
Q⃗
)

of (1.75) is given various names, depending on the potential
V
(⃗
r
)

(we changed notation: r⃗′ → r⃗). When V
(⃗
r
)

is the potential of a single atom,
Vat

(⃗
r
)
, we define fat

(
Q⃗
)

as the “atomic form factor”:

fat

(
Q⃗
)
≡ −

m
2πℏ2

∫
Vat

(⃗
r
)

eiQ⃗·⃗rd3r⃗ . (1.76)

Alternatively, we can use the potential for the entire crystal for V(⃗r) in (1.75) (and
develop the kinematical theory of diffraction). When V(⃗r) refers to the entire
crystal, however, the first Born approximation of 1.73 is sometimes unreliable
because multiple scattering invalidates the assumption of (1.68). This assump-
tion is, nevertheless, the basis for the “kinematical theory of diffraction,” which
we develop for its clarity and its qualitative successes. It is possible to transcend
formally the single scattering approximation, and develop a “dynamical the-
ory” of neutron diffraction by considering higher-order Born approximations,
but this has not proved a particularly fruitful direction. Modern dynamical
theories take a completely different path.

1.4.3 Higher-Order Born Approximations

Nevertheless, it is not difficult in principle to extend the Born approximation
to higher orders. Instead of using an undiminished plane wave for Ψ(⃗r′), we
could use a Ψ(⃗r′) that has been scattered once already. Equation (1.67) gives
the second Born approximation if we use do not use the plane wave of (1.68)
forΨ(⃗r′), but rather:

Ψ(⃗r′) = ei⃗ki ·⃗r′ +
2m
ℏ2

∫
V(⃗r′′)Ψ(⃗r′′) G(⃗r′, r⃗′′) d3r⃗′′ , (1.77)

where we now use a plane wave forΨ(⃗r′′):

Ψ(⃗r′′) ≃ ei⃗ki ·⃗r′′ . (1.78)

The second Born approximation involves two centers of scattering. The first is
at r⃗′′ and the second is at r⃗′ (as shown in Fig. 1.8). The second and higher Born
approximations are not used very frequently. If the scatterer is strong enough to
violate the condition of weak scattering used in the first Born approximation, the
scattering will also violate the assumptions of the second Born approximation.
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Figure 1.8: Coordinates for the second Born approximation. The neutron path is
shown as the dark arrows, which are labeled by the relevant Green’s functions.



Chapter 2

Inelastic Electron Scattering
and Spectroscopy

2.1 Inelastic Electron Scattering

Principles

This Chapter 2 first describes how high-energy electrons are scattered inelas-
tically by materials, and then explains how electron energy-loss spectrometry
(EELS) is used in materials research. Inelastic scattering occurs by the processes
listed below in order of increasing energy loss, E. Although the scattering is
called “inelastic,” energy is conserved – the spectrum of energy gains by the
sample is mirrored in the spectrum of energy losses of the high-energy electrons.

Electrons undergoing energy losses to crystal vibrations, quantized as phonons
with E ∼ 10−2 eV, are indistinguishable from elastically scattered electrons,
given the present state-of-the-art for EELS in a TEM.

With modern instrumentation, it is possible to measure interband transitions
of electrons from occupied valence bands to unoccupied conduction bands of
semiconductors and insulators. With E ∼ 2 eV, these spectral features are quite
close in energy to the intense zero-loss peak from elastic scattering, so resolving
them has been a challenge.

In many solids, especially metals, the bonding electrons can be understood
as a gas of free electrons. When a high-energy electron suddenly passes through
this electron gas, plasmons may be created. Plasmons are brief oscillations of
the free electrons, giving broadened peaks in EELS spectra. Plasmon energies
(E ∼ 10 eV) increase with electron density, so plasmon spectra can be used to
estimate free electron density. Plasmon spectra are also useful for measuring
the thickness of a TEM specimen because more plasmons are excited as the
electron traverses a thicker specimen.

Electrons that ionize atoms by causing core excitations are used for micro-
chemical analysis. Chemical spectroscopy with EELS measures the intensities

25
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of “absorption edges,” which are jumps in spectral intensity at the threshold en-
ergies for ejecting core electrons from atoms in the material (102 < E < 104 eV).
After a core electron has been excited from the atom, the remaining “core hole”
decays quickly, often by the emission of a characteristic x-ray. Characteristic
x-rays with energies from >102 to >104 eV are used in energy dispersive x-ray
spectrometry (EDS) for chemical analysis.

Methods

“Analytical transmission electron microscopy” uses EDS or EELS to identify
the elements in a specimen, and to measure elemental concentrations or spatial
distributions. To quantify chemical concentrations, a background is subtracted
to isolate the heights of absorption edges (EELS) or the intensities of peaks in
an x-ray energy spectrum (EDS). These isolated intensities are then compared
for the different elements in the specimen, and often converted into absolute
concentrations with appropriate constants of proportionality. The accuracy of
quantification depends on the reliability of these constants, so significant effort
has been devoted to understanding them.

In this chapter, after brief descriptions of an EELS spectrometer and features
of a typical EELS spectrum, plasmon energies are discussed with a simple model
of a free electron gas. The section on “core excitations” provides a higher-level
treatment of how a high-energy electron can cause a core electron to be ejected
from the atom. It turns out that the probability of a core electron excitation is
proportional to the square of the Fourier transform of the product of the initial
and final wavefunctions of the excited electron. The cross-section for inelastic
scattering also has an angular dependence that must be considered when mak-
ing quantitative measurements with EELS. Some experimental aspects of EELS
measurements are presented, including energy-filtered TEM imaging.

This chapter then presents the principles of EDS in the TEM, which involves
more physical processes than EELS. Interestingly, the cross-section for core ion-
ization decreases with atomic number, but the cross-section for x-ray emission
increases with atomic number in an approximately compensating way. This
gives EDS spectrometry a balanced sensitivity for most elements except the
very lightest ones.

2.2 Electron Energy-Loss Spectrometry (EELS)

2.2.1 Instrumentation

Spectrometer

After electrons have traversed a TEM specimen, a significant minority of them
have lost energy to plasmons or core excitations, and exit the specimen with
energies less than E0, the energy of the incident electrons. (E0 may be 200, 000±
0.5 eV, for example.) To measure the energy spectrum of these losses, an EELS
spectrometer can be mounted after the projector lenses of a TEM. The heart of a
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B

spectrometer
entrance
aperture

β, entrance
semi-angle

Figure 2.1: Some electron trajec-
tories through a magnetic sec-
tor with uniform magnetic field,
B. The light curves are tra-
jectories for lower-energy elec-
trons (those with larger energy
loss, E), and heavier curves are
for higher-energy electrons. The
collection semi-angle of the spec-
trometer is β.

transmission EELS spectrometer is a magnetic sector, which serves as a prism to
disperse electrons by energy. In the homogeneous magnetic field of the sector,
Lorentz forces bend electrons of equal energies into arcs of equal curvature.
Some electron trajectories are shown in Fig. 2.1.

The spectrometer must allow an angular range for electrons entering the
magnetic sector, both for reasons of intensity and for measuring how the choice
of scattering angle, ϕ, affects the spectrum (cf., (2.44)). A well-designed mag-
netic sector provides good focusing action. Focusing in the plane of the paper
(the equatorial plane) is provided by the magnetic sector of Fig. 2.1 because
the path lengths of the outer trajectories are longer than the path lengths of
the inner trajectories. It is less obvious, but also true, that the fringing fields at
the entrance and exit boundaries of the sector provide an axial focusing action.
With good electron optical design, the magnetic sector is “double-focusing” so
that the equatorial and axial focus are at the same point on the right of Fig. 2.1.
Since the energy losses are small in comparison to the incident energy of the
electrons, the energy dispersion at the focal plane of typical magnetic sectors is
only a few microns per eV.

Electrons that lose energy to the sample move more slowly through the mag-
netic sector, and are bent further upwards in Fig. 2.1.1 In a “serial spectrome-
ter,” a slit is placed at the focal plane of the magnetic sector, and a scintillation
counter (see Sect. ??) is mounted after the slit. Intensity is recorded only from
those electrons bent through the correct angle to pass through the slit. A range
of energy losses is scanned by varying the magnetic field in the spectrometer.
A “parallel spectrometer,” shown in the chapter title image, covers the focal
plane of the magnetic sector with a scintillator and a position-sensitive photon
detector such as a photodiode array. The post-field lenses Q1–Q4 magnify the
energy dispersion before the electrons reach the scintillator. A parallel spec-
trometer has an enormous advantage over a serial spectrometer in its rate of
data acquisition, but it requires calibrations for variations in pixel sensitivity.

The optical coupling of a magnetic sector spectrometer to the microscope
usually puts the object plane of the spectrometer at the back focal plane of

1Their longer time in the magnetic field overcomes the weaker Lorentz forces.
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the final projector lens (Fig. ??). This back focal plane contains the diffraction
pattern of the sample when the microscope is in image mode. When the
microscope is operated in image mode, the spectrometer is therefore said to
be “diffraction-coupled” to the microscope. With diffraction coupling, the
collection angle, β, of the spectrometer is controlled by the objective aperture of
the microscope. Alternatively, when the microscope is operated in diffraction
mode, the back focal plane of the projector lens contains an image, and the
spectrometer is said to be “image-coupled” to the microscope. With image-
coupling, the collection angle, β, is controlled by an aperture at the entrance to
the spectrometer (at top of Fig. 2.1).

Monochromator

The typical energy resolution for EELS spectrometers was about 1 eV or so for
many years, but recent developments have allowed energy resolutions better
than 0.1 eV on commercial microscopes. This is accomplished by starting with a
field emission gun, often a Schottky effect gun (Sect. ??), followed by an electron
monochromator, often a Wien filter as described here. Electrons traveling
through a Wien filter encounter a region with crossed electric and magnetic
fields that induce competing forces on the electron. In a Wien filter these electric
and magnetic forces are tuned to cancel for electrons of one velocity, v0, which
avoid deflection and pass through the exit aperture of the filter. Specifically,

for an electron with velocity vz down the optic axis along ⃗̂z, a magnetic field

oriented along ⃗̂y produces a force along ⃗̂x, Fmag
x = evzBy. A Wien filter has an

electric field along ⃗̂x in the same region, generating a force on the electron of
Fel

x = −eEx. The special condition of cancelling forces, Fmag
x = −Fel

x , can be true
for electrons of only one velocity, v0:

ev0By = eEx ,

v0 =
Ex

By
. (2.1)

Electrons with velocities differing from v0 are deflected, and do not pass through
the exit aperture of the Wien filter. In practice, it is typical to operate the Wien
filter at a voltage close to that of the electron gun itself, so the electron velocity
through the filter will be slow enough that sub-eV resolution is possible with
reasonable values of electric field, magnetic field, and aperture size. Biasing
the Wien filter assembly near –100 or –200 keV can be challenging, however.

The Wien filter first disperses electrons of different energies into different
angles, and then allows electrons of only a selected energy to pass through
its exit aperture. Monochromatization therefore discards a substantial fraction
of electrons – perhaps 80% of the electrons are lost when monochromating to
0.1 eV. When operating in STEM mode, the electron current is also reduced
substantially when forming the smallest electron probes. It is typical to make
compromises between the brightness of the image, the electron monochromati-
zation, and the size of the probe – an increase in one usually requires a decrease
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Figure 2.2: EELS
spectrum of Ni
metal, showing
zero-loss peak,
bulk plasmon,
and L-edge with
white lines at the
edge. After [5.1].

in another. Manufacturers are constantly trying to find ways to improve these
aspects of microscope performance.

2.2.2 General Features of EELS Spectra

A typical EELS spectrum is presented in Fig. 2.2. The enormous “zero-loss
peak” is from electrons of 200,000 eV that passed through the specimen without
any energy loss. The sharpness of this peak indicates that the energy resolution
is about 1.5 eV. The next feature is at the energy loss E = 25 eV, from electrons
having energies of 199,975 eV. It is the “first plasmon peak,” caused by the
excitation of one plasmon in the sample. With thicker specimens there may also
be peaks at multiples of 25 eV from electrons that excited two or more plasmons
in the specimen. The small bump in the data at 68 eV is not a plasmon peak,
but rather a core loss. Specifically it is a Ni M2,3 absorption edge caused by
the excitation of 3p electrons out of Ni atoms. An enormous feature is seen at
an energy loss of about 375 eV, but it is an artifact of the serial data acquisition
method, and not a feature of the material. (At 375 eV the detector operation
was changed from measuring an analog current to the counting of individual
electron events.)

The background in the EELS spectrum falls rapidly with energy (the de-
nominator of ∆k2 in (2.28) is partially responsible for this), and the next feature
in the Ni spectrum of Fig. 2.2 is a core loss edge at 855 eV. This feature is caused
by the excitation of 2p3/2 electrons out of the Ni atom, and is called the “L3
edge.” The L2 edge at 872 eV is caused by the excitation of 2p1/2 electrons out
of the atom. Right at the L2 and L3 edges are sharp, intense peaks known as
“white lines” that originate from the excitation of 2p electrons into unoccupied
3d states at a Ni atom. Such features are typical of transition metals and their
alloys as described in Section 2.2.3. More generally, unoccupied states such as
antibonding orbitals are often responsible for sharp peaks at core edges.

Compared to plasmon excitations, the cross-sections for inner-shell ioniza-
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tions are relatively small, and become smaller at larger energy losses. To obtain
good intensities, for many elements it is preferable to use absorption edges at
lower energy losses (e.g., L and M). Some of the nomenclature of electronic
transitions was given previously in Sect. ??. Figure 2.3 shows an orbital repre-
sentation and associated nomenclature for EELS edges.

2.2.3 * Fine Structure

Near-Edge Fine Structure

The region in an EELS spectrum around a core-loss edge often shows clear and
reproducible structure that can be used to identify the local chemical envir-
onment. This “electron energy-loss near-edge structure” (ELNES) depends on
the number and energy of unoccupied states at the excited atom. Chemists call
these low-lying unoccupied states “lowest unoccupied molecular orbitals,” and
they include antibonding orbitals. Physicists call them “states above the Fermi
energy,” and they include the conduction band. A core electron can be excited
into these unoccupied states, and the energy gained by the core electron during
this transition is mirrored in the energy-loss spectrum of the high-energy elec-
tron. Simple metals with nearly-free electrons show core edges in EELS spectra
that are smooth and without sharp features. On the other hand, materials with
high densities of states just above the Fermi level, such as transition metals and
rare-earth metals, have sharp features at their absorption edges associated with
transitions into unoccupied d- and f -states, respectively. These features do not
appear at all absorption edges, owing to the dipole selection rule where the
angular momentum must change by ±1. This selection rule allows transition
metals with unoccupied d-states to have intense white lines at their L2,3 edges,
which involve excitations from core p-electrons, but not at their L1 edges, which
involve excitations from s-electrons (see Fig. 2.2).

The intensity of the white lines at the L2,3 edge of Ni in Fig. 2.2 can be
understood with the inelastic cross section for core shell ionizations (2.37),
where ψβ is an unoccupied 3d state and ψα is an occupied 2p core state, both
centered at the Ni atom. The intensities of the white lines are larger when
there are more unoccupied 3d states (the factor ρ(E) in (2.37)). If the integral
in (2.37) is evaluated, integrated intensities of the white lines can be used
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Figure 2.4: Oxygen K-edges
from various manganese ox-
ides, showing a variety of
ELNES spectral features. Af-
ter [5.2].

to quantify ρ(E), the number of unoccupied 3d states at Ni atoms, and how
this number changes with alloying or chemical bonding. Likewise, rare earth
metals with unoccupied f -states have sharp features at their M4,5 edges, which
involve core d-electrons (but not at their M2 or M3 edges, which involve p-
electrons). Semiconductors and insulators usually show distinct structure at
their absorption edges, owing to the excitation of core electrons into unoccupied
states above the band gap.

Because the number of unoccupied states is sensitive to the chemical and
structural environment around the excited atom, ELNES can be used as a
“fingerprint” of its local environment, even when the experimental systematics
are not simple, or when electronic structure calculations are not possible. Figure
2.4 shows that the oxygen K-edge ELNES is sensitive to the local environment
around the O atom in a variety of manganese oxides. The structure around
527-532 eV is dominated by the effects of chemical bonding on the density of
electron states at the O atom, but the peak from 537-545 eV is more sensitive to
the local positions of Mn atoms near the O atom – it is part of the “extended
fine structure,” described below.

Changes to the chemical environment around an atom alter the energy
of the lowest unoccupied state, and therefore shift the onset energy of the
core edge. Chemical shifts of absorption edges therefore reflect changes in
the energies of the unoccupied states. More subtly, however, they also reflect
changes in the energies of the core states. Any change to the outer atomic
electrons, as caused by changes in chemical bonding for example, alters the
intra-atomic electron-electron interactions. The energies of core electrons are
therefore altered by changes in the outer electrons. For example, if an outer
electron of a Li atom is transferred to a neighboring F atom, one may expect a
lower-energy unoccupied state about the Li, and a shift of the Li K edge to lower
energy. In fact, however, the loss of this electron in Li+ reduces the screening of
the core 1s electrons, causing them to be more tightly bound to the nucleus. This
causes the absorption edge to shift to higher energies. Lithium has only three
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electrons, so this effect is anomalous, but chemical shifts of absorption edges
for all elements depend in part on the shifts in energies of the core electrons
caused by intra-atomic screening.

Finally, we note that the core hole itself alters the energies of the atomic
electrons. It is sometimes assumed that the removal of a core electron serves
to increase the effective nuclear charge from Z to Z + 1, but the effects of a core
hole on the energy levels of an unstable atom are not easy to understand.

Extended Fine Structure

Extended electron energy-loss fine structure (EXELFS) starts at energies where
the outgoing electron state can be considered free of the atom, perhaps about

30 eV beyond the absorption edge. The state of the outgoing electron from the
“central atom” is affected by the surrounding atoms, and self-interference oc-
curs as the outgoing electron is backscattered from the nearest-neighbor shells
of atoms. This process is illustrated schematically in Fig. 2.5. With changes in
the wavelength of the outgoing electron, constructive and destructive interfer-
ence occurs, causing the EXELFS signal, χ, to be oscillatory:

χ(k) =
∑

j

N j f j(k)

r2
j k

N j f j(k) e−2r j/λ e−2σ2
j k2

sin
(
2kr j + δ0 + δ j

)
. (2.2)

Equation (2.2) includes a number of different effects, and its factors are best
justified one-by-one. The sine function is the oscillatory interference of the
outgoing electron wavefunction with itself as it travels the distance 2r j from the
central (excited) atom to a neighboring atom at r j and back again. The phase of
this electron wave is shifted by the amount δ j upon scattering by the neighbor-
ing atom at the distance r j, and by δ0 from the central atom. These phase shifts
generally depend on the electron wavevector, and this k-dependence must be
known for quantitative work. The other factors in (2.2) are the number and
backscattering strength of the neighboring atoms, N j and f j(k), a qualitative de-
cay factor to account for the finite lifetime of the outgoing electron state, e−2r j/λ

(where λ is the electron mean-free-path), and a Debye-Waller factor, e−2σ2
j k

2

, that
attenuates χ(k). Here σ2

j is a mean-squared displacement of the central atom
relative to its neighboring atoms, typically originating with temperature or dis-
order in the local structure. The sum in (2.2) is over the neighboring atoms, and
typically includes the first- and second-nearest-neighbor (1nn and 2nn) shells
around the central atom.

Figure 2.6 shows some steps in a typical EXELFS analysis, in this case for
the L2,3 edge from a slightly-oxidized sample of bcc Fe metal. Figure 2.6a shows
the absorption edge after correction for the pre-edge background. The region
of interest begins above the L3 and L2 edges. Unfortunately, the L1 edge (2s
excitation) appears as a feature in the region of interest, so it is best to work
with data at energies beyond the L1 edge. The useful data range did include the
oscillations with broad peaks at about 920 and 1000 eV (barely visible in Fig.
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Figure 2.5: Pictorial representation of the electron interference that gives rise
to EXELFS. Crests of the electron wavefunction emanating from a central atom
are drawn with an amplitude that diminishes with distance. For this particular
wavevector and phase shifts, the electron wave crest backscattered from the
four neighboring atoms is in phase with the wave crest emanating from the
central atom, giving constructive interference and an enhanced probability for
the emission of the electron.

2.6). Extracting these small oscillations from the monotonic decay characteristic
of an isolated atom is usually done by fitting a cubic spline function through
the EXELFS oscillations. Subtracting this spline fit reveals the oscillations in
energy, which are converted to k-space as in Fig. 2.6b, using the wavevector
dependence on energy above the absorption edge, Ea (where k is in Å−1):

E − Ea =
ℏ2k2

2me
= 3.81 k2 [eV] , (2.3)

Real space periodicities are obtained from the data of Fig. 2.6b by taking
their Fourier transform.2 The periodicities in real space are not affected sig-
nificantly if χ(k) is multiplied by a power of k, and doing so helps to sharpen
the peaks in the real space data. The real-space function of Fig. 2.6c, called a
“pseudo-” or “raw-” radial distribution function, was obtained by taking the
Fourier transform of kχ(k). The peak at 2.25 Å corresponds approximately to
the position of the 1nn shell of Fe atoms in bcc Fe (2.02 Å), but a discrepancy
is expected because the phase shifts δ j and δ0 of (2.2) were not included in the
data analysis. For comparative work with similar specimens, however, this
simple Fourier transform method may be adequate.

Better-known than EXELFS is EXAFS (extended x-ray absorption fine struc-
ture) spectroscopy, performed with tuneable synchrotron radiation. EXAFS is
identical to EXELFS, except that the excitation of the central atom is caused by
a photon. The energy of the incident photon is tuned from below an absorption
edge to well above it. The self-interference of the backscattered photoelectron
is seen in the data as decreased or increased photon transmission through the
sample (or electron yield in another variant of the EXAFS technique). The

2It is an approximation to ignore the slight phase difference between the L1 and L2 EXELFS
oscillations, and to neglect the L1 EXELFS, but the approximation is not too bad.
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Figure 2.6: (a) Fe L-edge from pure Fe metal at 97 K. Pre-edge background was
subtracted, but no corrections were performed for plasmon excitations, which
do not affect the gradual EXELFS structure. (b) Fe L2,3 edge EXELFS extracted
from data in a. (c) Magnitude of Fourier transform of data in b. After [5.3].
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analysis of the χ(k) data is identical to that of EXELFS, and (2.2) was originally
proposed for EXAFS.

There is a stronger E-dependence for EXELFS spectra than for EXAFS spec-
tra, causing EXELFS to be more practical than EXAFS for energies below about
2 keV. Nevertheless, EXAFS is more practical at higher energies, and higher
energies have two advantages. Atomic levels at higher energies are better
separated in energy, making it easier to obtain wide ranges of energy where
the extended fine structure can be measured without interruption from other
absorption edges. The second advantage of EXAFS is its ability to work with
K-shell excitations of many elements, whose simpler structure allows their χ(k)
to be interpreted more reliably. On the other hand, EXELFS can be performed
readily on local regions of material identified in TEM images. Synchrotron
beamline optics including x-ray mirrors and Fresnel zone plates now allow
EXAFS measurements on areas smaller than ∼ 1 µm, however.

2.3 Plasmon Excitations

2.3.1 Plasmon Principles

A fast electron jolts the free electrons when it passes through a material. The
displaced charge creates an electric field to restore the equilibrium distribution
of electrons, but the charge distribution oscillates about equilibrium for a num-
ber of cycles. These charge oscillations, called “plasmons,” are quantized in
energy. Larger energy losses correspond to the excitation of more plasmons, not
to an increase in the energy of a plasmon. In most EELS spectra, the majority
of inelastic scattering events are plasmon excitations.

To find the characteristic oscillation frequency of a plasmon, consider the
rigid translation of a wide slab of electron density by a small amount, x, as in
Fig. 2.7. At the bottom surface of the slab all the electrons are removed, but at
the top the electron density is doubled. This charge disturbance therefore sets
up the electric field, E, of a parallel-plate capacitor:

E = 4πσs , (2.4)

where σs is the surface charge density equal to the electron charge, e, times ρ,
the number of electrons per unit volume, times the displacement, x:

σs = eρx . (2.5)

The field, E, provides the restoring force to move the electron slab back to
its original position. The electrostatic restoring force per unit volume of slab is:

F = −eρE . (2.6)

Substituting (2.5) into (2.4), and then into (2.6) gives a restoring force linear in
the displacement:

F = −e2ρ24πx . (2.7)
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Figure 2.7: Displacement of a
slab of electric charge, leading
to doubling of the charge den-
sity at the top of the slab over
thickness x, and depletion of
charge at the bottom. A wide,
flat slab idealizes the problem
as one dimensional.

The Newtonian equation of motion per unit volume of the electron slab is:

F = ρme
d2x
dt2 . (2.8)

Substituting (2.7) into (2.8) gives:

d2x
dt2 = −

(
4πe2ρ

me

)
x . (2.9)

Equation (2.9) is the equation of motion for an undamped harmonic oscil-
lator with the characteristic frequency:

ωp =

√
4πe2ρ

me
= 5.64 × 104 √ρ , (2.10)

where the units of ρ are [electrons cm−3], and ωp is [Hz]. With analogy to a
mechanical oscillator, the electron density provides the stiffness. The higher
the electron density, the higher the plasmon frequency. For metals, assuming
an approximate free electron density of ρ = 1023 electrons cm−3, ωp ≃ 2 × 1016

Hz.3 The characteristic energy of such an oscillation is the plasmon energy,
given by:

Ep = ℏωp , (2.11)

and for our example Ep = (6.6×10−16 eV s) (2×1016 s−1) ≈ 13 eV.
In EELS, intense plasmon peaks are prominent at energy losses of 10–20 eV.

Plasmons are not long-lived, however, often because they promote excitations
of electrons near the Fermi energy. Plasmon peaks therefore tend to be broad-
ened in energy.4 Free electron metals such as aluminum have sharper plasmon
peaks than transition metals, which have a high density of states at the Fermi
energy. Compared to core electron excitations, however, plasmon excitations
do not provide much detailed information about the individual atom species
in the material.

3The present one-dimensional approach is not necessarily reliable for relating the free electron
density to the plasmon energy. A more general approach uses the imaginary component of the
dielectric constant of the material, and the theory uses the mathematics discussed in Problem 5.6.

4“Lifetime broadening” is understandable from the uncertainty principle: ∆E∆t ≃ ℏ. A short
lifetime ∆t comes with a large uncertainly in energy, ∆E.
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Figure 2.8: Low-loss spectrum
taken from a thick sample of
∼ 120 nm Al metal on C us-
ing 120 keV electrons and β =
100 mrad. Plasmon peaks are
visible at energies of n × 15 eV,
where n is the number of plas-
mons excited in the sample. Af-
ter [5.4].

2.3.2 * Plasmons and Specimen Thickness

The characteristic length or “mean free path,” λ, over which a 100 keV electron
excites one plasmon is about 100 nm in metals and semiconductors. This is an
average length, so in a TEM specimen of even 50 nm, some electrons excite one,
two, or more plasmons. The probability Pn for the excitation of n plasmons in
a sample of thickness, t, is determined by the statistics of Poisson processes:

Pn =
1
n!

(
t

λ

)n

e−t/λ =
In

It
, (2.12)

where In is the number of counts in the nth plasmon peak, and It is the number
of counts in all plasmon peaks with n ≥ 0 (It includes the zero-loss peak for
which n = 0). The EELS spectrum in Fig. 2.8 shows distinct plasmon peaks.
After subtracting a background from other inelastic processes (originating with
the Al L-edge and a contribution from oxides and the substrate), Pn is obtained
as the fractional area of the nth plasmon peak.

Good samples for TEM imaging are several times thinner than the sample
used for Fig. 2.8, but plasmon peak areas still offer a practical way to determine
thicknesses of thin samples. Setting n = 0 in (2.12), the thickness, t, is:

t

λ
= ln

( It

I0

)
. (2.13)

Measurement of It and I0 (the zero-loss or the n = 0 plasmon peak) involves
the choice of the energies ε, δ and ∆, which define the limits of integration,
as illustrated in Fig. 2.9.5 The lower limit (−ε) of the zero-loss region can
be taken anywhere to the left of the zero-loss peak where the intensity has
decreased to zero, the separation point δ between the zero-loss and inelastic

5If a collection aperture limits the angles recorded by the spectrometer to a maximum angle β,
λ in (2.13) must be interpreted as an effective mean free path, λ(β).
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Figure 2.9: The integrals and energies
involved in measuring specimen thick-
ness by the log-ratio method. After
[5.5].

regions may be taken as the first minimum in intensity, and ∆ ≈ 100 eV is
usually sufficient to include most of the inelastic scattering in relatively thin,
low Z materials (for high Z and/or thick specimens, several hundred eV should
be used since the scattered intensity is shifted to higher energy loss). Equation
(2.13) has been shown to give 10 % accuracy for relative thickness measurements
on samples as thick as t = 5λ. Some deviations from the intensities of (2.12)
are of course expected when the electron beam passes through regions of non-
uniform thicknesses or composition, and when other contributions are present
in the low-loss spectrum.

Absolute determinations of specimen thickness require values for the total
inelastic mean free path. For materials of known composition, it is possible
to calculate a value for the mean free path according to the semi-empirical
equation [5.5]:

λ ≈
106 F

ln
(
2βE0/Em

) E0

Em
, (2.14)

where units forλ are [nm], β is the collection semiangle [mrad], E0 is the incident
energy [keV], Em is a mean energy loss [eV] that depends on the composition
of the sample, and F is a relativistic factor:

F =
1 + E0/1022

(1 + E0/511)2 , (2.15)

and F = 0.768 for E0 = 100 keV and 0.618 for E0 = 200 keV. For a specimen of
average atomic number Z, Em can be obtained from the semi-empirical formula:

Em ≈ 7.6Z0.36 . (2.16)

For large collection apertures, i.e., β > 20 mrad for E0 = 100 keV or β > 10 mrad
at 200 keV, (2.14) becomes inapplicable and the mean free path saturates at a
value independent of β.

Specimen thickness measurement by this EELS plasmon technique has some
advantages over other techniques for measuring specimen thickness (such as
CBED) because it can be applied for a wide range of specimen thicknesses,
including very thin specimens, and for specimens that are highly disordered
or amorphous. Table 2.1 lists some values for calculated (with (2.10) and
(2.11)) and measured plasmon energies Ep, widths of the plasmon peaks ∆Ep,
characteristic scattering angles for plasmons ϕEp , and calculated mean free
paths λ, for 100 keV incident electrons.
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Table 2.1: Plasmon data for selected materials [5.5]
Material Ep (calc.) Ep (expt.) ∆Ep ϕEp λ

(eV) (eV) (eV) (mrad) (nm)

Li 8.0 7.1 2.3 0.039 233

Be 18.4 18.7 4.8 0.102 102

Al 15.8 15.0 0.5 0.082 119

Si 16.6 16.5 3.7 0.090 115

Table 2.2: Energy notation
variable definition

E energy transfer from incident electron to atomic electron

E0 energy of incident electron (T+mass energy) e.g., 100.00 keV

T incident kinetic energy (low E0: T ≃ E0) (high E0: T = mv2/2 < E0)

Eα energy of bound atomic electron

Eαβ difference in energy between atomic states α and β

Ea energy of atomic absorption edge (e.g., EK), Ea ≃ −Eα
Ep plasmon energy

Em mean energy loss

sign all variables are positive except Eα

2.4 Core Excitations

2.4.1 Scattering Angles and Energies – Qualitative

When a high-energy electron undergoes inelastic scattering, its energy loss, E,
is actually a transfer of energy to the sample. When this energy is transferred
to an atomic electron, the atomic electron may find an unoccupied electron
state about the same atom, or it may leave the atom entirely (i.e., the atom
is ionized). The total energy and the total momentum are conserved, but the
scattering redistributes the energy and momentum between the high-energy
electron and the atomic electron. The two electrons have coupled behavior.
In particular, the probabilities and energies for the allowed excitations of the
atomic electron are mirrored in the spectrum of energy losses of the high-energy
electron. Relevant energies and their notation are listed in Table 2.2.

When a high-energy electron transfers energy to a core electron, the wavevec-
tor of the high-energy electron is changed in both magnitude and direction.
The change in energy is obtained from the change in magnitude of the wavevec-
tor. The change in momentum is obtained from both the change in direc-
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Figure 2.10: Kinematics
of inelastic electron scat-
tering. (a) Definitions,
with sphere of constant E.
(b) Enlargement valid for
small ϕ, or equivalently
for small ∆k.

tion and the change in magnitude of the wavevector. Total momentum is con-
served, and before scattering the total momentum is with the incident electron,
p⃗0 = mev⃗0 = ℏ⃗k0. After scattering, the momentum transfer to the atomic electron
must be ℏ∆⃗k = ℏ(⃗k − k⃗0). This same ∆⃗k ≡ k⃗ − k⃗0 is used for elastic scattering
(Fig. 1.5), but inelastic scattering has an extra degree of freedom because k , k0.
Figure 2.10a shows that increasing ϕ, the scattering angle, gives larger values
of ∆k for the same E. Momentum conservation requires that the head of the
wavevector ∆⃗k lies along the circle of radius k. The scattering vector, ∆⃗k, can
be zero only when both ϕ = 0 and E = 0.6 When E = 0 but ϕ , 0, ∆k cannot be
zero – this is the case for elastic scattering in diffraction experiments.

We first consider general features of how inelastic scattering depends on
E and ∆⃗k. For E only slightly larger than an absorption edge energy, Ea, the
inelastic scattering is forward-peaked with a maximum intensity at the smallest
∆k. Figure 2.10a shows that when ϕ = 0 and E , 0, there is a nonzero minimum
value of ∆k, corresponding to inelastic scattering in the forward direction:

∆⃗kmin ≡ (|⃗k|− |⃗k0|)̂⃗k0. In a particle model, these low-angle scatterings correspond
to soft collisions with large impact parameters (meaning that the high-energy
electron does not pass close to the center of the atom). The energy transfer
is still large (E ≃ Ea), unlike most soft classical collisions,7 but the outgoing
core electron carries insignificant kinetic energy and ∆k is small. For small ∆k,
the scattering is sensitive to the large r (long-range) features of the scattering
potential.

On the other hand, at larger energy losses (E ≫ Ea), the scattering is at
higher angles, corresponding to hard collisions with small impact parameters.
The outgoing core electron carries significant kinetic energy (equal to E−Ea), and

6This is the case for no scattering, or for elastic forward scattering, which involves a phase shift.
7A classical analogy can be contrived. Suppose a fast billiard ball passes near a second ball

located in a pit, and some of the kinetic energy of the fast ball is used to lift the second ball out of
the pit. If the second ball leaves the pit with minimal velocity, momentum conservation allows little
change in direction of the fast ball as it slows down. Quantum mechanics uses the same energy
and momentum arguments, but Sect. 2.4.2 provides the probabilistic mechanism for “lifting the
ball out of the pit.” This mechanism provides an additional dependence on E and ∆⃗k.
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the momentum transfer deflects the high-energy electron. For sufficiently large
E, we expect the momentum transfer and energy transfer to be understandable
by collisional kinematics, with little influence from the characteristics of the
atom such as Ea. In fact, for larger energy transfers the inelastic intensity
becomes concentrated around a specific value of ∆k such that:

∆kB =

√
2mE
ℏ

. (2.17)

This peak in ∆k corresponds to the momentum transfer in classical “elastic”
scattering of a moving ball (electron) by another ball initially at rest. This peak
is called the “Bethe peak,” and in a two-dimensional plot of inelastic scattering
intensity versus ∆k and E, these peaks become a “Bethe ridge” (cf., Fig. 2.11).
Substituting into (2.17) a handy expression involving the Bohr radius, a0, and
the Rydberg energy, ER = ℏ2(2ma2

0)−1, we obtain for ∆kB:

(∆kBa0)2
≈

E
ER

, (2.18)

for which the equivalent scattering angle for the Bethe ridge, ϕr, is:

ϕr ≈

√
E
E0

. (2.19)

The results of (2.17)–(2.19) are valid for small ϕ and non-relativistic electrons.
Experimentally, we count electrons. The energy spectrum of these electrons,

ρ(E) dE, varies with solid angle,Ω. With reference to Fig. 1.5, the three different
dΩ j will have different energy spectra. The most detailed experimental mea-
surements would provide an energy spectrum at each differential solid angle,
dΩ. The number of electrons detected in a range dΩ aroundΩ and a range dE
around E is proportional to the “double-differential cross-section,” d2σ/dΩdE.
In practice, there is often cylindrical symmetry around the forward beam, so
we may need only the ϕ-dependence (where ϕ = 2θ in scattering angle). Ex-
perimental EELS spectra are measurements of intensity versus energy loss, I(E),
over a finite range of scattering angles, ϕ.

Theoretically, we calculate the probability that a transfer of energy, E, and
momentum, ℏ ∆⃗k, occurs between a high-energy electron and an atomic elec-
tron. To relate the theory to measured EELS spectra, we then need:

• The variation of the inelastic scattering over the parameter space of (ϕ,E).
This is given by a double-differential cross-section, d2σin/dϕdE, described
in Sect. 2.4.3 (dϕ refers to rings of solid angle). This d2σin/dϕdE includes
the “generalized oscillator strength” of the specific atom.

• EELS spectra, I(E), are measured over a range ofϕ, so we need to integrate
d2σin/dϕdE over angle to obtain the differential cross-section, dσin/dE,
described in Sect. 2.4.5.
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• Compositional analysis by EELS uses total intensities, given by the total
cross-section, σ (or more typically by partial cross-sections, correspond-
ing to a finite range in energy), as described in Sect. 2.4.6. This total
probability for ionizing an atom is also needed for understanding EDS
spectra, which measure x-ray emissions after the atom is ionized.

2.4.2 ‡ Inelastic Form Factor

Here we calculate the probability of an inelastic scattering process involving
the excitation of a core electron. In this process, a high-energy electron excites
a second electron from a bound atomic state into a state of higher energy. Since
two electrons are involved, for conciseness we employ the Dirac bra and ket
notation.8 The high-energy electron, “electron 1,” is initially in a plane wave

state
∣∣∣∣⃗k0

〉
, and after scattering it is in the state

∣∣∣∣⃗k〉. The atomic electron, “electron

2,” is initially in the bound state |α⟩. After scattering, electron 2 is in the state
∣∣∣β〉,

which may be either a bound state that is initially unoccupied, or a spherical (or
plane) wave state if electron 2 is ejected from the atom. For inelastic scattering,∣∣∣∣⃗k∣∣∣∣ , ∣∣∣∣⃗k0

∣∣∣∣ and α , β. The Schrödinger equation with the initial state is written
as:

H0

∣∣∣∣⃗k0, α
〉
= (E0 + Eα)

∣∣∣∣⃗k0, α
〉
. (2.20)

So long as the two electrons are far apart and therefore non-interacting, the
two-electron system obeys the unperturbed Hamiltonian:

H0 = −
ℏ2

2me
∇

2
1 −

ℏ2

2me
∇

2
2 + V(⃗r2) . (2.21)

The coordinates of the high-energy electron 1 are r⃗1, and the coordinates of the
atomic electron 2 are r⃗2. With different coordinates, each Laplacian in (2.21) acts
on only one of the two electrons, and the potential energy term involves only
electron 2. In such problems we can express the initial state as a product of one-

electron wavefunctions:
∣∣∣∣⃗k0, α

〉
=

∣∣∣∣⃗k0

〉
|α⟩, and the final state as:

∣∣∣∣⃗k, β〉 = ∣∣∣∣⃗k〉 ∣∣∣β〉.

When using a product wavefunction in (2.21), the factor for electron 2,
∣∣∣β〉, is a

constant under the operations of∇2
1, and

∣∣∣∣⃗k〉 is a constant under the operations of

∇
2
2 and V(⃗r2). A “constant factor” does not affect the solution of the Schrödinger

equation for the other wavefunction of the product. The Hamiltonian of (2.21)
is therefore equivalent to two independent Hamiltonians for two independent
electrons. This is as expected when the two electrons have no interaction.

8Recall that Dirac notation is free of spatial coordinates and explicit functional forms of wave-

functions, but these are obtained with the position operator for coordinate set 1, r⃗1, as: r⃗1

∣∣∣∣⃗k〉 = ψ(⃗r1).

Actual evaluations of integrals require expressions such as: ⟨a|H |a⟩ =
∫
ψ∗αHψαd3r. When |α⟩ is an

eigenstate of H, ⟨α|H |α⟩ = Eα ⟨α|α⟩ = Eα, since the state functions are normalized. State functions
are orthonormal, so

〈
α|β

〉
= 0 and ⟨α|α⟩ = 1.
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As the high-energy electron approaches the atom, we must consider two
perturbations of our two-electron system. One perturbation is the Coulombic
interaction of electron 2 with the electron 1, which is +e2/

∣∣∣⃗r1 − r⃗2

∣∣∣. The second
perturbation is the interaction of the high-energy electron 1 with the potential
from the rest of the atom,9 V(⃗r1). The perturbation Hamiltonian, H′, is:

H′ =
e2∣∣∣⃗r1 − r⃗2

∣∣∣ + V(⃗r1) . (2.22)

This perturbation H′ couples the initial and final states of the system. The
stronger the coupling, the more probable is the transition from the initial state∣∣∣∣⃗k0

〉
|α⟩ to the final state

∣∣∣∣⃗k〉 ∣∣∣β〉. It is a result from time-dependent perturbation
theory that the wavefunction of the scattered electron 1 is an outgoing spherical
wave times the form factor, f (⃗k, k⃗0) (cf., (1.50)), where:

f (⃗k, k⃗0) =
−me

2πℏ2

〈
β
∣∣∣ 〈⃗k

∣∣∣∣ H′ ∣∣∣∣⃗k0

〉
|α⟩ . (2.23)

Substitution of (2.22) into (2.23) gives:

f (⃗k, k⃗0) =
−me

2πℏ2

[
e2 〈

β
∣∣∣ 〈⃗k

∣∣∣∣ 1∣∣∣⃗r1 − r⃗2

∣∣∣
∣∣∣∣⃗k0

〉
|α⟩

+
〈
β
∣∣∣ 〈⃗k

∣∣∣∣ V(⃗r1)
∣∣∣∣⃗k0

〉
|α⟩

]
. (2.24)

When evaluating the second term of (2.24), the coordinates of electron 2 appear
only in the atomic wavefunctions |α⟩ and

∣∣∣β〉, so these wavefunctions are moved
out of the integral involving the coordinates of electron 1:

f (⃗k, k⃗0) =
−me

2πℏ2

[
e2 〈

β
∣∣∣ 〈⃗k

∣∣∣∣ 1∣∣∣⃗r1 − r⃗2

∣∣∣
∣∣∣∣⃗k0

〉
|α⟩

+
〈
β|α

〉 〈⃗
k
∣∣∣∣ V(⃗r1)

∣∣∣∣⃗k0

〉 ]
. (2.25)

For inelastic scattering we have α , β, so the second term10 is zero by
the orthogonality of the atomic wavefunctions. To be explicit in notation, we
denote the inelastic contribution to f (⃗k, k⃗0) as fin(⃗k, k⃗0), and call it the “inelastic
form factor.” To calculate fin(⃗k, k⃗0), we use spatial coordinate representations

9For the potential from the rest of the atom, we could use the potential of an atom without a
core electron, since we consider electron 2 separately.

10For elastic scattering there is no transfer of energy from the high-energy electron (electron 1)
to the atomic electron (electron 2), so α = β. By the orthonormality of the atomic wavefunctions
we know that ⟨α|α⟩ = 1, so this second term is nearly equal to the right hand side of (1.76). The
difference is that the scattering potential from electron 2 is considered separately as the first term
in (2.25), but together the two terms in (2.25) account for the scattering from the entire atom.
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for our wavefunctions. The non-zero first term of (2.25) is:

fin(⃗k, k⃗0) =
−mee2

2πℏ2

+∞∫
−∞

+∞∫
−∞

e−i⃗k·⃗r1 ei⃗k0 ·⃗r1
1∣∣∣⃗r1 − r⃗2

∣∣∣
× ψ∗β (⃗r2)ψα (⃗r2) d3r⃗2 d3r⃗1 . (2.26)

We change variables: r⃗ ≡ r⃗1 − r⃗2 (so r⃗1 = r⃗ + r⃗2), and ∆⃗k ≡ k⃗ − k⃗0, and separate
the integrations:

fin(⃗k, k⃗0) =
−mee2

2πℏ2

+∞∫
−∞

e−i∆⃗k·⃗r 1∣∣∣⃗r∣∣∣d3r⃗

×

+∞∫
−∞

e−i∆⃗k·⃗r2 ψ∗β(⃗r2)ψα (⃗r2) d3r⃗2 . (2.27)

Equation (2.27) shows that the only dependence of fin on k⃗ and k⃗0 is through
their difference, ∆k⃗. The integral over r⃗ is 4π/∆k2 (A.27):

fin(∆⃗k) =
−2mee2

ℏ2∆k2

+∞∫
−∞

e−i∆⃗k·⃗r2ψ∗β(⃗r2)ψα(⃗r2)d3r⃗2 . (2.28)

This inelastic form factor, fin(∆⃗k), is the amplitude of the outgoing high-
energy electron wavefunction along the direction k⃗ = k⃗0 + ∆⃗k when the high-
energy electron excites the atomic transition ψα → ψβ. The inelastic form factor
has many similarities to the elastic form factor, fel(∆⃗k), of (1.76). Specifically,
the second term of (??) for fel(∆⃗k), which describes elastic scattering from the
atomic electron density, ρ(⃗r), has the same form as (2.28). It is convenient to
think of both the inelastic and elastic form factors in a common way. Along the
direction k⃗ = k⃗0 + ∆⃗k, wavelets are emitted from all sub-volumes, d3r⃗2, of the
atom. Each wavelet has a relative phase e−i∆⃗k·⃗r2 , and its amplitude for elastic
scattering is proportional to an electron density. The full wave is the coherent
sum (integration) of wavelets from all volumes of the atom, weighted by an
electron density. For elastic scattering the electron density is the usual electron
density, ρ(⃗r) = ψ∗α(⃗r)ψα(⃗r). For inelastic scattering, however, this “density” is
the overlap of the initial and final wavefunctions, ρ′(⃗r) = ψ∗β (⃗r)ψα (⃗r).

Note the common prefactors of fel(∆⃗k) of (??) and fin(∆⃗k) of (2.28). Recall
that the factor of ∆k−2 originates with the Fourier transform of the Coulomb
potential (??). Using the definition of the Bohr radius, a0 = ℏ2/(mee2), this
prefactor is 2/(a0∆k2), which has dimensions of length. We now obtain the
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differential cross-section for inelastic scattering, dσin/dΩ, as f ∗in fin (1.21)11:

dσin(∆⃗k)
dΩ

=
4

a2
0∆k4

∣∣∣∣∣∣∣∣
+∞∫
−∞

e−i∆k⃗·⃗r2ψ∗β (⃗r2)ψα (⃗r2)d3r⃗2

∣∣∣∣∣∣∣∣
2

. (2.29)

Although energy is transferred from the high-energy electron 1 to the atomic

electron 2, the total energy is conserved. In the transition
∣∣∣∣⃗k0

〉
|α⟩ →

∣∣∣∣⃗k〉 ∣∣∣β〉, the
total energy before scattering equals the total energy after scattering:

E0 + Eα = (E0 − E) + Eβ , (2.30)
E = Eβ − Eα ≡ Eαβ . (2.31)

A spectrum of electron energy losses shows enhanced intensity when E = Eαβ.
Owing to the Pauli principle, however, the state ψβ must be initially empty for
it to be allowed as a final state for electron 2. The EELS spectrum usually shows
a jump in intensity, or “edge jump,” when Eαβ = Ea, where Ea corresponds to
the lowest energy of an unoccupied state ψβ. Enhanced intensity extends for
E > Ea, because other unoccupied states of higher energy are available to the
atomic electron 2.

With actual wavefunctions forψα andψβ, we could use (2.29) to calculate the
strength of this inelastic scattering,12 and the measured intensity of the electron
energy-loss spectrum at the various energies Eαβ > Ea. To do this, however,
we must first relate the experimental conditions to the cross-section of (2.29).
Specifically, we need to know how experimental detector angles, ϕ, select ∆k at
various E. This is the topic of the next subsection.

2.4.3 ‡ * Double-Differential Cross-Section, d2σin/dϕdE

In EELS, we measure the spectrum of energy losses from electrons in some range
of ∆k, set by the angle, β, of a collection aperture (see Fig. 2.1). To understand
the intensity of core-loss spectra, we need to know how the inelastic scattering
depends on both scattering angle, ϕ, and energy loss, E. This dependence
of the intensity on ϕ and E is provided by a double-differential cross-section,
d2σin/dϕdE. We start with the ϕ-dependence for fixed E. For small ∆k we can
approximate, as shown in Fig. 2.10b:

∆k2 = k2ϕ2 + ∆k2
min . (2.32)

11A correction factor at high energy losses accounts for how the outgoing flux of scattered
electrons is reduced when the electron is slowed (cf. (1.15)), but we safely ignore this effect for
energy losses of a few keV.

12There is a subtle deficiency of (2.28) and (2.29). The excitation of a core electron changes the
electronic structure of the atom. It is not necessarily true that atomic wavefunctions are appropriate
for ψα or ψβ when a core hole is present. The atomic electrons change their positions somewhat is
response to the core hole, so the second term in (2.25) may not be strictly zero by orthogonality.



46CHAPTER 2. INELASTIC ELECTRON SCATTERING AND SPECTROSCOPY

The increment in solid angle covered by an increment in ϕ (making a ring
centered about k⃗0) is:

dΩ = 2π sinϕdϕ . (2.33)

By differentiating (2.32) (for fixed E, ∆kmin is a constant):

ϕdϕ =
∆k
k2 d∆k , (2.34)

so for the small ϕ of interest:

dΩ = 2π
∆k
k2 d∆k . (2.35)

Substituting (2.35) into (2.29), and re-defining r⃗2 → r⃗, provides:

dσin(∆k)
d∆k

=
dσin

dΩ
dΩ
d∆k

=
8π

a2
0k2∆k3

∣∣∣∣∣∣∣∣
+∞∫
−∞

e−i∆⃗k·⃗rψ∗β (⃗r)ψα (⃗r) d3r⃗

∣∣∣∣∣∣∣∣
2

, (2.36)

where the right-hand side is averaged for all ∆⃗k of the detected electrons.
When ψβ is a bound state of the atom, (2.36) can be used directly to obtain

an EELS intensity at the energy corresponding to the transition α → β. In the
more typical case, ψβ lies in a continuum of states, such as free electron states
when the atomic electron leaves the atom with considerable energy, or a band
of unoccupied antibonding states for energies E that are close to the absorption
edge energy, Ea. We then need to scale the result of (2.36) by the number of
states in the energy interval of the continuum, which is ρ(E)dE. Here ρ(E) is
the “density of unoccupied states” available to the atomic electron when it is
excited. Accounting for the density of states of ψβ gives the double-differential
cross-section:

d2σin(∆k,E)
d∆k dE

=
8π

a2
0k2∆k3 ρ(E)

∣∣∣∣∣∣∣∣
+∞∫
−∞

e−i∆⃗k·⃗rψ∗β(⃗r)ψα(⃗r) d3r⃗

∣∣∣∣∣∣∣∣
2

. (2.37)

The convention is to rewrite (2.37) to isolate the scattering properties of the
atom. This is done by defining the “generalized oscillator strength,” GOS, or
Gαβ(∆⃗k,E):

Gαβ(∆⃗k,E) ≡ Eαβ
2me

ℏ2∆k2

∣∣∣∣∣∣∣∣
+∞∫
−∞

e−i∆⃗k·⃗rψ∗β (⃗r)ψα(⃗r) d3r⃗

∣∣∣∣∣∣∣∣
2

. (2.38)
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Here Eαβ is the difference between the energies of the states ψα and ψβ. Using
(2.38) in (2.37):13

d2σin(∆k,E)
d∆k dE

=
2πℏ4

a2
0m2

eEαβT
1
∆k
ρ(E) Gαβ(∆k,E) . (2.41)

To make connection to experimental EELS spectra, we convert the ∆k-
dependence of (2.41) into a dependence on the scattering angle ϕ of Fig. 2.10.
We do so by arranging (2.34) as a relationship between d∆k and dϕ, and sub-
stituting into (2.41):

d2σin(∆k,E)
dϕdE

=
2πℏ4

a2
0m2

eEαβT

k2
0ϕ

∆k2ρ(E) Gαβ(∆k,E) . (2.42)

Figure 2.10b shows the definition of ϕE ≡ ∆kmin/k0 and the approximation:

∆k2
≃ k2

0

(
ϕ2 + ϕ2

E

)
, (2.43)

from which we obtain a useful expression:

d2σin(ϕ,E)
dϕdE

=
2πℏ4

a2
0m2

eEαβT
ϕ

ϕ2 + ϕ2
E

ρ(E) Gαβ(∆k,E) . (2.44)

From Newtonian mechanics we would expect ϕE, which is a ratio of k-
vectors, to depend on the energies in the collision problem as

√
E/T. There

is, however, a change in mass energy equivalent of the high-energy electron
after scattering. This energy loss from the change in mass is significant, so the
wavelength change is considerably smaller than the non-relativistic prediction.
The result from relativistic kinematics is:

ϕE =
E

2γT
≃

E
2E0

. (2.45)

As an example, for the C K-edge at 284 eV in a 200 kV microscope ϕE = 0.7
mrad.

2.4.4 * Scattering Angles and Energies – Quantitative

We revisit the angular dependence of the inelastic scattering. At lower energy
losses (E slightly larger than Ea), and at smaller scattering angles, the main
angular dependence in (2.44) is from the Lorentzian factor, (ϕ2 +ϕ2

E)−1, peaked

13For accuracy, we have written (2.41) with the incident kinetic energy, T, that differs from the
incident energy, E0, as:

T ≡
1
2

mev2 =
E0

2
1 + γ
γ2 , (2.39)

owing to the relativistic correction:
γ ≡

1√
1 − (v/c)2

= 1 +
E0

mc2 , (2.40)

(γ ≈ 1.4 for 200 keV electrons).
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atϕ = 0, withϕE (2.45) as the half-width of the angular distribution. (The factor
ϕ in the numerator of (2.44) merely accounts for the larger radius of a ring at
larger ϕ.)

We first compare this characteristic angle for inelastic scattering, ϕE, to the
characteristic angle for elastic scattering, ϕ0. The elastic angle ϕ0 is associated
with the atomic form factor, which is a measure of the size of the atom. For
convenience we select r0, the Bohr radius of the Thomas–Fermi atom as this
size (??), and obtain ϕ0 as:

ϕ0 =
1

k0r0
. (2.46)

Putting typical values into (2.45) and (2.46), we find that ϕE is generally a few
tenths of a milliradian while ϕ0 is a few tens of milliradians, i.e., ϕ0 ≈ 100ϕE.
The inelastic scattering is concentrated into a much smaller range of angles
about the forward beam than the elastic scattering, especially when E ≃ Ea.
Section 2.4.1 discussed the other extreme case where E ≫ Ea, and the collision
kinematics are insensitive to the shape of the atom – recall that the intensity
became bunched into angles characteristic of classical “billiard-ball” collisions.

The generalized oscillator strength, Gαβ(∆k,E) of (2.38), helps complete the
picture of how the inelastic intensity varies between these two extremes of
E ≃ Ea and E ≫ Ea. The generalized oscillator strength, Gαβ(∆k,E), is the
probability of the transition α→ β, normalized by a factor related to the energy
and momentum transfer. Figure 2.11 shows the GOS on the two-dimensional
space of {ln(ϕ),E} in a plot known as a “Bethe surface.” The individual curves
in Fig. 2.11 show the angular dependence of the inelastic scattering for each
energy loss above the carbon K-edge. Likewise, the energy dependence of the
GOS may be obtained by taking sections through the Bethe surface at constant
scattering angle. The Bethe ridge is marked on Fig. 2.11. Although distinct at
large E, the Bethe peak is less well-defined at energy transfers closer to Ea (the
C K-edge threshold at 0 eV in Fig. 2.11).

In EELS measurements, an entrance aperture having an acceptance semi-
angle β is placed around the forward beam (Fig. 2.1). This aperture cuts off
the scattering beyond a certain ϕ. The measured spectrum of intensity versus
energy is therefore an integration of the scattering intensity over combinations
of E and ∆⃗k that fall below this cutoff. At energies significantly above the edge,
Fig. 2.11 shows that a substantial portion of the intensity is concentrated in
the Bethe ridge at larger scattering angles. A relatively large objective aperture
(> 10 mrad or so) is needed to include this intensity in the EELS spectrum. On
the other hand, at energies just above the edge, a small aperture will collect most
of the intensity. This small aperture may be useful for removing background
intensity at large ∆k that originates from tails of other elements with lower Ea.

2.4.5 ‡ * Differential Cross-Section, dσin/dE

Ignoring any truncation of the scattered inelastic intensity caused by the spec-
trometer entrance aperture, β, we integrate (2.44) over all possible scattering
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Figure 2.11: Bethe surface for
K-shell ionization of C, cal-
culated using a hydrogenic
model. The GOS is zero for
energy losses below the ion-
ization threshold EK = Eαβ, or
E < 0. The horizontal coordi-
nate increases with scattering
angle. The Bethe ridge is most
distinct at large E towards the
front of the figure. After [5.5].

angles, ϕ, from 0 to π. This provides the total inelastic differential cross-section,
d σin,αβ(E)/dE for exciting an atomic electron from state |α⟩ to state

∣∣∣β〉:

dσin,αβ(E)
dE

=
2πℏ4

a2
0m2

eEαβT
ρ(E)Gαβ(∆k,E)

π∫
0

ϕ

ϕ2 + ϕ2
E

dϕ . (2.47)

Here we have ignored the ϕ-dependence of the GOS, Gαβ(∆k,E). With the
reasonable approximation that ϕE ≪ π, the integration of (2.47) gives:

dσin,αβ(E)
dE

=
πℏ4

a2
0m2

eEαβT
ρ(E)Gαβ(∆k,E) ln

(
π2

ϕ2
E

)
. (2.48)

With (2.48) and (2.45) we obtain the inelastic differential cross-section:

dσin,αβ(E)
dE

=
2πℏ4

a2
0m2

eEαβT
ρ(E)Gαβ(∆k,E) ln

(
2πγT

E

)
. (2.49)

Figure 2.12 shows a plot of the energy-differential cross-section for K-shell
ionization of C (Ea = 284 eV), calculated for different collection semiangles β
using hydrogenic wavefunctions.14 Logarithmic axes are used to illustrate the
approximate behavior:

dσin,αβ(E)
dE

∝ E−r , (2.50)

where r is the downward slope in Fig. 2.12 and is constant over various ranges
in energy loss. The value of r depends on the size of the collection aperture.

14A hydrogenic atom uses the wavefunctions of a hydrogen atom, but with radial coordinates
rescaled by a larger nuclear charge. There are no electron-electron interactions for a hydrogenic
atom, but analytical expressions for the wavefunctions are available.
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Figure 2.12: Energy-differential
cross-section for K-shell ionization
of C (Eαβ = EK = 284 eV) calcu-
lated for different collection semi-
angles β. After [5.5].

For large β, when most of the inner-shell scattering contributes to the en-
ergy loss spectrum, r is typically about 3 at the ionization edge, decreasing
towards 2 with increasing energy loss. The asymptotic E−2 behavior occurs
because for E ≫ Ea, practically all of the scattering lies within the Bethe
ridge. It approximates Rutherford scattering from a free electron (??), for which
dσin,αβ(E)/dE ∝ ∆k−4

∝ E−2.
For small β, r increases with increasing energy loss, the largest value (just

over 6) corresponding to large E and small β. The breaks in slope in Fig. 2.12
correspond to the condition where E is large enough so that the Bethe ridge
moves to angles outside the collection aperture. It is usually important to avoid
this transition in experimental practice because it complicates the E-dependence
of the measured intensity. It may be a good idea to calculate ϕr with (2.19),
and use a collection angle, β, a few times larger than this, as mentioned in the
context of (2.53).

2.4.6 ‡ Partial and Total Cross-Sections, σin

In quantitative elemental analysis, the inelastic intensity measured with an
aperture angle β is integrated over an energy range of width δ beyond an
absorption edge. Assuming a thin specimen with negligible multiple scattering,
the integrated intensity above Ea, is:

Ia(Ea, δ, β) = N I0 σin,a(Ea, δ, β) , (2.51)

where N is the number of atoms per unit specimen area, and I0 is the inte-
grated zero-loss intensity. In (2.51), the “partial cross-section” σin,a(Ea, δ, β) is
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the integral of (2.44) over the range of collection angle and energy:

σin,a(Ea, δ, β) =

β∫
0

Ea+δ∫
Ea

d2σin(ϕ,E)
dϕdE

dE dϕ . (2.52)

For numerical integration of d2σin(ϕ,E)/dEdϕ, it is sometimes convenient to
use the power-law behavior of (2.50).

Figure 2.13 shows the calculated angular dependence of K-shell partial cross-
sections for the first-row (second-period) elements. The figure illustrates the
dependence of the cross-sections on collection angle β, incident electron energy
E0, and ionization energy EK, for constant integration width δ. The cross-
sections saturate at large values of β, i.e., above the Bethe ridge angle, ϕr,
owing to the fall-off in Gαβ(∆k,E) at large ∆k. The median scattering angle (for
energy losses in the range Ea to Ea + δ) corresponds to a partial cross-section
equal to one-half of the saturation value, and is typically 5

〈
ϕE

〉
, where:

〈
ϕE

〉
=

EK + δ/2
2γT

, (2.53)

with γ ≡ (1−v2/c2)−1/2. Figure 2.13 shows that the saturation cross-sections de-
crease with increasing incident electron energy, although the low-angle values
increase. This is because a small collection aperture accepts a greater fraction
of the scattering when the incident energy is high and the scattering is more
strongly forward-peaked.

For a very large range of energy integration δ, the partial cross-section
becomes the “integral cross-section” σin,K(EK, β) for inner shell scattering up to
β and all permitted values of energy loss. By setting β = π, the integral cross-
section becomes the “total cross-section” σin,K(EK) for inelastic scattering from
the K-shell. An approximate expression for σin,K(EK) is the “Bethe asymptotic
cross-section”:

σin,K(EK) = 4πa2
0NKbK

E2
R

TEK
ln

(cKT
EK

)
, (2.54)

where NK is the number of electrons in the K-shell (2, but for the L and M
shells this would be 8 and 18, respectively), ER ≡ ℏ2(2mea2

0)−1, bK ≈ fK/NK,
cK ≈ 4EK/ ⟨E⟩, where fK ≈ 2.1 − Z/27 is the dipole oscillator strength for K-
shell ionization and typically ⟨E⟩ ≈ 1.5EK. A similar expression, useful for
calculating the integral cross-section as a function of collection angle β, is given
in Problem 5.10.

Computer programs are available to calculate differential cross-sections for
K, L and M shell ionizations using various atomic models [5.5]. Figures 2.14a
and 2.14b compare experimental N-K and Cr-L edges to those calculated with
the widely-used SIGMAK and SIGMAL programs of Egerton [5.5]. These
programs calculate inelastic cross-sections for individual, isolated atoms with
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Figure 2.13: Partial cross-
sections for K-shell ion-
ization of second-period
elements, calculated for
an integration width δ
equal to one-fifth of the
edge energy, assuming
hydrogenic wavefunc-
tions and non-relativistic
kinematics. After [5.5].

hydrogenic wavefunctions. As shown in Fig. 2.14, their integrated intensities
are generally reliable, but they cannot provide information about local chemical
effects in the near-edge region of the spectrum as discussed in Sect. 2.2.3. Figure
2.14b shows that the L-shell calculation with the SIGMAL program is good on
the average, but it cannot model the white line peaks at the edge onsets. It does
estimate their average intensity, however, based on the number of unoccupied
d-states of the element.

* Dipole Approximation and X-Ray Absorption Edges

For energy losses near the absorption edge (small E − Ea) where most of the
intensity occurs with smallϕ and small∆k, it is sometimes convenient to use the
“dipole approximation” for the integral in (2.38). The dipole approximation
is obtained by approximating e−i∆⃗k·⃗r

≃ 1 − i∆⃗k · r⃗, and recognizing that the
integration of the first term of 1, i.e.,

〈
β|1|α

〉
, is zero owing to the orthogonality of

ψα and ψβ. The dipole approximation therefore amounts to replacing the factor

e−i∆⃗k·⃗r in the integrand of (2.38) with the simpler factor −i∆⃗k · r⃗. Electric dipole
radiation is the dominant transition process in EELS, but non-dipole transitions
are observed at large ∆k when higher order terms must be considered in the
expansion e−i∆⃗k·⃗r

≃ 1 − i∆⃗k · r⃗ − (∆⃗k · r⃗)2/2 + ...
For atomic transitions induced by x-rays, the GOS for inelastic x-ray scatter-
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Figure 2.14: (a) Comparison of an experimental N K-edge and a hydrogenic fit
to the edge using the SIGMAK program, and (b) comparison of an experimental
Cr L2,3-edge and a modified hydrogenic approximation to the edge using the
SIGMAL program. After [5.6].

ing differs from (2.38) in that the exponential, e−i∆k⃗·⃗r, is replaced by the dipole
operator, e⃗r. For small values of ∆k, the integral in (2.38) is identical for both
electron and photon inelastic scattering, and x-ray and electron absorption
edges look very similar. Although the dipole approximation provides the same
selection rules for the allowed atomic transitions for both EELS and for inelas-
tic x-ray scattering, the E-dependence of EELS spectra is significantly different
from that for inelastic scattering spectra of photons. This difference originates
from the nature of electron scattering by a Coulomb potential, whose Fourier
transform causes (2.28) to decrease strongly with ∆k. Since large energy losses,
E, are associated with the larger ∆k, it becomes difficult to acquire EELS spectra
at E > 4 keV. In practice, inelastic x-ray scattering, using a synchrotron radia-
tion source for example, is performed for energies from 5–50 keV or so, whereas
EELS experiments measure energy losses less than 5 keV.

2.5 Energy Dispersive X-Ray Spectrometry (EDS)

2.5.1 Electron Trajectories Through Materials

This section explains how high-energy electrons traverse thin TEM specimens
and generate x-ray emissions from atoms. Some issues of instrumentation
and artifacts are discussed. The following Sect. 2.6 describes procedures for
quantitative analysis of x-ray spectra to obtain chemical concentrations in the
sample. We first consider the trajectories of high-energy electrons through
the sample because these paths determine where the x-rays come from. For
thin samples, most electrons go straight through. Some electrons undergo
high-angle deflections from elastic Rutherford scattering, so the electron beam
broadens as it traverses the sample. Along an electron trajectory we need to
know the probabilities, or at least the relative probabilities, that the electron
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will ionize atoms of different types – this was the topic of Sect. 2.4. After an
atom is ionized, it is important to know the probability that it will emit an x-ray,
and the probability that the x-ray will leave the sample and be counted by the
detector.

Large-angle scatterings of electrons are primarily elastic in origin,15 and
occur when the high-energy electron passes close to an atomic nucleus. In
these scatterings the shielding effects of the atomic electrons can be ignored,
and the result is the Rutherford scattering cross-section, dσR/dΩ, of (??), written
with 2θ ≡ ϕ as:

dσR

dΩ
=

Z2e4

16T2

1
sin4(ϕ/2)

. (2.55)

Equation (2.55) is also useful for understanding the occurrence of electron
backscattering from the sample. “Backscattered electrons” are defined as elec-
trons scattered by angles so large that they reverse direction and go back out
through the same surface they entered. Because of the T−2 dependence in (2.55),
electron backscattering is relatively rare for electrons of several hundred keV
passing through thin specimens.16

Electron trajectories are typically calculated individually with a Monte Carlo
algorithm. The computer code allows for random occurrences of scattering
events, consistent with a user-specified density of nuclei of charge Ze, elec-
tron energy, and Rutherford cross-section of (2.55). The electrons move along
straight paths between these elastic collisions, which occur with randomness
in the path length and scattering angle.

Along the straight paths between the Rutherford scattering events, the elec-
tron is assumed to lose energy at random to inelastic processes, both core ex-
citations and plasmons. The core electron excitations are the ionization events
that enable the subsequent emission of x-rays. Sections 2.4.1–2.4.6 described
how the probability for ionizing an atom depends on the scattering angle, ϕ,
and energy loss, E, of the incident electron. To calculate x-ray emission, we
need to integrate over all ϕ and E to obtain a total cross-section for inelastic
scattering by core electron ionization, σin. This was obtained as (2.49) and
(2.54), which depend on the energy of the incident electron as: 1/τ ln(τ), where
τ ≃ 2πγT/Eαβ ≫ 1. We therefore expect that as the high-energy electron loses
energy in a thick specimen, the inelastic scattering events become more fre-
quent, at least until its kinetic energy, T, becomes too small. Monte Carlo codes
have been developed to model electron trajectories in solids with all the phys-
ical phenomena mentioned in this section, and typical results from a Monte

15The discussion of ionization cross-sections in Sect. 2.4.4 showed that the electron energy-loss
spectrum tends to be forward-peaked, especially at small energy losses, owing to theϕ-dependence
of (2.44).

16Backscattered electrons are much more common in scanning electron microscopy, which uses
incident electrons of a few keV. Although these electrons tend to be multiply-scattered, backscat-
tered electrons provide some chemical analysis capability to the SEM image; the factor of Z2 in
(2.55) causes the backscattered electron image (BEI) to be brighter in regions containing heavier
elements.
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Figure 2.15: Monte Carlo simula-
tions of electron trajectories (top),
and assumed locations of x-ray
emission (bottom). (In reality,
most individual paths generate
zero x-rays.) After [5.9].

Carlo simulation are presented in Fig. 2.15.
A schematic map of the electron trajectories in a thick bulk specimen is

shown in Fig. 2.16a. The deep penetration and lateral broadening of high-
energy electrons in bulk material causes the region of x-ray emission to be
approximately 1µm in diameter. This is a typical spatial resolution of an
electron microprobe, for example. Specimens used in TEM may be only tens of
nm in thickness, however. A thin specimen, as depicted in Fig. 2.16b, lacks the
bulk of the material where most broadening of the electron beam occurs. Spatial
resolution in an analytical TEM is therefore much better than in an electron
microprobe.17 As a rule of thumb, the spatial resolution is significantly smaller
than the width of the probe beam plus the thickness of the sample. Monte Carlo
simulations that implement the model of elastic–inelastic scattering described
in this section provide an approximation for the beam broadening, b, in [cm]:

b = 6.25 × 105 Z
E0

√
ρ t3

A
, (2.56)

where A is the atomic weight of the element [g/mole], ρ is density [g cm−3], t is
thickness [cm], and E0 is incident energy [eV].

“Secondary electron” emission is especially important in scanning electron
microscopy (SEM). A secondary electron is an electron that is weakly bound to
the sample and is ejected with a few (at most tens of) electron volts of energy.
Since these electrons have little energy, they can traverse only short distances
through a material (less than about 100 Å), and therefore originate from the
near-surface region. The detected secondary electrons are highly sensitive to
surface topography, being more likely to emerge from the peaks than the valleys
of the surface drawn in Fig. 2.17. Secondary electron imaging (SEI) is the main
technique of SEM, and can be performed in much the same way in the TEM. The
instrument is operated in scanning mode with a secondary electron detector
attached to the microscope column as illustrated in Fig. 2.18. The number of
secondary electrons emitted per incident electron is defined as the “secondary

17On the other hand, x-ray emission from the large volume on the left of Fig. 2.16 provides much
greater intensity. This high intensity, and the higher current of the incident electron beam, allows
electron microprobes to use wavelength dispersive x-ray spectrometers, which have low collection
efficiency but excellent energy resolution.
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Figure 2.16: Differences in beam broadening in a bulk specimen (a), and a thin
film (b). Part a shows regions of electron penetration, electron escape, and x-ray
emission. For high-energy electrons, dimensions of regions of x-ray emission
are typically a few microns, microns for backscattered electrons, tens of Å for
secondary electrons. The larger dimensions do not exist for the thin specimen
in b.
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Figure 2.17: The escape probability of
a secondary electron depends on the
surface topography.
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Figure 2.18: Everhart-Thornley
detector and its configuration in
a TEM. The secondary electron
typically follows a spiral path
along the magnetic field lines
through the upper pole piece of
the objective lens.

electron yield,” and can be either less than or greater than one. For incident
electrons with energies less than 1 keV, the secondary electron yield increases
with incident energy, but reaches a maximum (1–3 secondaries/incident elec-
tron) at an energy of order 1 keV. The yield is lower at higher energies because
the incident electrons penetrate too deeply into the material, and the secondary
electrons cannot escape.

2.5.2 Fluorescence Yield

After a core electron has been emitted from an atom, the ionized atom quickly
decays from its excited state. This may occur by “radiative” or “non-radiative”
processes, in which the atom emits either an x-ray or an Auger electron, respec-
tively. Both processes (described in Sect. ??) compete for the atomic decay. For
a K-shell ionization, for example, the “fluorescence yield,” ωK, is defined as the
fraction of decays that occur by the emission of a K-shell x-ray. A calculation
of ωK requires knowledge of the relative rates of decay of the atom by Auger
and by x-ray processes. The rate of x-ray emission is calculated for an electric
dipole transition between the two atomic states of the atom, |α⟩ and |β⟩. The
x-ray emission rate is proportional to factors like |⟨α|e⃗r|β⟩|2. The rate of Auger
electron emission involves two electrons, and is calculated for a Coulomb in-
teraction between them. The Auger electron emission rate is proportional to
factors like |⟨k|⟨β|e2/(⃗r1 − r⃗2)|α⟩|γ⟩|2, where |α⟩, |β⟩, and |γ⟩ are atomic states. The
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Figure 2.19: K-shell fluorescence yield
of the elements. The difference, 1−ωK,
is the yield of Auger electrons. After
[5.10].

state |k⟩ is that of a free electron with the Auger energy (the difference in en-
ergy between the states |α⟩ and |β⟩, minus the binding energy of state |γ⟩). The
fluorescence yield is the ratio of the x-ray rate to the total rate, where the total
rate is the sum of x-ray plus Auger rates. Empirically, for a K-shell emission,
ωK depends approximately on atomic number, Z, as:

ωK =
Z4

106 + Z4 . (2.57)

Heavier elements tend to emit x-rays, and lighter elements tend to emit Auger
electrons.18 The K-fluorescence yield of the elements is presented in Fig. 2.19.
The fluorescence yield increases rapidly with Z. On the other hand, the K-
shell ionization cross-section decreases strongly with Z. This decrease in total
ionization cross-section, denoted QK but equal to σin of Sect. 2.4.6, can be
obtained from (2.54), or can be calculated with actual wavefunctions as in
(2.38) (substituted into (2.44) and (2.52)). It also can be approximated as Z−4.
This Z-dependence of QK is opposite to that of ωK in (2.57). The probability of
generating an x-ray depends on the product of ωK and QK, and this product
turns out to be relatively constant in the energy range from 1–20 keV. The EDS
method therefore has a well-balanced sensitivity to the elements from Na to
Rh.

The detection of x-ray fluorescence radiation is the most widely-used tech-
nique for microchemical analysis in a TEM. A solid state detector, whose char-
acteristics were described in Sect. ?? (Fig. ??), is positioned near the specimen.

18Approximately, the Auger emission probability is independent of Z, whereas the x-ray emission
probability increases strongly with Z. Unfortunately, it is generally impractical to use a TEM for
chemical analysis by measuring the energies of Auger electrons. Auger electrons lose a significant
fraction of their energy through nanometer distances in a material. Auger energies characteristic
of atomic transitions are obtained only for those few atoms at the very surface of a sample.
Unfortunately, the vacuum in a TEM is not particularly good, and the sample is heated under
the electron beam. The surfaces of a TEM specimen quickly become contaminated, even if they are
not oxidized already.
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Figure 2.20: EDS spectrum from SiC,
acquired with a Si[Li] detector having
an ultra-thin window. After [5.11].

The energy spectrum of the x-rays emitted from the specimen is acquired in a
multichannel analyzer (Sect. ??, Fig. ??). A typical EDS spectrum, in this case
from SiC, is presented in Fig. 2.20. The widths of the peaks are set by the energy
resolution of the detector, and not by the atoms in the specimen. The detector
characteristics also affect the intensities of the peaks. Notice that in spite of the
equiatomic stoichiometry of SiC, the intensity of the C peak in the spectrum is
much less than that of the Si peak.

Factors for converting x-ray intensities to elemental concentrations are a
necessary part of quantitative EDS measurements. Fortunately, the thinness
of a TEM sample simplifies the conversion process – for a particular sample
geometry these conversion factors can often be regarded as a set of constants
(Sect. 2.6.1). Simple constants of conversion are not appropriate when there
is significant x-ray absorption and secondary x-ray fluorescence events in the
sample, as illustrated in Fig. 2.16a, and this is typically the case for measure-
ments on bulk samples in an electron beam microprobe or a scanning electron
microscope. The thinness of the TEM sample minimizes problems with x-ray
absorption and fluorescence (as illustrated in Fig. 2.16b), and quantitation is
often straightforward.

2.6 Quantitative EDS

2.6.1 Thin-Film Approximation

Cliff–Lorimer Factors

Microchemical analysis by EDS begins by removing the background from
the measured x-ray spectrum. The background originates primarily from
bremsstrahlung radiation, which we found in Sect. ?? to depend weakly on
energy, especially for thin specimens where multiple scatterings of the high-
energy electron are unlikely. In the analysis of an EDS spectrum such as that in
Fig. 2.21, a power series in E is typically used to model the background. With
two or more adjustable parameters, the background can be modeled well. Sub-
tracting the background from the spectrum provides peaks that can be either
integrated numerically (with the procedure of Fig. ??), or fit to analytical func-
tions such as Gaussian functions. The peak areas can be treated individually,
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Figure 2.21: EDS spec-
trum of a Zr-based
metallic glass, showing
a fitted background and
two peak areas above
the background. After
[5.12].

and this would be acceptable in the simple case of Fig. 2.21. When overlaps of
peaks occur, it is preferable to work with sets of peaks (such as Kα, Kβ, L-series,
etc.) with the energies and relative intensities expected for each element (in-
cluding the sensitivity of the EDS spectrometer). Either method provides a set
of peak intensities, {I j}, where j denotes a particular chemical element. These
{I j} are converted to a set of elemental concentrations, {c j}, as described next.

In thin foil specimens, it is unlikely that an x-ray emitted from one atom will
be absorbed by a second atom (cf., Fig. 2.16). Such double-scattering processes
are neglected in the “thin-film approximation.” This simplifies enormously
the task of determining the {c j} from the {I j}. In the thin-film approximation,
the ratio of x-ray peak intensities from the elements A and B, IA/IB, is simply
proportional to the corresponding weight-fraction ratio, cA/cB:

cA

cB
= kAB

IA

IB
, (2.58)

where kAB is a constant for a given accelerating voltage and a specific EDS
spectrometer, and is independent of specimen thickness and composition. This
constant kAB is often called a “Cliff–Lorimer factor.” It accounts for the efficiency
of x-ray production for different accelerating voltages and the efficiency of the
detector at the relevant x-ray energies.

A convenient feature of EDS is that for a large number of elements, the
kAB factor for their Kα x-ray peaks is approximately 1. The ratio of the peak
intensities (or even peak heights) therefore gives a good approximation of the
sample composition, making for a simple, semi-quantitative EDS analysis. This
approximation holds for elements from about Mg to Zn. Below or above this
range of atomic numbers the kAB factor gradually increases, but for elements of
similar atomic number it is still reasonable to estimate their concentrations by
comparing intensities of their Kα peaks.

A normalization procedure: ∑
j

c j = 1 , (2.59)
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is used to convert the ratios of the weight fractions to weight percentages (or,
alternatively, atomic fractions to atomic percentages). That is, if kAB for elements
A and B in a binary system is known, quantification is based on the measured
ratio of IA and IB (2.58), and using (2.59):

cA + cB = 1 . (2.60)

For a ternary system with elements A, B and C, the following equations are
used:

cC

cA
= kCA

IC

IA
, (2.61)

cC

cB
= kCB

IC

IB
, (2.62)

cA + cB + cC = 1 . (2.63)

For a ternary alloy we have one more unknown, but one more independent
peak ratio and another equation (2.62). In general, as we add more elements
we can still use a set of linear equations like (2.61) and (2.62), plus (2.59) to
complete the alloy chemistry.

The Cliff–Lorimer factors are mutually related. This is seen by dividing
(2.62) by (2.61):

cA

cC

cC

cB
=

kCB

kCA

IC

IB

IA

IC
. (2.64)

By the definition in (2.58), kCA = 1/kAC , so:

cA

cB
= kAC kCB

IA

IB
. (2.65)

Comparing (2.58) and (2.65), we obtain a general relationship between the
Cliff–Lorimer factors:

kAB = kAC kCB . (2.66)

Cliff–Lorimer factors, or “k-factors,” are often stored in a look-up table in the
EDS software.

k-Factor Determination

Considerable effort is devoted to obtaining accurate Cliff–Lorimer factors, kAB,
since the accuracy of the EDS analysis depends on them. The k-factors are a
combination of specimen and detector properties. Consider a kAB coefficient
for Kα x-ray emission from elements A and B. The thin film approximation
assumes both types of x-rays originate in the same region, and take direct paths
through the specimen. We therefore expect the kAB coefficient to be the ratio:

kAB =
AAωBaBQKB

ABωAaAQKA
e(µA

Be−µ
B
Be)t , (2.67)
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where Ai is the atomic weight of element i, (needed when the kAB are for
determining mass fractions), ωi is its fluorescence yield, ai is its fraction of Kα
emission (for which Kβ emission competes, but ai = 1 for Z < 19), and µi

Be
is the “effective” mass-absorption coefficient for the x-ray from element i and
the detector window of effective thickness t (comprising, for example, the Be
window, the Si dead layer, and the Au conductive film). The QKi are the K-shell
ionization cross-sections (which could in principle be obtained from the total
cross-section of (2.54), but better results are available).

There are essentially three ways to determine kAB: 1) determine it experi-
mentally using standards, 2) use values available in the literature, or 3) calculate
it from first principles. The first method is the most reliable. Experimental kAB
values are determined for a specific microscope, detector and operating con-
ditions. Use of calculated and/or experimental kAB values from the literature
is possible, but errors are expected owing to differences in the characteristics
of the specimen, microscope, detector, and experimental geometry (including
the tilt of the sample). The agreement between experimental and calculated
kAB values is typically good to 5 % for Z > 14, and for these elements it is often
sufficient to calculate kAB values for a given detector and accelerating voltage.
The disagreement between theory and experiment for low Z may be due to a
combination of inadequate theory, absorption of low-energy x-rays within the
specimen, contamination on the detector window, or the loss of light elements
during electron irradiation. For routine analysis it is common to use the kAB
values provided by the software of the EDS spectrometer system. Perform-
ing similar measurements on experimental standards of known composition
can provide correction procedures to improve quantification for specimens of
similar compositions.



Chapter 3

Inelastic X-Ray Scattering

Historically, inelastic x-ray scattering would be out of place for readers of this
book. When x-ray wavelengths are of the order of atomic distances, their
energies are far out of range of phonons, magnons, and their couplings to
electronic excitations. This handy expression

λ[Å] =
12.40

E
[keV] , (3.1)

shows that x-rays with wavelengths λ of atomic distances have energies E of
10 keV or so. Nevertheless, since these x-rays can be monochromated by a factor
of a several millions, their energy transfers can be used to study excitations of
meV energies. Such monochromators and the third-generation synchrotrons to
illuminate them are remarkable technical achievements.

These highly monochromatic x-rays have led to new inelastic x-ray spectro-
scopies, and some are directly complementary to the neutron methods that are
the main topic of this book. The technical details do not translate from neutrons
to x-rays quite so easily as the concepts involving the excitations. There is a
huge body of research in inelastic x-ray scattering that does not have bearing
on thermal excitations, except, perhaps, through the Debye-Waller factor that
is usually considered a nuisance to be avoided. To work with inelastic x-ray
scattering studies of phonons, it is necessary to have some knowledge of the
vast range of modern x-ray spectroscopies if only because these methods invari-
ably compete with the high resolution methods. A better justification is that
these modern methods of x-ray scattering also provide key insights into the
underpinnings of the electronic and atomic phenomena that underlie thermal
excitations.

A deeper difference between the scattering of high energy (10 keV) x-rays
and thermal neutrons (10 meV) is in the quantum mechanics of the scattering.
Both are quantum mechanical, of course. X-rays probe the electronic structures
of materials and molecules, and with coincidence methods it is possible to
study electron correlations in state occupancies.

63
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Energy resolution gives a time scale through the uncertainty relationship

∆t =
ℏ

∆E
, ∆t[s] =

6.58 × 10−16

∆E
[eV] , (3.2)

and two examples are illustrative:

• First consider an energy resolution of 658 eV, giving ∆t = 10−18 s. This is
the time it takes for a near-relativistic electron to move across an atom. It
is a lower bound on the time required for atomic electrons to rearrange
around a positive hole that was left after a core electron was removed by
ionization.

• Now consider an energy resolution of 0.66 meV, which would be a good
resolution for phonon spectroscopy. Here ∆t = 10−12 s, which is approxi-
mately the frequency of a phonon.

In the first case the interesting quantum mechanics is found in the time sequence
of how an emission from the atom might occur after, during, or even before
the primary ionization. In the second case, quantum mechanics forbids the
knowledge of when the excitation occurs in the phonon vibrational period.
Another consequence is that x-ray scattering sees atom vibrations as snapshots
of configurations of displaced atoms, whereas the slower neutron scattering
probes atom vibrations over full vibrational cycles. In this slower regime, the
momentum transfer of the scattering and the atomic displacements need to
be handled with care because the momentum and position operators do not
commute, leading to the quantum formalism of Chapter 7.

The present chapter provides some minimal explanations of x-ray spec-
troscopies, including methodologies that enable modern synchrotron experi-
ments. Primary ionizations cause energy losses of the incident x-rays, which
are the basis for absorption spectroscopies. Radiations emitted from the excited
atoms give x-ray fluorescence spectroscopies, which have long been used for
chemical analyses of materials. Modern synchrotron techniques offer improve-
ments on these important tools, but now combinations of these two spectro-
scopies allow measurements of joint spectra with two energies, or measuring
the temporal relations between these different x-ray processes. Fundamentals
of these methods are given in the book by de Groot and Kotani [F. de Groot and
A. Kotani, Core Level Spectroscopy of Solids (CRC Press, 2008).], and will only
be sketched in the present chapter. Perhaps you should consider this chapter
as a “traveler’s guide” to de Groot and Kotani. You should go there yourself if
you are interested in this content.

3.1 X-Ray Fluorescence Spectrometries

Spectroscopy with ionizing x-rays or electrons starts with the primary ioniza-
tion of an atom. This is the basis for some spectroscopies
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• in x-ray absorption spectroscopy (XAS), the energy of a monochromatic x-
ray beam is tuned over a range of ionization energies, and the intensity of
the transmitted beam shows features where ionized atoms remove x-rays
from the beam.

• in electron energy loss spectrometry (EELS), the incident electron beam is
kept at one energy, but the measured spectrum of the transmitted beam
shows features at energies where the beam loses energy from ionizations.

There are a number of features at energies close to the ionization threshold
that lend specialized names to spectroscopies, such as near-edge spectroscopy
(NEXS) for studies of chemical information, and extended structure away from
the edge (EXAFS) that gives information on the atomic environment of the
ionized atom. There are variants of names for transmission or backscatter
radiation detection, and surface or bulk analyses.

The number of spectroscopy techniques expands considerably when the
secondary processes are included. After a primary ionization, spectroscopies
can be based on

• the emission of an x-ray, which is a standard way to identify chemical
elements in a material; x-ray fluorescence spectroscopy (XRF)

• the emission of an electron, which has a precise kinetic energy that is set
by the binding energies of three different electrons at the atom (Auger
spectroscopy).

These basic emission processes are standard ones for materials characterization.
The XRF technique is used with a variety of methods for ionizing the atom, such
as incident x-rays from an x-ray tube, electrons in an electron microscope, or
γ-rays from a radioisotope source.

Combinations of these primary and secondary spectroscopies can be made
by simultaneously measuring pairs of the different processes above. This cooks
up a rich alphabet soup of modern spectroscopy techniques, and some are pre-
sented in Fig. 3.1. New phenomena probed by these combinations include the
intermediate states of the ionized atom. The time delay between the ionization
and emission can explore electronic lifetimes in the atom. There may be reso-
nances within the atom, and the letter “R” is included in the acronyms of these
spectroscopies (sometimes “N” if not). Many of these methods demand high
x-ray high intensity because they measure small parts of the emission spectrum
at precise energies and angles. The RIXS (resonant inelastic x-ray spectroscopy)
technique has evolved with the brilliance of modern synchrotron sources, for
example. Interpreting the RIXS data, which are affected strongly by an unseen
internal resonant electron state, requires serious quantum computations of the
atomic physics.
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Figure 3.1: One classification of some inelastic x-ray spectroscopies with x-ray
in, x-ray out (from discussion of APS upgrade).

3.1.1 Synchrotron Radiation

Storage Rings

Synchrotron radiation is a practical source of x-rays for many experiments that
are impractical with the conventional x-ray sources. High flux and collima-
tion, energy tunability, and timing capabilities are some special features of
synchrotron radiation sources. Facilities for synchrotron radiation experiments
are available at several national or international laboratories.1 These facilities
are centered around an electron storage ring with a circumference of about one
kilometer. The electrons in the storage ring have energies of typically 7×109 eV,
and travel close to the speed of light. The electron current is perhaps 100 mA,
but the electrons are grouped into tight bunches of centimeter length, each
with a fraction of this total current. The bunches have vertical and horizontal
spreads of nanometers.

The electrons lose energy by generating synchrotron radiation as their tra-
jectories are bent. These energy losses are primarily in the electron mass, not
velocity (which stays close to the speed of light), so the bunches remain in-
tact. The electrical power needed to replenish the energy of the electrons is
provided by a radiofrequency electric field. This cyclic electric field accelerates
the electron bunches by alternately attracting and repelling them as they move
through a dedicated section of the storage ring. (Each bunch must be in phase
with the radiofrequency field.) The ring is capable of holding a number of
bunches equal to the radiofrequency times the cycle time around the ring. For
example, with a 0.3 GHz radiofrequency, an electron speed of 3×105 km/s, and
a ring circumference of 1 km, the number of “buckets” to hold the bunches is
1,000.

Although the energy of the electrons in the ring is restored by the high
power radiofrequency system, electrons are lost by occasional collisions with
gas atoms in the vacuum. The characteristic decay of the beam current over
several hours requires that new electrons are injected into the bunches.

As the bunches pass through bending magnets or magnetic “insertion de-
vices,” their accelerations cause x-ray emission. X-ray emission therefore oc-

1Three premier facilities are the European Synchrotron Radiation Facility in Grenoble, France,
the Advanced Photon Source at Argonne, Illinois, USA, and the Super Photon Ring 8-GeV, SPring-8
in Harima, Japan [1.4].
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curs in pulsed bursts, or “flashes.” The flash duration depends primarily on the
length of the electron bunch, and may be 0.1 ns. In a case where every fiftieth
bucket is filled in our hypothetical ring, these flashes are separated in time by
167 ns. Some experiments based on fast timing are designed around this time
structure of synchrotron radiation.

Undulators

Synchrotron radiation is generated by the dipole bending magnets used for
controlling the electron orbit in the ring, but all modern “third generation”
synchrotron radiation facilities derive their x-rays from “insertion devices.”
These are magnet structures such as “wigglers” or “undulators,” made with
rows of magnets along the path of the electron beam. The fields of these
magnets alternate up and down, perpendicular to the direction of the electron
beam. Synchrotron radiation is produced when the electrons accelerate under
the Lorentz forces of the row of magnets. The mechanism of x-ray emission by
electron acceleration is essentially the same as that of bremsstrahlung radiation.
Because the electron accelerations lie in a plane, the synchrotron x-rays are
polarized with E⃗ in this same plane and perpendicular to the direction of the
x-ray.

Magnetic fields in an undulator are positioned precisely so that the photon
field is built by the constructive interference of radiation from a row of accel-
erations. The x-rays emerge from the undulator in a tight pattern analogous to
a Bragg diffraction from a crystal, where the intensity of the x-ray beam in the
forward direction increases as the square of the number of coherent magnetic
periods (typically tens). Again in analogy with Bragg diffraction, there is a
corresponding decrease in the angular spread of the photon beam.

The relativistic nature of the GeV electrons is central to undulator design
and operation for two reasons:

• Suppose that the magnetic fields cause oscillation of the electron in the
vertical direction, out of the plane of the paper of Fig. 3.2. As the
electron velocity v⃗ to the right approaches the speed of light, there is a
rapid decrease of wavelength in the forward direction. The energy of the
photon is enhanced by the relativistic factor γ =

√
(1 − (v/c)2)−1, where v

is the electron velocity and c is the speed of light.

• The second relativistic effect is the shortening of the undulator, which
is moving with negative velocity in the frame of the stationary electron.
This contraction brings the poles of the undulator closer together by the
factor γ.

With these two factors of γ, in the forward direction along the electron path,
the electron oscillation frequency is enhanced by the factor 2(1 − (v/c)2)−1. This
factor is about 108 for electrons of several GeV energy. Typical spacings of the
magnets are 3 cm, a distance traversed by light in 10−10 sec. The relativistic
enhancement brings the frequency to 1018 Hz, which corresponds to an x-ray
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Figure 3.2: Doppler shift of x-ray emission from electron moving at v when
v ≃ c.

energy, hν, of several keV. The relativistic Lorentz contraction along the forward
direction further the radiation pattern. The x-ray beam emerging from an
undulator may have an angular spread of microradians, diverging by only a
millimeter over distances of tens of meters. A small beam divergence and a
small effective source area for x-ray emission makes an undulator beam an
excellent source of x-rays for operating a monochromator.

Free Electron Laser

The electrons moving through the undulator have a bunch length that spreads
over a magnetic period of the undulator or so. The electrons along the bunch
are therefore undergoing accelerations that are not in phase with each other.
The next advance beyond an undulator is controlling the electron groupings
so they form “microbunches” within the main bunch. Electrons within each
microbunch undergo accelerations in phase with each other, a process that is
underlies the “free electron x-ray laser.” The microbunching is sustained by
the x-rays themselves, which move along with the electrons at nearly the same
velocity. The slight slippage of the electron phase from the x-ray phase can be
used to advantage to stabilize the microbunches. Stability also depends on the
loss of x-ray photons from the microbunch, which reduces its energy. Today
the design of free electron x-ray lasers requires very long (>100 m) arrays of
aligned magnet structures, and only one beam can be produced at a time.

Here is a brief summary of the intensities from these synchrotron and laser
devices for x-rays emitted in the forward direction. This intensity depends on
the number of periods in the magnet structure, N, and the number of electrons
in each bunch (or microbunch) Ne, as:

• Bending magnet has no structure within its magnet, so N = 1, and its
intensity I ∝ Ne.

• Wiggler has a magnetic structure with N alternating fields, and its inten-
sity I ∝ N Ne.

• Undulator has a relativistically-tuned magnetic structure so each electron
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emits in phase with itself through the magnetic accelerations, and its
intensity I ∝ N2 Ne.

• Free electron laser has microbunches from which all electrons emit coher-
ently, and its intensity I ∝ N2 N2

e .

Brightness

Various figures of merit describe how x-ray sources provide useful photons.
The figure of merit for operating a monochromator is proportional to the in-
tensity (photons/s) per area of emitter (cm−2), but another factor also must be
included. For a highly collimated x-ray beam, the monochromator crystal is
small compared to the distance from the source. It is important that the x-ray
beam be concentrated into a small solid angle so it can be utilized effectively.2

The full figure of merit for monochromator operation is “brightness” (often
called “brilliance”), which is normalized by the solid angle of the beam. Bright-
ness has units of [photons (s cm2 sr)−1]. The brightness of an undulator beam
can be 109 times that of a conventional x-ray tube. Finally, the x-ray intensity is
not distributed uniformly over all energies. The term “spectral brilliance” is a
figure of merit that specifies brightness per eV of energy in the x-ray spectrum.
The spectral brilliance of x-ray sources has improved remarkably over the past
50 years, and Fig. 3.3 shows the brightness of some x-ray beamlines.

Undulators are tuneable to optimize their output within a broad energy
range. Their power density is on the order of kW mm−2, and much of this
energy is deposited as heat in the first crystal that is hit by the undulator
beam. There are technical challenges in extracting heat from the first crystal of
this “high heat load monochromator.” It may be constructed for example, of
water-cooled diamond, which has excellent thermal conductivity.

Beamlines and User Programs

The x-ray monochromators, goniometers and detectors needed for synchrotron
radiation experiments are located in a “beamline,” which is along the forward
direction from the insertion device. These components are typically mounted in
lead-lined “hutches” that shield users from the lethal radiation levels produced
by the undulator beam.

Synchrotron radiation user programs are typically organized around beam-
lines, each with its own capabilities and scientific staff. Work at a beamline
requires success with a formal proposal for an experiment. This typically be-
gins by making initial contact with the scientific staff at the beamline, who can
often give a quick assessment of feasibility and originality. Successful beam-
time proposals probably will not involve measurements that can be performed
with conventional x-ray diffractometers. Radiation safety training, travel ar-
rangements, operating schedules and scientific collaborations are issues for

2Brightness is also a figure of merit for specialized beamlines that focus an x-ray beam into a
narrow probe of micron dimensions.
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Figure 3.3: Spectral brilliance of x-ray sources. X-ray tubes are at bottom, with
synchrotron beamlines at higher brilliance. Notice the range of 1022 on the
y-axis.
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experiments at synchrotron facilities. The style of research differs considerably
from that with instruments in a university laboratory.

3.1.2 X-Ray Core Electron Spectroscopies

There are numerous types of inelastic spectroscopies involving x-ray excitations
of electrons in atoms. Figure 3.4 depicts four essential methods involving
incident and outgoing x-rays. All four show a primary excitation of a core
electron by an incident x-ray.

Figure 3.4a depicts how a spectrum of transmitted x-rays can be used in
x-ray absorption spectroscopy (XAS) if the energy of incident x-rays can be
varied. Alternatively, x-ray photoelectron spectroscopy (XPS) can measure an
energy spectrum of outgoing electrons with incident x-rays of a single energy.
In XPS, the incident x-ray exceeds the binding energy of an electron in the ma-
terial, and the difference in energy becomes the kinetic energy of the outgoing
photoelectron. An energy spectrum of the photoelectrons is typically recorded
over a range of hundreds of eV. Detailed features in the spectra are washed out
if the photoelectron is scattered on its way out of the sample, and the charac-
teristic distance of scattering is only a nm or so. XPS is therefore a technique
for surface science, probing the top several atomic layers, whereas XAS is a
method more suited for bulk analysis.

Figure 3.4b shows a configuration similar to panel a, with a lower energy of
the incident x-ray, ℏΩ. Just above the Fermi energy, or just above the highest
occupied molecular orbital in chemical parlance, there are usually many states
for electrons that are reflect the potential energy of the material. An electron
band may be partly full, for example, and the unfilled states that lie just above
the Fermi level offer final states for the outgoing photoelectron when its kinetic
energy is low. The absorption spectrum is stronger when more of these states
are available, so x-ray absorption near-edge spectroscopy (XANES) is a method
for probing the electronic structure of solids in the range of 50-100 eV above the
Fermi level.

Figures 3.4c,d have similarities to Figs. 3.4a,b, but a second electronic level is
involved, emitting an x-ray of energy ℏω. Two x-ray energies are recorded, ℏΩ
and ℏω, giving a spectral intensity in a two-dimensional plot. The cross-sections
for these spectra involve consideration of intermediate states, such as for the
electron that transitions into the core hole and emits the x-ray of energy ℏω.
Be forewarned, however, that the process is fast, and time uncertainty allows
ambiguity in the time sequence of photoelectron emission from absorption of
the incident x-ray of energy ℏΩ and the emission of the x-ray with energy ℏω.

Figures 3.4d relates to Fig. 3.4c in the same way as panel b relates to a. In
Fig. 3.4d the probability of the outgoing photoelectron is influenced strongly
by the presence of unoccupied states just above the Fermi level. The two–x-ray
process of Fig. 3.4d is the basis for resonant inelastic x-ray scattering (RIXS).
Quantitative interpretations of RIXS spectra generally require considerations
of the electronic structure of the material, and cross-section calculations with
second-order perturbation theory. This is described in Section ??.
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Figure 3.4: X-ray spectroscopies based on primary ionizations (a and b) and
with secondary processes (c and d). (a) The spectra of transmitted x-rays are
used in XAS (x-ray absorption spectroscopy), and the electron spectrum is
recorded for XPS (x-ray photoelectron spectroscopy). (b) Excitation of a core
electron by an incident x-ray, but the incident x-ray has just enough energy
to bring the core electron above the Fermi level. The x-ray spectrum reflects
details of the unoccupied states above the Fermi level, and is called XANES (x-
ray absorption near-edge spectroscopy). (c) The emission of an x-ray of energy
ℏω after ionization by an incident x-ray of energy ℏΩ gives NEXS (normal x-
ray emission spectroscopy). (d) The emission of an x-ray of energy ℏω after
ionization by an incident x-ray of energy ℏΩ gives RIXS (resonant inelastic x-ray
emission spectroscopy) when the incident x-ray in near the absorption edge, as
in panel b.
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Finally, it should be mentioned that time is an additional dimension in mod-
ern x-ray spectroscopies. A short burst of energy from x-rays or a laser puts the
material in a transient state that is probed by subsequent emission of x-ray or
electron. Sometimes this can be stimulated emission. There are numerous pos-
sible time-dependent x-ray spectroscopies, and their development is underway
now.

3.1.3 Chemical Shifts of Core Levels

The simple hydrogen atom, with one electron and one nucleus, has orthog-
onal orbitals that are calculated as Laguerre polynomials in r and spherical
harmonics in θ, ϕ. The orthogonality of these hydrogenic wavefunctions does
not survive the addition of other electrons, which change the potential energy
and the shapes of the wavefunctions. Core electron polarization is an impor-
tant phenomenon in atoms with multiple electrons. In particular, adding or
removing an outer valence electron of an atom causes slight changes in energy,
and altered wavefunctions of all the inner electrons of the atom. Precise calcu-
lations of these core electron polarizations are possible today without too much
difficulty with “all electron” codes.

We can make a classical estimate the energy shift of a core electron by a
rearrangement of an outer shell of charge. From electrostatics we know that
a negative charge Q distributed over a sphere of radius R raises the potential
for an electron within this sphere by the amount E = +Q/(4πµ0 R). This would
shift the energy of a core electron, but it would be a constant shift if Q and R
were constant. What is more interesting is if there is a change in valence, and
the charge Q moves to nearby atoms, expanding from R to R + ∆r. There is a
change in the potential seen by the core electron of

∆E =
1

4πµ0

[ 1
R + ∆r

−
1
R

]
, (3.3)

∆E =
1

R 4πµ0
[1 − ∆r − 1] , (3.4)

∆E = −
∆r
R

1
4πµ0

. (3.5)

The core electron levels become more negative (stronger bonding) when the
outer electrons expand outwards, such as when transferred to neighboring
atoms. The effect can be a few eV, and is readily studied by core electron
spectroscopies.

3.1.4 Core Hole Lifetimes

After ionization, the core hole is highly unstable. A hole in the inner K-shell
is filled with another electron in a time of order 10−16 s. Figure 3.5 shows
core hole lifetimes for different chemical elements, with contributions from the
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Figure 3.5: Energy broadening of K edges owing to decay times of radiative
and Auger processes. From [A. Kotani and Y. Toyozawa, Synchrotron Radiation
Springer-Verlag Berlin, 1979.]

more constant Auger electron emission, dominant for lighter elements, and
x-ray emission, which is faster and dominant for heavier elements.

3.1.5 Many-Body Effects

Plasmons

During the lifetime of a core hole of 10−16 s, a photon travels a distance of ap-
proximately 3 microns, which is large on the scale of atoms and local electronic
excitations. A consequence is that the unstable states of ionized atoms can
interact with other electronic degrees of freedom, such as plasmons.

A free electron gas has a uniform charge distribution in equilibrium, but
a jolt of a quick change in charge can cause it to oscillate with the plasmon
frequency. Typically the plasmons are at an energy of 10 eV, and are damped in
10 oscillations or so as they transfer their energy to other electronic excitations.
The plasmon lifetime may be of comparable to the lifetime of the core excitation,
and plasmons may become part of the x-ray absorption that generates the core
hole. A consequence is that new features appear in x-ray absorption spectra
at the combined energy of the plasmon plus core level. These are a common
example of a “many body effect” that alters the shape of x-ray absorption
spectra.

Plasmon excitations resolve a conceptual problem with core electron ex-
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citations in simple metals. At low temperatures, a simple metal has a sharp
interface in energy between occupied and unoccupied electron states across the
Fermi level. The simple metal therefore has excitations that require an infinites-
imal amount of energy. The number of these excitations can lead to divergences
in the spectral intensity of many-body effects near absorption edges, broaden-
ing the shapes of features from core edges. Quantizing the excitations of the
free electron gas into plasmons moves their many-body effects away from the
core edge features, and into distinct peaks some 10 eV away from the edge.

Shake-Up Satellites

Semiconductors and insulators have few or no states just above the Fermi
level. The creation of excitons can occur in semiconductors as part of the
ionization process, and the exciton energy can add a feature to the spectrum of
the core energy called a “shake-up” satellite, presumably because the electronic
disturbance of the core excitation shakes up the electronic degrees of freedom
including exciton states.

It should be added that other electron states in the ionized atom can con-
tribute features to the core energy spectrum. For example, in NXES of Fig. 3.4c
an electronic transition of energy ℏω participates in the core excitation process.
This is not called a many-body effect in the main absorption spectrum, but is a
method of spectroscopy in its own right, as described in the next section.

3.1.6 First- and Second-Order Spectroscopies

The purpose of this section is to give a conceptual approach to understanding
how NXES and RIXS differ from XAS and XANES. A second electronic transi-
tion of energy ℏω is intrinsic to NXES in Fig. 3.1c that is not shown for XAS
in Fig. 3.1a. Both processes compete for scattering incident x-rays of energy
ℏΩ, and it is a role of theory to calculate the relative cross-sections for the two
processes. Cross sections are not calculated in the brief survey here. The goal
is to understand a quantum mechanical difference between the two of them
using first- and second-order perturbation theory.

Perturbation theory is developed with a small parameter λ, which is used to
scale first order effects λ and second order effects λ2. The second-order effects
tend to be much smaller than first-order effects, and even more so as λ becomes
smaller. Start with an unperturbed Schrödinger equation with pure electron
states denoted with a superscript (0)

H0ψ
(0)
i = E0ψ

(0)
i . (3.6)

Add a perturbation to the Hamiltonian λδ, which will be from the oscillating
electric field of an x-ray. A general expression for the Schrödinger equation is
now

(H0 + λδ) (ψ(0)
i + λψ

(1)
i + λ

2ψ(2)
i )

= (E0
i + λE1

i + λ
2E2

i ) (ψ(0)
i + λψ

(1)
i + λ

2ψ(2)
i ) (3.7)
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where we stopped at second powers in λ. The terms in Eq. 3.7 with λ0 = 1 give
Eq. 3.6, which is also obtained when λ = 0. Collecting all the terms in λ1 in Eq.
3.7 (and dividing by λ) gives

H0ψ
(1)
i + δψ

(0)
i = E0

iψ
(1)
i + E1

iψ
(0)
i , (3.8)

H0|i(1)
⟩ + δ|i(0)

⟩ = E0
i |i

(1)
⟩ + E1

i |i
(0)
⟩ . (3.9)

where the change to Dirac notation allow cleaner expressions with the inner
product of Eq. 3.9 with ⟨i0|

⟨i0|H0|i(1)
⟩ + ⟨i0|δ|i(0)

⟩ = E0
i ⟨i

0
|i(1)
⟩ + E1

i ⟨i
0
|i(0)
⟩ . (3.10)

The first terms on each side are inner products of orthogonal functions, and by
normalization ⟨i0|i(0)

⟩ = 1

E1
i = ⟨i

0
|δ|i0⟩ . (3.11)

3.1.7 * ZAF Correction

In an EDS spectrum, the x-ray peaks from different elements have intensities
that depend on: 1) the path and energy of the high-energy electron passing
through the sample, 2) the ionization cross-sections of the elements, 3) the
fluorescence yields, and 4) the probabilities that emitted x-rays are seen by the
detector. The thin film approximation collects all these effects into a constant
factor for each type of characteristic x-ray. In the thin-sample limit, all peaks
in an EDS spectrum increase in intensity with increased sample thickness,
but the ratios of peak intensities remain unchanged. This permits the use of
(2.58) for samples of all thickness. For thicker samples, however, the peak
intensity ratios are altered. In TEM, the generation of characteristic x-rays
from different elements is not altered by changes in the incident beam as it
passes through a sample of moderate thickness. The thickness effects originate
with the scattering of the characteristic x-rays by the different elements in the
sample. As the samples become thicker and the x-ray exit paths through the
sample become longer, these inelastic x-ray scattering processes involve a larger
fraction of the x-rays, altering the ratios of peak intensities. Correction for these
inter-element interactions is performed by considering the atomic number, Z,
the absorption, A, and fluorescence, F, in procedures called “ZAF corrections.”

* X-Ray Absorption Within the Specimen

X-ray absorption follows Beer’s Law (??). Since x-rays are generated through-
out the foil thickness, evaluating the average absorption generally requires an
integration of (??) over the sample thickness. Fortunately, for thin foils we can
linearize the exponential in (??) as: e−x

≃ 1 − x, and take the average depth of
x-ray emission as t/2, where t is the sample thickness. In this case absorption
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Table 3.1: Limits to the thin foil approximation caused by absorption. Thickness
limit is for a 3 % error in the kAB factor [5.9]

material thickness [nm] absorbed x-ray(s)

Al–7 %Zn 94 Al Kα

NiAl 9 Al Kα

Ag2Al 10 Al Kα, Ag Lα

FeS 50 S Kα

FeP 34 P Kα

Fe–5 %Ni 89 Ni Kα

CuAu 11 Cu Kα, Au Mα

MgO 25 Mg Kα, O Kα

Al2O3 14 Al Kα, O Kα

SiO2 14 Si Kα, O Kα

SiC 3 Si Kα, C Kα

alters the x-ray intensity ratio IA/IB from the ratio recorded for an infinitely-thin
specimen, IA0/IB0:

IA

IB
≃

IA0

IB0

1 − µA

ρA

t
2ρA cscψ

1 − µB

ρB

t
2ρB cscψ

 , (3.12)

IA

IB
≃

IA0

IB0

(
1 + (µB − µA)

t
2

cscψ
)
. (3.13)

Equation (3.13) shows the importance of the difference in absorption coefficients
for the x-rays of elements A and B – if they have similar µ, the intensity ratios
IA/IB are unaffected. Table 3.1 shows thicknesses at which the thin-film approx-
imation is no longer valid due to absorption effects in specific materials.3

* Characteristic Fluorescence Correction

Characteristic x-rays from a heavier element can photoionize atoms of lighter
elements, causing them to fluoresce. This enhances the number of x-rays de-
tected from the light element, and suppresses the number from the heavier
element. Fluorescence effects in thin foils are much weaker than in bulk sam-
ples (Fig. 2.16). Nevertheless when strong fluorescence does occur, e.g., Cr
Kα fluorescence under Fe Kα radiation, quantitative microchemical analysis
of TEM specimens may require a fluorescence correction (Fig. 3.6). Several

3To make an absorption correction, however, it is necessary to know the mean x-ray path length
within the specimen, and this is difficult to determine from wedge-shaped or irregular specimens.
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Figure 3.6:
Experimental data
showing an increase in
the apparent Cr concen-
tration with thickness
in thick specimens of a
Fe-10% Cr alloy, owing
to fluorescence of Cr Kα
by Fe Kα x-rays. After
[5.9].

fluorescence corrections for thin films have been developed, and a successful
model [5.13] uses an enhancement factor, XA, for the element, A, that undergoes
fluorescence:

XA = cBωKB
rA − 1

rA

AA

AB
µBA

UB lnUB

UA lnUA

t
2

∣∣∣0.923 − ln(µBt)
∣∣∣ , (3.14)

where Ui is the overvoltage ratio (ratio of incident electron energy to K-edge
energy) for element i, Ai is its atomic weight, ci is its weight fraction, ri is its
absorption-edge jump-ratio (the fractional countrate change across the EELS
absorption edge), ωKi is a fluorescence yield, and µBA is the mass absorption
coefficient of element B in element A. For a sample in which the element B
causes fluorescence of element A, the measured composition is corrected by:

cB

cA
= kBA

IB

IA
(1 + XA) . (3.15)

3.1.8 * Limits of Microanalysis

There are three quantifiable limits to microanalysis: 1) the absolute accuracy
of quantification, 2) the minimum detectable mass (fraction), and 3) the spatial
resolution. Of course there are other practical limits including contamination,
insensitivity to low Z in EDS, and specimen preparation and geometry, but here
we discuss the first two quantifiable limits. Limits on spatial resolution were
discussed in Sects. ?? and ??.

The accuracy of quantification is limited by the counting statistics of the
x-ray spectra. For strong peaks on a weak background, the standard deviation,
σ, is given by:

σ =
√

N , (3.16)
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where N is the number of counts in the peak after background subtraction.4

Once the standard deviation is known, different confidence limits can be set for
the value of N, i.e. 68 % confidence that N will lie in N ± σ, 95 % in N ± 2σ and
99 % in N ± 3σ. The value of 3σ, taken to be the 99 % confidence level in the
value of IA, is often used to estimate the error in the peak intensity:

Error(%) = ±
3 σ
N
× 100 = ±

3
√

N
× 100 . (3.17)

The larger is N, the lower the error in the analysis. For a 1 % accuracy at the
99 % confidence level, one needs 105 counts in a peak, or 104 counts for 1 %
accuracy at the 68 % confidence level. The error in IA/IB is:

Error(%) = ±
(

3
√

NA
+

3
√

NB

)
× 100 . (3.18)

When using (2.58) for composition analysis, to the error of (3.18) we must add
any error in kAB, which is again the sum of the errors in IA and IB for the
standard.

If Gaussian statistics are assumed, there is a simple statistical criterion that
can be used to define the minimum mass fraction (MMF). A peak containing IB
counts from element B in a matrix of A is considered statistically real and not a
random fluctuation in the background intensity, Ib

B, when:

IB ≥ 3
√

2Ib
B . (3.19)

The MMF of B that can be detected in a binary material of elements A and B,
cB(MMF) in at.%, is obtained using (2.58) and (3.19):

cB(MMF) = 3
√

2Ib
B

cAkBA

IA − Ib
A

. (3.20)

In practice, a MMF of approximately 0.1 wt.% can be obtained in EDS if enough
counts are collected. Similarly, the minimum detectable mass (MDM) is pre-
dicted to be around 10−20 g for a range of Z from 10 to 40.

These statistical analyses give the accuracy for quantification of a single
measurement. In many cases, it is possible to obtain only a limited number
of counts in a spectrum owing to factors such as beam damage or specimen
drift. In such situations, it is possible to reduce the error in quantification (or
at least assess it) by combining the results from n different measurements of
the intensity ratio IA/IB. The total absolute error in IA/IB at a given confidence
value is obtained using the Student-t distribution. In this approach, the error
of the estimate E is given by:

E <
tα/2S
√

N
, (3.21)

4When the background is a substantial fraction of the peak height, this argument is invalid for
reasons stated in Problem 1.9. For weak peaks it is more accurate to use the background counts
over the width of the peak, Nb, to obtain σ =

√
Nb for use in (3.16).
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where tα/2 is the Student-t value such that the normal curve area to its right
equals α/2 with a probability of 1 − α, S is the standard deviation for n mea-
surements of the intensity Ni, given by:

S =

√√
n∑

i=1

(Ni − ⟨Ni⟩)2

n − 1
, (3.22)

which contain on average ⟨Ni⟩ counts. By increasing the number of measure-
ments, one can reduce the error of measurement. In other words, if we estimate
µ by means of a random sample size of n, we can assert with a probability of
1− α (where 1− α = 0.95 for a 95 % confidence level for example) that the error
in the measurement E =

∣∣∣⟨Ni⟩ − µ
∣∣∣ is less than (tα/2S)/

√
n, at least for sufficiently

large values of n. Equation (3.21) can also be rearranged and solved for n to
determine the number of measurements n that must be taken to achieve a mean
⟨Ni⟩which is in error by less than E.
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Figure 3.7: EELS low-
loss spectrum of thin
foil of Al for Problem
4.1. Assume the zero-
loss peak is a triangle
of 2.0 eV width at half-
height.

D. B. Williams: Practical Analytical Electron Microscopy in Materials Science
(Philips Electron Instruments, Inc., Mahwah, NJ 1984).
D. B. Williams and C. B. Carter: Transmission Electron Microscopy: A Textbook for
Materials Science (Plenum Press, New York 1996).

Problems

4.1

Find the thickness (in nm) of the Al sample in the EELS spectrum of Fig. 3.7.
Assume 100 keV electrons.

4.2

A TEM specimen undergoes a type of radiation damage known as “knock-on
damage” when a high-energy electron transfers enough energy to an atom to
displace it from its crystallographic site. For a given electron energy, knock-on
damage tends to be most severe for elements of low atomic number.
(a) In a direct (“head-on”) collision between a high-energy electron and an
atom, show that the energy transfer scales inversely with the atomic weight of
the atom. (For simplicity, you may assume that the incident electron is scattered
elastically by an angle of 180◦.)
(b) If a Li atom requires 10 eV to leave its crystal site, calculate the threshold
energy for an incident electron to induce knock-on damage. Do the same
calculation for Al, Cu, and Au.

4.3

This problem presents two mathematical tricks for working with Dirac δ-
functions. Calculations of electronic energies or scattering intensities often
employ sums of Dirac δ-functions because δ-functions are handy for repre-
senting energy eigenvalues. For example, it is possible to write a distribution
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function for an energy spectrum, n(E), as:

n(E) =
1
N

N∑
α

δ(E − εα) . (3.23)

The idea behind this equation is that if N is large so there are numerous states
(or transitions), each of energy εα, the discrete sum on the right becomes a
continuum. To integrate the number of states up to some energy E′, each
δ-function on the right side contributes 1 to the sum when E′ > εα. A direct
calculation of this type can be clumsy, however. Two expressions for δ-functions
can be of assistance in mathematical work:

δ(E − εα) = − lim
δε→0

1
π

Im
( 1

E + iδε − εα

)
, (3.24)

δ(E − εα) =
1

2π

∞∫
−∞

ei(E−εα)t dt . (3.25)

Prove, or convince yourself, that these two equations are appropriate ways to
represent a δ-function.

4.4

Suppose that samples containing mixtures of elements A,B and A,C were used
to obtain the Cliff–Lorimer constants, kAB and kAC. Suppose the x-ray intensity
of element C was less reliably correlated to an independent determination of
composition of the samples, and the error in kAB was estimated as 1 %, whereas
the error in kAC was estimated as 10 %.
(a) Estimate the error in a calculated kBC.
(b) Estimate the error in the absolute concentration of B for a material of A and
B elements, with nominal compositions 10 % B, 50 % B, and 90 % B.

4.5

The EDS data in Figs. 3.8b–d below were obtained from the Al-Ag precipitate
shown in a. The number of counts in the peaks and background beneath them
in d are:

Al Kα: 14,986 in peak, 1,969 in background
Ag Kα: 10,633 in peak, 1,401 in background

Given that kαAgAl = 2.3 for the microscope conditions used, and that the thin-
film approximation is valid, what is the composition of the precipitate?

4.6

In an EELS experiment, suppose we seek to measure the near-edge region from
an element with a low concentration in the specimen. To optimize the ratio of



Problems 83

Figure 3.8: a–d. EDS data (b–d) from extracted precipitate on holey C support
film in (a) (for Problem 4.5). After [5.14].

edge jump to background, is it better to use a large or small acceptance angle
for the EELS spectrometer? Why?
(Hint: Assume the angular dependence of the background is that of a single
absorption edge that lies at lower energy than the edge of the dilute element.)
(Further Hint: Look at the Bethe surface.)

4.7

Consider the probability of inelastic scattering, pi, and elastic scattering, pe,
through a thin layer of material. We set pe + pi = p, where p is the total
probability of scattering from the incident beam.
(a) For thin samples of n layers, show that the x-ray mass absorption factor,
µ = (n/x)p, where x is the thickness of one layer.
Subsequent layers have the same probabilities, so for n thin layers we expect:(

pe + pi
)n = pn . (3.26)

(b) For thin samples, show that the ratio of double inelastic scattering, p2i, to
single inelastic scattering, pi, is: p2i/pi = (n/2)pi.
(Hint: Perform a binomial expansion of (10.54) and consider the physical mean-
ing of the individual terms.)



84 CHAPTER 3. INELASTIC X-RAY SCATTERING

4.8

When a hole in the core shell of an atom decays by an Auger process, one elec-
tron falls into the core hole and a second electron carries energy from the atom.
A proper treatment of the Auger effect accounts for the indistinguishability of
the two electrons. For electrons of the same spin, this includes antisymmetriz-
ing the two-electron wavefunction of the initial state:

ψαγ =
1
√

2

[
ψα (⃗r1)ψγ (⃗r2) − ψγ (⃗r1)ψα(⃗r2)

]
. (3.27)

(a) Write integral expression(s) for the matrix element, ⟨βk|H′|αγ⟩, with H′ =
e/(|⃗r1 − r⃗2|), using (3.27) for ψαγ and a similar expression for ψ∗

βk.

(b) Show that the rate of the Auger transition,

Γ =
2π
ℏ

∫
ψ∗βk

e
|⃗r1 − r⃗2|

ψαγ d3r⃗1 d3r⃗2 , (3.28)

involves the difference of two matrix elements, one for the transition |αγ⟩ → |βk⟩
and the other for the “exchange transition,” |αγ⟩ → |kβ⟩.
(c) The inelastic scattering of a high-energy electron by a core electron transi-
tion involves two electrons, the perturbation H′ = e/(|⃗r1 − r⃗2|), and the same
calculation as in a and b (compare (2.24) and (3.28)). Is the exchange transition
important for the scattering of a high-energy electron? Why?



Chapter 4

Correlation Function for
Elastic Scattering – The
Patterson Function

4.1 Overview and Definitions

In much of Chapter 1, scattering theory has been developed by calculating the
amplitude of the wave scattered from crystals with excitations or disorder. The
amplitude of the diffracted wave,ψ, is the sum of phase factors of wavelets emit-
ted from individual atoms. For elastic scattering, which we consider presently,
the phase information in ψ(Q⃗) includes details of atom positions, which can
be obtained by inverse Fourier transformation, F−1ψ. We then calculate the
intensity I(Q⃗) = ψ∗ψ.

This Chapter 4 takes a different approach of calculating directly the diffracted
intensity I(Q⃗), rather than calculating it as ψ∗ψ. In this new approach, the real
space information is obtained with the Fourier inversion F−1I, rather than F−1ψ,
but this sacrifices some information about atom positions. Nevertheless, the in-
tensity is the actual quantity measured in a diffraction experiment, so this new
approach offers a more rigorous understanding of what structural information
is available from diffraction experiments. Furthermore, in cases of severely dis-
ordered materials, there may be no obvious way to obtain the atom positions
needed for a calculation of ψ(Q⃗). For problems involving severe structural dis-
order, another advantage of direct manipulations of I(Q⃗) is that a convenient
reference state proves to be a homogeneous distribution of scatterers, or uncor-
related scatterers as in an ideal gas. A powerful tool for calculating diffraction
intensities from such materials (and regular crystals too) is the “Patterson func-
tion,” defined in Sect. 4.1.2 as an autocorrelation function of the scattering
factor distribution.

85
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Whereas the diffracted wave, ψ(Q⃗), is the Fourier transform of the scattering factor
distribution, the diffracted intensity, I(Q⃗), is the Fourier transform of the Patterson
function of the scattering factor distribution.
The Patterson function is a function in real space, with argument r⃗. The Patter-
son function is a convolution, so the reader should be familiar with convolutions
and the convolution theorem (Sect. A.1) before reading the present chapter. The
presentation here of real-space correlation functions is good preparation for the
discussion that follows on space-time correlation functions. We begin by prov-
ing the emphasized statement above. The subsequent section uses the Patterson
function to explain diffraction phenomena involving displacements of atoms
off of periodic positions owing to temperature.

4.1.1 Atom Centers at Points in Space

The most important results in this chapter are obtained by assuming the scat-
terers are points. At each point, r⃗ j, resides the scattering strength of one entire
atom, f⃗r j

(or one unit cell). The actual shape of the atom is included later by
convolution, and does not change the main results obtained with point atoms.

It proves convenient to consider a distribution of scatterers, f (⃗r), with a
continuous variable, r⃗, rather than a sum over discrete points, {⃗r j}. We change
variables as:

ψ(Q⃗) =
N∑
r⃗ j

f⃗r j
e−iQ⃗·⃗r j =

∞∫
−∞

f (⃗r) e−iQ⃗·⃗rd3r⃗ . (4.1)

To equate a continuous integral to a discrete sum requires that f (⃗r) is not a
smooth function of position. Over most of space f (⃗r) is zero, but at atom
centers such as r⃗ = r⃗i, f (⃗ri) is a Dirac delta function times a constant, f⃗ri

:

f (⃗ri) = f⃗ri
δ(⃗r − r⃗i) . (4.2)

Recall the important property of the Dirac delta function:

y(x′) =

∞∫
−∞

δ(x − x′) y(x) dx . (4.3)

Equation (4.3) requires that δ(x − x′) is zero everywhere, except at the point
x = x′. At this point the delta function is infinitely high, but of unit area, so the
integral of (4.3) picks out only the value of y(x) at x′. To extend (4.2) to include
many atom centers, we take the sum over r⃗ j:

f (⃗r) =
N∑
r⃗ j

f⃗r j
δ(⃗r − r⃗ j) , (4.4)

so we satisfy the equality in (4.1) between points in space, {⃗r j}, and a continuous
function of r⃗. We include the shape of the atomic form factor, fat (⃗r), in Sect.
4.2.2.
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4.1.2 Definition of the Patterson Function

We define the “Patterson function,” P(⃗r):

P(⃗r) ≡

∞∫
−∞

f ∗ (⃗r′) f (⃗r + r⃗′) d3r⃗′ . (4.5)

Equation (4.5) is a convolution. Since the function f (⃗r) is not inverted in the
usual way for a convolution, we write:

P(⃗r) = f ∗ (⃗r) ∗ f (−r⃗) , (4.6)

This is a specific type of convolution known as an “autocorrelation function,”
sometimes denoted with a special symbol:

P(⃗r) = f (⃗r) ⊛ f (⃗r) . (4.7)

The most important feature of the Patterson function is that its Fourier
transform is the diffracted intensity in kinematical theory. To show this, we use
(4.1) to write I(Q⃗) = ψ∗ψ as:

I(Q⃗) =

∞∫
−∞

f ∗ (⃗r′) eiQ⃗·⃗r′d3r⃗′
∞∫

−∞

f (⃗r′′) e−iQ⃗·⃗r′′d3r⃗′′ . (4.8)

Since r⃗′ and r⃗′′ are independent variables:

I(Q⃗) =

∞∫
−∞

( ∞∫
−∞

f ∗ (⃗r′) f (⃗r′′) e−iQ⃗·(⃗r′′−r⃗′)d3r⃗′′
)

d3r⃗′ . (4.9)

Define r⃗ ≡ r⃗′′ − r⃗′, and change variables r⃗′′ → r⃗ + r⃗′. In so doing, the limits of
integration for r⃗ are shifted by −r⃗′, but this is not of concern for integrations
performed over all of space:

I(Q⃗) =

∞∫
−∞

( ∞∫
−∞

f ∗ (⃗r′) f (⃗r + r⃗′) e−iQ⃗·⃗rd3r⃗
)

d3r⃗′ , (4.10)

I(Q⃗) =

∞∫
−∞

( ∞∫
−∞

f ∗ (⃗r′) f (⃗r + r⃗′)d3r⃗′
)
e−iQ⃗·⃗rd3r⃗ . (4.11)

Using the definition of (4.5), we rewrite (4.11):

I(Q⃗) =

∞∫
−∞

P(⃗r) e−iQ⃗·⃗rd3r⃗ . (4.12)
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Equation (4.12) shows that the diffracted intensity is the Fourier transform of
the Patterson function:

I(Q⃗) = FP(⃗r) , (4.13)

and by the inverse transformation we must have:

P(⃗r) = F−1I(Q⃗) . (4.14)

For comparison, the diffracted wave, ψ(Q⃗) of (4.1), is the Fourier transform
of the scattering factor distribution, f (⃗r). We therefore have another relationship
between I(Q⃗) and f (⃗r):

I(Q⃗) = ψ∗(Q⃗)ψ(Q⃗) , (4.15)

I(Q⃗) =
(
F f (⃗r)

)∗
F f (⃗r) =

∣∣∣F f (⃗r)
∣∣∣2 . (4.16)

Comparing (4.13) and (4.16):

FP(⃗r) =
∣∣∣F f (⃗r)

∣∣∣2 . (4.17)

Equation (4.17) is consistent with the convolution theorem of Sect. A.1 – a
convolution in real space (the Patterson function of (4.5)) corresponds to a mul-
tiplication in Fourier space (right-hand side of (4.17)). Note how (4.16) shows
the effects of the flip and the complex conjugation of f (⃗r) in the convolution of
(4.5):

F
[

f ∗ (⃗r) ∗ f (−r⃗)
]
=

(
F f (⃗r)

)∗
F f (⃗r) =

∣∣∣ f (Q⃗)
∣∣∣2 , (4.18)

as compared to:

F
[

f (⃗r) ∗ f (⃗r)
]
= F f (⃗r) F f (⃗r) =

(
f (Q⃗)

)2
. (4.19)

4.2 Properties of Patterson Functions

4.2.1 Friedel’s Law

It is instructive to illustrate the steps in constructing a Patterson function (4.5).
The steps in any convolution are shift, multiply, and integrate, and are shown
in Fig. 4.1. Figure 4.1a shows the overlap of a function shifted by the distance r⃗
against the original position shown as a dashed curve. To obtain the Patterson
function in Fig. 4.1b, at each shift the function was multiplied by its shifted
counterpart, then integrated.

Note that the peaks of the Patterson function in Fig. 4.1b are broader than
the peaks in the scattering factor distribution of Fig. 4.1a. Since the peaks in Fig.
4.1a are Gaussian functions of equal width, the peaks in the Patterson function
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Figure 4.1: (a)
Shifts of a func-
tion of period,
a, with respect
to itself. The
shift, r = r′′ − r′,
is labeled at
right in units
of a. (b) The
Patterson func-
tion, obtained by
integrating the
product of the
solid and dashed
curves for all
shifts, r.

are broadened by a factor of
√

2. Second, the periodicity of the Patterson
function is one lattice constant, a. This is expected, since the overlap of the
peaks in the function of Fig. 4.1a is maximized each time the shift equals an
integral number of lattice constants. The intensities of these primary maxima
are proportional to A2 + B2. There are secondary maxima that occur at shifts
of ±0.3 when the large peak overlaps the small peak. The intensities of these
secondary maxima are proportional to AB. The Patterson function has a peak
at each distance corresponding to a separation between the peaks in Fig. 4.1a.

The Patterson function, P(⃗r) of Fig. 4.1b, has a higher symmetry than the
f (⃗r) of Fig. 4.1a. Identical secondary peaks occur in P(⃗r) when the large peak
is shifted to the right by +0.3a and overlaps the small peak, or when the small
peak is shifted to the left by −0.3a and overlaps the large peak. For this reason,
even when f (⃗r) has no center of inversion, P(⃗r) has inversion symmetry. The
Patterson function is unchanged if the original function is inverted.1 Equation
(4.14) shows that the measured x-ray diffraction intensity provides the Patterson
function, not the scattering factor distribution. We therefore have “Friedel’s
law”:
Diffraction experiments cannot distinguish between an atom arrangement and the atom
arrangement when it is inverted.

This is sometimes called the “phase problem” in structure determination,
since the phase of the diffracted wave ψ(Q⃗) is not measured, only its intensity,

1You can obtain the same P(⃗r) by taking the mirror image of the f (⃗r) in Fig. 4.1a (with the small
peak to the immediate left of the large peak), and repeating the construction.
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ψ∗ψ.

4.2.2 Perfect Crystals

In working problems with Patterson functions, it is often convenient to write
the scattering factor distribution for an entire crystal, f (⃗r), in the following way:

f (⃗r) = fat(⃗r) ∗
∑
R⃗n

δ(⃗r − R⃗n) . (4.20)

Here fat (⃗r) is the form factor of one atom. In (4.20) the form factor of the atom
is convoluted with a sum of delta functions, each centered at a different atom
site, R⃗n. We evaluate (4.20) by first writing explicitly the convolution:

f (⃗r) =

∞∫
−∞

fat(⃗r′)
∑
R⃗n

δ
(⃗
r − (⃗r′ − R⃗n)

)
d3r⃗′ . (4.21)

Rearranging the operations on independent variables:

f (⃗r) =
∑
R⃗n

∞∫
−∞

fat (⃗r′) δ
(⃗
r − (⃗r′ − R⃗n)

)
d3r⃗′ . (4.22)

The integral of (4.22) serves to pick out the value of fat(⃗r′) at the location of
the delta function, cf., (4.3). By shifting the delta function continuously by r⃗′,
the shape of fat(⃗r) is generated around the center of each delta function. These
centers are each atom site, R⃗n, so after the integration of (4.22):

f (⃗r) =
∑
R⃗n

fat(⃗r − R⃗n) . (4.23)

Please compare (4.20) and (4.23).
The Patterson function of an infinite one-dimensional perfect crystal, P0(x),

is:

P0(x) = f ∗(x) ∗ f (−x) , (4.24)

which we write using (4.20) for N atoms:

P0(x) =
(

f ∗at(x) ∗
+∞∑

n′=−∞

δ(x − n′a)
)
∗

(
fat(−x) ∗

−∞∑
n′′=+∞

δ(n′′a − x)
)
. (4.25)

Convolutions are commutative and associative, so we rearrange (4.25):

P0(x) =
(

f ∗at(x) ∗ fat(−x)
)
∗

( +∞∑
n′=−∞

δ(x − n′a)
)

∗

( −∞∑
n′′=+∞

δ(n′′a − x)
)
. (4.26)
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Recall that a convolution of two functions requires a shift, overlap, multi-
plication, and integration. Because the δ-functions are infinitesimally narrow,
there is zero overlap of the two series of δ-functions unless the shift, x, satisfies
the condition x = na, where n is an integer. Therefore:

( ∞∑
n′=−∞

δ(x − n′a)
)
∗

( ∞∑
n′=−∞

δ(x − n′a)
)
= N′

( ∞∑
n=−∞

δ(x − na)
)
. (4.27)

Here N′ = ∞, which is as expected for an infinite number of overlaps of an
infinite chain of atoms. For a chain of N atoms, the Patterson function is:

P0(x) = N
(

f ∗at(x) ∗ fat(−x)
)
∗

( ∞∑
n=−∞

δ(x − na)
)
, (4.28)

The Fourier transformation of P0(x) provides the diffracted intensity, I(Q).
By the convolution theorem of Sect. A.1, the two convolutions and one mul-
tiplication of (4.28) become, after Fourier transformation, two multiplications
and one convolution. Using (4.18):

I(Q) = N
∣∣∣ fat(Q)

∣∣∣2 ∗ F
[ ∞∑

n′=−∞

δ(x − n′a)
]
. (4.29)

The Fourier transform of the δ-function series is:

F
[ ∞∑

n′=−∞

δ(x − n′a)
]
=

∞∫
−∞

e−iQx
∞∑

n′=−∞

δ(x − n′a) dx . (4.30)

The condition Qa = 2πh (where h is an integer) must be satisfied, or the in-
tegration over an infinite range of x is zero. The k-space Fourier transform is
therefore zero except when Q = 2πh/a precisely, so:

F
[ ∞∑

n′=−∞

δ(x − n′a)
]
= N

∞∑
h=−∞

δ(Q − 2πh/a) = N
∑

g

δ(Q − g) . (4.31)

Here again N is the number of terms in the sum in (4.31). In a formal problem,
N becomes a mathematical infinity, but it is useful to keep the N because it
shows the proportionality to the size of the crystal. The diffraction intensity of
(4.29) is:

I(Q) = N2
∣∣∣ fat(Q)

∣∣∣2[ ∞∑
h=−∞

δ(Q − 2πh/a)
]
. (4.32)

Equation (4.32) is a familiar result in a new form. The series of δ-functions
gives the centers of the Bragg peaks from the crystal. These peaks are still sharp,
but are attenuated at large Q by the atomic form factor intensity, | fat(Q)|2.
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Figure 4.2: Overlap of periodic delta functions,
∑

n δ(x − na), with a random
function of zero mean, ∆ f (x). Since the deviation function ∆ f (⃗r) has zero mean
and is non-periodic, the periodic delta functions overlap ∆ f (−r⃗) at as many
positive values as negative values, demonstrating (4.38).

4.3 Deviations from Periodicity

4.3.1 The Deviation Patterson Function

In many cases of interest, a scattering factor distribution, f (⃗r), can be expressed
as the sum of a perfectly periodic function,

〈
f (⃗r)

〉
, plus a deviation function,

∆ f (⃗r), which provides the random or semi-random deviations from perfect
periodicity. We know that the perfectly periodic function,

〈
f (⃗r)

〉
, provides

sharp Bragg diffractions, but how does the deviation function, ∆ f (⃗r), affect the
diffracted intensity? To find out, we calculate the Patterson function of f (⃗r):

f (⃗r) =
〈

f (⃗r)
〉
+ ∆ f (⃗r) , (4.33)

P(⃗r) ≡ f ∗ (⃗r) ∗ f (−r⃗) , (4.34)
P(⃗r) =

〈
f ∗ (⃗r)

〉
∗
〈

f (−r⃗)
〉
+

〈
f ∗ (⃗r)

〉
∗ ∆ f (−r⃗)

+∆ f ∗ (⃗r) ∗
〈

f (−r⃗)
〉
+ ∆ f ∗ (⃗r) ∗ ∆ f (−r⃗) . (4.35)

Look at the second term in (4.35). We rewrite it with the aid of (4.17):〈
f ∗ (⃗r)

〉
∗ ∆ f (−r⃗) =

[ 〈
f ∗at(⃗r)

〉
∗

∑
R⃗n

δ(⃗r − R⃗n)
]
∗ ∆ f (−r⃗) . (4.36)

Convolutions are associative, so we can group the second and third factors in
(4.36), and consider the new convolution:∑

R⃗n

δ(⃗r − R⃗n) ∗ ∆ f (−r⃗) =
∑
R⃗n

∆ f (−R⃗n) , (4.37)

where we used (4.3) in the same way as for (4.22)–(4.23). We assume that the
deviation function, ∆ f (−R⃗n), has zero mean value.2 Therefore:

∑
R⃗n

δ(⃗r − R⃗n) ∗ ∆ f (−r⃗) = 0 . (4.38)

2This does not restrict generality because any non-zero mean could have been transferred into〈
f (⃗r)

〉
in (4.33).
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The second term for P(⃗r) in (4.35) is therefore zero (see also Fig. 4.2). Because
R⃗n has precise periodicity over an infinite distance, (4.38) also holds true when
∆ f (⃗r) has short-range structure. By the same argument, the third term in (4.35)
is also zero. Equation (4.35) becomes:

P(⃗r) =
〈

f ∗ (⃗r)
〉
∗
〈

f (−r⃗)
〉
+ ∆ f ∗ (⃗r) ∗ ∆ f (−r⃗) . (4.39)

The Patterson function for an alloy with disorder is reduced to two parts defined
as the two terms in (4.39): 1) a Patterson function from the average crystal,
Pavge(⃗r), and 2) a Patterson function from the deviation crystal, Pdevs (⃗r):

P(⃗r) = Pavge(⃗r) + Pdevs (⃗r) . (4.40)

The diffracted intensity is the Fourier transform of the Patterson function of
the alloy:

I(Q⃗) = F
[
Pavge(⃗r) + Pdevs (⃗r)

]
, (4.41)

and since Fourier transforms are distributive:

I(Q⃗) = F
[
Pavge(⃗r)

]
+ F

[
Pdevs(⃗r)

]
. (4.42)

Equation (4.42) shows that the diffraction patterns from the average crystal,〈
f (⃗r)

〉
, and the deviation crystal, ∆ f (⃗r), are additive. In terms of the diffracted

waves from these average and deviation crystals (cf., (4.17)):

I(Q⃗) =
∣∣∣F 〈

f (⃗r)
〉 ∣∣∣2 + ∣∣∣F[∆ f (⃗r)

]∣∣∣2 . (4.43)

We are familiar with the first term in (4.43), |F
〈

f (⃗r)
〉
|
2, which gives the sharp

Bragg diffractions from the average crystal.

The second term in (4.43),
∣∣∣F[∆ f (⃗r)

]∣∣∣2, is new. It is often a broad, diffuse
intensity, as we show next. We will also show that with increasing disorder
and larger ∆ f (⃗r), the sharp Bragg diffractions become weaker, and the diffuse
intensity becomes stronger. Two important sources of∆ f (⃗r) in a crystalline alloy
are atomic displacement disorder and chemical disorder. Atomic displacement
disorder comprises small deviations of atoms from the sites of a perfect crystal.
These displacements may be static, or dynamic as in the case of thermal motion.
Chemical disorder exists when there is randomness in the species of atoms
that occupy the sites of a crystal. We consider these two types of disorder in
sequence.

4.3.2 Coherent and Incoherent Scattering

The same argument of Section 4.3 can be used to understand the balance of
coherent and incoherent neutron scattering. The idea is that the scattering
length bi from atom i contains a part that is the same for all nuclei, ⟨b⟩, and
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a deviation part, δbi. Since this δbi is a deviation from the average, it is both
positive and negative. When averaged over all atoms, the sum of the deviations
is zero, i.e.,

⟨δbi⟩ = 0 . (4.44)

The scattering length at atom i is

bi = ⟨b⟩ + δbi . (4.45)

The scattered neutron wavefunction is constructed as usual

ψ(Q⃗) =
∑

i

bi eiQ⃗·⃗ri , (4.46)

ψ(Q⃗) =
∑

i

[⟨b⟩ + δbi] eiQ⃗·⃗ri . (4.47)

The intensity, ψ∗ψ, is

I(Q⃗) =
∑

i

[⟨b⟩ + δbi] e−iQ⃗·⃗ri
∑

j

[
⟨b⟩ + δb j

]
eiQ⃗·⃗r j , (4.48)

I(Q⃗) =
∑

i

∑
j

[
⟨b⟩2 + (δbi + δb j)⟨b⟩ + δbiδb j

]
eiQ⃗·(⃗r j−r⃗i) . (4.49)

We define the pair distance r⃗k ≡ r⃗ j − r⃗i. Averaged over all pairs of atoms, the
middle term gives zero. The last term δbiδb j is also zero, except for the special
case when i = j, which denotes the deviation at the same atom (so r⃗k = 0)

I(Q⃗) = N
∑

k

⟨b⟩2 eiQ⃗·⃗rk +
∑

i

δb2
i eiQ⃗·0 , (4.50)

I(Q⃗) = N
∑

k

⟨b⟩2 eiQ⃗·⃗rk +
∑

i

δb2
i . (4.51)

Equation (4.51) separates the intensities of coherent scattering and incoher-
ent scattering. The first term depends on the interference of waves scattered by
the average atom. It gives a series of Bragg peaks. This is wave-like behavior
from coherent scattering. The second term is independent of Q⃗ and does not
depend on wave interference. The intensity of the second term increases in
proportion to the number of atoms in the material, but the flat shape of the
intensity in Q⃗ is the same for one atom or for N atoms. This is particle-like
behavior from incoherent scattering.

Sometimes the second term in (4.51) is rewritten as follows

⟨b2
⟩ =

〈(
⟨b⟩ + δbi

)2
〉
, (4.52)

⟨b2
⟩ =

〈
⟨b⟩2 + 2⟨b⟩δbi + δb2

i

〉
, (4.53)

⟨b2
⟩ = ⟨b⟩2 + 2⟨b⟩⟨δbi⟩ + ⟨δb2

i ⟩ , (4.54)

⟨b2
⟩ = ⟨b⟩2 + ⟨δb2

i ⟩ , (4.55)

⟨δb2
i ⟩ = ⟨b2

⟩ − ⟨b⟩2 . (4.56)
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Figure 4.3: Atomic displacement
disorder in a one-dimensional
crystal.

Substituting (4.56) into (4.51), recognizing that the last term in (4.51) can be
expressed as the average of δb2

i over all N atoms

I(Q⃗) = N
∑

k

⟨b⟩2eiQ⃗·⃗rk +N
(
⟨b2
⟩ − ⟨b⟩2

)
. (4.57)

We see that the scattered intensity includes a contribution that depends on
the pair separations {⃗rk}, and a featureless diffuse scattering. Written as a
continuous variable, the pair distribution is the Patterson function P(⃗r), so

I(Q⃗) = N⟨b⟩2
∫
∞

−∞

P(⃗r) eiQ⃗·⃗r d3r⃗ +N
(
⟨b2
⟩ − ⟨b⟩2

)
. (4.58)

4.4 Uncorrelated Displacements

Atomic displacement disorder exists when atoms do not sit precisely on the
periodic sites of a crystal. Atomic size differences in an alloy cause static
displacements from lattice sites, and thermal vibrations cause dynamic dis-
placement disorder. Both cause diffuse scattering. Here we consider a simple
type of displacement disorder where each atom has a small, random shift, δ,
off its site of a periodic lattice as shown in Fig. 4.3.

For now we assume there are no correlations between the displacements, δ j,
of neighboring atoms.3 The Patterson function, f (x) ∗ f (−x), for this displace-
ment distribution is shown in Fig. 4.4a. To understand this Patterson function,
consider the overlap of the atom center distribution with itself after a shift of
x = na + ξ, where a is the lattice parameter, n is an integer, and ξ is a small
distance (typically ξ < a). With no correlation between the displacements of
neighboring atoms, the probability of overlap of two atom centers is the same
for a shift of the crystal by many lattice constants, na + ξ, as it is for a shift of
one lattice constant, 1a + ξ. The important exception occurs around x = 0, i.e.,
when n = 0. All the atom centers overlap perfectly with themselves when ξ is
exactly zero, but even for the smallest shift, ξ , 0, there are zero overlaps of
atom centers.

The best way to work with the Patterson function in Fig. 4.4a is to break it
into periodic and non-periodic parts (4.40), as shown in the two plots in Fig.

3For example, we assume that if one atom is displaced to the left, its neighbor to the right is
equally likely to be displaced to the left or to the right.
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Figure 4.4: (a) Patterson function for the random displacements of Fig. 4.3 and
(4.40). (b) The Patterson function at top is the sum of Pavge(x) and Pdevs(x). (c)
Pdevs(x) is the sum of Pdevs1(x) and Pdevs2(x).
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Figure 4.5: The Fourier trans-
form of the Patterson func-
tions of Fig. 4.4. Fourier trans-
form of Pavge(x) (top), Fourier
transforms of the two compo-
nents of Pdevs(x) (middle). The
sum of all three components
(bottom) is the diffraction in-
tensity from our linear crystal
with Gaussian displacement
disorder.

4.4b. The diffracted intensity from our crystal with displacement disorder is
obtained from (4.42) as the sum of the Fourier transforms of these two functions,
Pavge(x) and Pdevs(x). The Fourier transform of Pavge(x) is the well-known series
of Bragg peaks. These peaks are suppressed at large values of Q owing to the
breadths of the peaks in Pavge(x) caused by displacement disorder (see top of Fig.
4.5). This suppression of the Bragg peaks at large Q is similar to the suppression
caused by the atomic form factor, which also broadens the scattering centers of
the atoms.

The Fourier transform of Pdevs(x) is new for us. To understand its contri-
bution to the diffraction intensity, we split Pdevs(x) into two parts, Pdevs1(x) and
Pdevs2(x) (Fig. 4.4c). The first, Pdevs1(x), is a Dirac delta function, whose Fourier
transform is a constant in k-space (F

[
Pdevs1(x)

]
in Fig. 4.5). The second part,

Pdevs2(x), is a short, broadened function with negative sign. (In Sect. 4.5 we
will consider it to be a Gaussian function.) Its Fourier transform, F

[
Pdevs2(x)

]
,

is also shown in Fig. 4.5. The areas of these two parts, Pdevs1(x) and Pdevs2(x),
are equal, since both arise from the same total number of atom-atom overlaps
(equal to the number of atoms, N). This has an important consequence for the
diffracted intensity at Q = 0:

I(Q=0) =

∞∫
−∞

Pdevs(x) e−i0x dx =

∞∫
−∞

Pdevs(x) dx , (4.59)

which is simply the area of the Patterson function, Pdevs(x). Since Pdevs1(x) and
Pdevs2(x) have equal and opposite areas, at Q = 0 there is zero diffuse scattering
from atomic displacement disorder.

The F
[
Pdevs2(x)

]
has a negative sign that decreases in magnitude with Q.

The diffuse scattering therefore increases with Q, as the flat contribution origi-
nating from F

[
Pdevs1(x)

]
increasingly dominates over F

[
Pdevs2(x)

]
. The function
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Pdevs2(x), incidentally, has the same shape as the individual peaks in Pavge(x). In
this case the Q-dependence of the rolloff of the Bragg peaks is the same as the
Q-dependence of the diffuse scattering. The effects of displacement disorder
increase with the characteristic size of the displacements, δ j. The larger the
characteristic δ, the faster the rolloff of the Bragg peaks with Q, and the greater
the intensity of the diffuse scattering.

4.5 Temperature

During thermal vibrations, the distances between atoms undergo rapid changes
with time. It is useful, however, to think of each x-ray scattering event as
taking an instantaneous snapshot of the atom positions. The diffraction data
are averages of many different instantaneous atom configurations. Over a large
crystal, however, each instantaneous snapshot looks approximately the same.
The same argument of the previous section on atomic displacement disorder
is then appropriate for understanding the diffraction effects caused by thermal
disorder in atom positions. This section uses a simple model of atom vibrations
to calculate two effects of temperature:

• the Debye–Waller factor that causes the Bragg peaks to lose intensity,

• the thermal diffuse scattering, which is where the “lost” intensity reap-
pears.4

A detailed analysis of thermal vibrations is not simple, because it should
be performed with knowledge of the polarizations and numbers of all phonon
modes. A complete analysis considers the contribution of each phonon to the
relative separation of each atom-atom pair in the solid. In phonons with long
wavelengths, for example, neighboring pairs of atoms tend to move together.5

In contrast, high frequency phonons affect strongly the mutual displacements
of neighboring atoms. In addition, it is important to know how the atom
motions within each phonon are oriented with respect to Q⃗ – atom motions
nearly perpendicular to Q⃗ have weak effects on the scattering. Calculating the
Patterson function from the densities of phonons with all polarizations is a
problem for computers, and is beyond the scope of this book.

Thermal vibrations broaden the Patterson function of the scattering factor
distribution. To develop a simple analytical model, we assume each atom
center has a thermal spread around its crystal site that is a Gaussian function
of characteristic width, σ. (A plausibility argument for a Gaussian function is
provided in Appendix A.11.) For any nth neighbor pair of atoms, we expect the
vibrations of both atoms to affect the Patterson function. Suppose we place a

4The total coherent cross-section remains constant.
5Another aspect of the problem is that a crystal has fewer long-wavelength than short-

wavelength vibrational modes. However, the lower energy of the long-wavelength modes means
that their occupancy is higher at all temperatures, especially low temperatures.
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Figure 4.6: (a) The thermal
spread of centers for atom 2.
(b) Weights for the centers
of the thermal distribution
of the atom 1. (c) The distri-
bution of all thermal separa-
tions of atom 1 with respect
to atom 2.

stationary atom 1 at a point in space. When an atom 2 vibrates with respect to
atom 1, there is a probability distribution for their interatomic separation, x:

patom2(x) =
1
√
πσ

e−x2/σ2
. (4.60)

This function is shown schematically in Fig. 4.6a. Now let atom 1 vibrate. For
every interatomic separation provided by the thermal motion of the atom 2,
make a thermal distribution for the position of atom 1. To obtain the distribution
of separations between atoms 1 and 2, the displacement distribution of atom 2
serves to weight the displacement distribution of atom 1. The various weights
are shown in Fig. 4.6b, and the weighted sum of the net thermal distribution
of atom 1 with respect to atom 2 is shown schematically in Fig. 4.6c as p ∗ p(x).
The procedure we followed was in fact a convolution: the distribution of atom
1 was shifted, patom1(x − x′), multiplied by patom2(x′), and summed (integrated)
over all values of x′:

Ptherm(x) =

∞∫
−∞

patom2(x′) patom1(x − x′) dx′ . (4.61)

For nth neighbor pairs of atoms, the Patterson function of the thermal spread,
Ptherm(x), is the convolution of the Gaussian thermal spread functions of both
atoms (cf., (8.24)):

Ptherm(x) =
( 1
√
πσ

e−x2/σ2
)
∗

( 1
√
πσ

e−x2/σ2
)

when n , 0 . (4.62)

Ptherm(x) =
1
√

2πσ
e−x2/(2σ2) when n , 0 . (4.63)
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A detailed analysis treats closer pairs of atoms differently from more distant
pairs, but here we ignore this difference except for the case of n = 0. In the
special case of n = 0, we are considering the autocorrelation function between
the positions of the individual atoms with themselves. Each atom sees itself as
being at rest, so the Patterson function for the thermal spread is:

Ptherm(x) = Nδ(x) when n = 0 . (4.64)

We now obtain the Patterson function for the entire crystal by convoluting
the thermal spread function, Ptherm(x), with the Patterson function of the per-
fect crystal (4.28). The Patterson function, P(x), for the crystal with thermal
displacement disorder is the following modification of (4.28). Note the special
treatment of the n = 0 term, which provides the δ-function:

P(x) = N
[

f ∗at(x) ∗ fat(−x)
]

∗

[
δ(x) +

( n=∞∑
n,0;n=−∞

δ(x − na)
)
∗

( 1
√

2πσ
e−x2/(2σ2)

)]
. (4.65)

We rewrite the sum in (4.65) by adding and subtracting the n = 0 term (the
same trick used in Fig. 4.4 to give an uninterrupted infinite series for Pavge(x)):

P(x) = N
[

f ∗at(x) ∗ fat(−x)
]
∗

[
δ(x) −

1
√

2πσ
e−x2/(2σ2)

+
( n=∞∑

n=−∞

δ(x − na)
)
∗

( 1
√

2πσ
e−x2/(2σ2)

)]
. (4.66)

The diffracted intensity is the Fourier transform of the Patterson function of
(4.66). The transformation from (4.66) to (4.67) follows that from (4.28) to (4.32),
plus the fact that the Fourier transform of a Gaussian is a Gaussian:

I(Q) = N
∣∣∣ fat(Q)

∣∣∣2[ (1 − e−σ
2(Q)2/2)

+ e−σ
2(Q)2/2

∑
h

δ(Q − 2πh/a)
]
. (4.67)

The last term in the square brackets is the expected set of sharp Bragg peaks,
but attenuated at larger values of Q by the “Debye–Waller factor,” D(Q):

D(σ,Q) = e−σ
2(Q)2/2 . (4.68)

The Debye–Waller factor suppresses the intensity of Bragg peaks at high Q,
as does the size of the atom through the factor | fat(Q)|2 of Sect. 3.3.2, so the
Debye–Waller factor can be considered a “thermal fattening of the atoms.” The
intensity lost from the Bragg peaks reappears6 as the first term in brackets in

6Never forget that the total cross-section for coherent scattering is constant.
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(4.67), 1 − e−σ
2(Q)2/2, which is the “thermal diffuse scattering.” The thermal

diffuse scattering has no distinct peaks, but usually has gradual modulations
that increase with Q as shown in Fig. 4.5.

The Debye–Waller factor can provide quantitative information about the
mean-squared displacement,

〈
x2

〉
, during thermal motion of the atoms. The

larger is
〈
x2

〉
, the smaller the Debye–Waller factor (and the larger the suppres-

sion of the Bragg diffractions). We first relate
〈
x2

〉
to the σ2 in the thermal spread

function of the individual atoms. This is the second moment of the Gaussian
function:

〈
x2

〉
=

∞∫
−∞

x2 1
√
πσ

e−x2/σ2
dx =

1
2
σ2 , (4.69)

so from (4.68) and (5.20):

D(σ,Q) = e−⟨x
2⟩(Q)2

= e−⟨x
2⟩(4π sinθ/λ)2

. (4.70)

At modest temperatures and small Q we can often linearize the exponential to
predict a suppression of the Bragg peaks that is quadratic in Q:

D(σ,Q) ≃ 1 −
〈
x2

〉 (4π sinθ
λ

)2

. (4.71)

Physically, the Debye–Waller factor accounts for the loss of constructive inter-
ference in diffraction when the mean-squared atomic displacements become
comparable to the x-ray wavelength. The Debye–Waller factor always sup-
presses the intensity of Bragg peaks.

Equations (4.70) or (4.71) can be used to determine
〈
x2

〉
from experimental

data on diffraction intensities.7 Conversely, it is often important to predict
the Debye–Waller factor for a material at a known temperature. In essence,〈
x2

〉
is proportional to the potential energy of a harmonic oscillator, and scales

linearly with temperature, T. Although
〈
x2

〉
can be calculated easily for the

single oscillator in the Einstein model, it is more handy to express the Debye–
Waller factor in terms of a Debye temperature, θD, since tabulations of θD
are conveniently available. For the Debye model the Debye–Waller factor has
been worked out, and at temperatures comparable to the Debye temperature
or higher, the Debye–Waller factor is:

D(T,Q) ≃ exp
[−12h2T
m kB θ2

D

(sinθ
λ

)2]
, (4.72)

D(T, θ) ≃ 1 −
22, 800 T

mθ2
D

(sinθ
λ

)2
(4.73)

7Note that
〈
x2

〉
is along the direction of Q. In an isotropic material

〈
x2

〉
would equal 1/3 of the

mean-squared atomic displacement.
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Here the units of mass are the atomic weight (e.g., 55.847 for Fe), T and θD are
in Kelvin, and λ is in Å. For use in (4.70) and (4.71), in the Debye model:〈

x2
〉
= 144.38

T
mθ2

D

. (4.74)

Although the Debye–Waller factor pertains to the thermal spread of dis-
tances between pairs of atoms, a Debye–Waller factor is often assigned to the
scattering from a single atom. With this approximation, the atomic form factor,
f , of each atom is replaced with f exp(−M). The Debye–Waller factor for the
intensity is therefore exp(−2M). Also defined is the parameter B, related to

〈
x2

〉
.

Standard relationships are:

2M =
〈
x2

〉(4π sinθ
λ

)2
, (4.75)

M = B
(sinθ
λ

)2
. (4.76)

In the case of an alloy, it is typical to assign different Debye–Waller factors for
each type of atom, A or B, written as e−MA and e−MB :

ψ(Q⃗) =
∑

r⃗

[
e−MA fA δA (⃗r) + e−MB fB δB (⃗r)

]
eiQ⃗·⃗r . (4.77)

Here the δ-functions are Kroneker delta functions indicating the presence of an
A or B atom at r⃗.

At temperatures below approximately half the Debye temperature, and
especially below a quarter of the Debye temperature, (4.72) is no longer reliable
for calculating the Debye–Waller factor. Two quantum effects are important at
low temperatures. First, owing to Bose–Einstein phonon population statistics,
the higher frequency phonons are not excited in simple proportion to the ratio
kT/ε, where ε is the phonon energy. Second, at temperatures below about
half the Debye temperature, the “zero-point” vibrations of the solid account
for an increasingly large fraction of the atom displacements. Owing to zero-
point vibrations, the thermal diffuse scattering can never be eliminated, even
by cooling to arbitrarily low temperature.

The derivation of (4.67) was clean because we assumed the same Gaussian
thermal spread for all interatomic correlations. For long wavelength phonons,
however, adjacent atoms tend to move together in a group. In general, the
nearest-neighbor pair correlations are less broadened than the correlations for
more distant neighbor pairs. If atoms tend to move in groups, as in acoustic
modes, the displacement has long-range modulations, and the thermal diffuse
scattering intensity is concentrated near the reciprocal lattice points. The de-
tailed shape of the thermal diffuse scattering depends on the lattice dynamics
of the crystal vibrations [9.2]. With a Born–von Kármán model of lattice dy-
namics, for example, it is possible to calculate the projected components of the
atom movements normal to the diffracting planes, and obtain a more accu-
rate Ptherm(x) of (4.63). Alternatively, the phonon spectrum of the crystal can
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be deduced from measurements of the thermal diffuse scattering, at least in
principle. In practice, such measurements require careful correction for other
sources of diffuse intensity (such as atomic size and displacement effects).
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Chapter 5

Memory Functions and
Incoherent Inelastic
Scattering

5.1 Overview and Definitions

Chapter 4 showed how the measured diffraction intensity I(Q) (as opposed to
the waveψ(Q)) can be inverted to obtain the Patterson function P(x). It does not
give the positions of atoms, but correlations between pairs of atoms. Formally,
this is all the information that can be obtained by a diffraction experiment.

In the present chapter, consider the spectral power density I(ω) (or with en-
ergy I(ϵ) because ϵ = ℏω). The I(ω) can be inverted by Fourier transformation to
obtain a function of time, but this does not give the time dynamics of individual
atoms (which are individual atom velocities). It gives, rather, the correlations of
velocities of one atom between pairs of times. This sacrifices some information
about atom dynamics. Nevertheless, the intensity is the actual quantity mea-
sured in an incoherent inelastic scattering experiment, so this new approach
offers a more rigorous understanding of dynamics information from experi-
ment. Furthermore, the absolute time is usually not important because the
system has the same properties at all times.1 A powerful tool for calculating
inelastic intensities is the “Memory function,” M(τ), defined in Sect. 5.1.3 as an
autocorrelation function of a scattering factor of one atom as it moves. What is
missing from this approach is considerations of correlated motions of the atom
with its neighbors. The correlations of pairs of atoms in both space and time
are described by Van Hove functions, which are presented in the next chapter.
Whereas the scattered wave, ψ(ω), is the Fourier transform of the movement of the
scattering factor from one atom, the scattered intensity, I(ω), is the Fourier transform

1An important and obvious exception is a pump-probe experiment, where the clock starts at
the sharp pump event.

105
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of the Memory function of the velocity of the atom.
The Memory function is a function of time, with argument τ. Here τ is a
difference in times. For example, τ = t1 − t2, but without a particular marker in
time we might write it as τ = t1 − t0, or τ = t1 − 0, or even τ = t (although this
last form may let us forget that τ is used for correlations between two times).
The Memory function is a convolution, so the reader should be familiar with
the convolution theorem before reading the present chapter. The text follows
closely the form of Sect. 4. We prove the emphasized statement above in
Sect. 5.1.3. The later sections use the Memory function to explain scattering
phenomena involving errors in the velocity of an atom as it moves with a
near-periodic waveform.

5.1.1 Atom Centers at Snapshots in Time

The most important results in this chapter are obtained by assuming the scat-
terers are points. At each instant, t j, resides the scattering strength of one entire
atom, ft j (or one unit cell). The actual shape of the atom is included later by
convolution, and does not change the main results.

It proves convenient to consider a distribution of the scattering centers, f (t),
with a continuous variable, t, rather than a sum over discrete times, {t j}. We
change variables as:

ψ(ω) =
N∑
t j

ft j e
−iω·t j =

∞∫
−∞

f (t) e−iω·tdt . (5.1)

To equate a continuous integral to a discrete sum requires that f (t) is not a
smooth function of time. At any time, f (t) is generally zero, but when the atom
center crosses a point at x, at times such as t = ti, f (ti) is a Dirac delta function
times a constant, fti :

f (ti) = ftiδ(t − ti) . (5.2)

Recall the important property of the Dirac delta function:

y(t′) =

∞∫
−∞

δ(t − t′) y(t) dt . (5.3)

Equation (5.3) requires that δ(t− t′) is generally zero, except at the instant t = t′.
At this instant the delta function is infinitely high, but of unit area, so the
integral of (5.3) picks out only the value of y(t) at t′. To extend (5.2) to include
many atom centers, we take the sum over t j:

f (t) =
N∑
t j

ft jδ(t − t j) , (5.4)
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so we satisfy relation (5.1) between instants in time, {t j}, and a continuous
function of t. We later include the shape of the atomic form factor, fat(t), in
Sect. 5.2.1. The fat(t) does not mean that the physical scattering amplitude of
an atom is changing with time, but that the atom takes some time to cross a
point in space as it moves with velocity v.

5.1.2 Patterson Function of Moving Atoms

It is perhaps instructive to start with the Patterson function of the previous
chapter, and use it to assess the scattered intensity when the atoms are moving.
From (4.12)

I(Q) =
∫
∞

−∞

eiQxP(x)dx . (5.5)

Consider a single atom that is moving while it is scattering a wave. Its P(x) will
be zero when it no longer overlaps itself at the same position. After time τ,

Pτ(x) =
(

f ∗0 ∗ δ(x)
)
∗

(
f0 ∗ δ(x + χ)

)
. (5.6)

There is a nonzero contribution to Pτ(x) for a shift χ = −vτ, when the shift χ
matches the atom translation over the time τ:

Pτ(x) =
∣∣∣ f0∣∣∣2 ∗ δt=0(x) ∗ δt=τ(x − vt) , (5.7)

Pτ(x) =
∣∣∣ f0∣∣∣2 ∗ δ(x − vτ) . (5.8)

We can now switch the argument of the Patterson function from position x to
the velocity or to the time – either v or t can be used in what follows. Since we
will work with time in the next section, we consider here the velocity.

There is an instant in time τ when the atom is at the point x.

Mx(v) =
∣∣∣ f0∣∣∣2 ∗ δ(v − x/τ) . (5.9)

This (5.9) is from the correlation function

Mx(v) =
∣∣∣ f0∣∣∣2 ∗ δt=0(v) ∗ δt=τ(v − x/τ) , (5.10)

with these last two equations following in reverse order as (5.8) to (5.7). As-
suming the velocities are the same in the arguments of the δ-functions in (5.10),
there will be a nonzero contribution as in (5.9).

Now take an average over a long time. The velocity profile of an individual
atom is v(t). If this v(t) = v, a constant, there will be a large contribution to
Mx(v), as is evident from (5.10) and (5.9). In general, v(t) is not constant, and
the average for N identical atoms is

Mx(τ) = N
∣∣∣ f0∣∣∣2 ∫

∞

t=−∞
v(t) v(t − τ) dt . (5.11)
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This correlation function is a Patterson function for moving atoms. Consistent
with (5.5), the scattered intensity is

I(ω) =
∫
∞

−∞

eiωt v(t) v(t − τ) dt , (5.12)

which is the Fourier transform of a velocity-velocity correlation function. Nor-
malization by v2 is typical, where v is the average magnitude of the velocity.

5.1.3 Definition of the Memory Function

We define the “Memory function,” M(τ):

M(τ) ≡

∞∫
−∞

f ∗(t′) f (t + t′) dt′ . (5.13)

Equation (5.13) is a convolution. Since the function f (t) is not inverted in the
usual way for a convolution, we write:

M(τ) = f ∗(t) ∗ f (−t) , (5.14)

This is a specific type of convolution known as an “autocorrelation function,”
sometimes denoted with a special symbol:

M(τ) = f (t) ⊛ f (t) . (5.15)

The most important feature of the Memory function is that its Fourier trans-
form is the inelastic intensity, for scatterings when the energy transfer creates
a single excitation. This is the Wiener–Khinchin Theorem,2 sometimes stated
as “the spectral power density is the Fourier transform of the time correlation
function.”

To show this, we use (5.1) to write I(ω) = ψ∗ψ as:

I(ω) =

∞∫
−∞

f ∗(t′) eiω·t′dt′
∞∫

−∞

f (t′′) e−iω·t′′dt′′ . (5.16)

Since t′ and t′′ are independent variables:

I(ω) =

∞∫
−∞

( ∞∫
−∞

f ∗(t′) f (t′′) e−iω·(t′′−t′)dt′′
)

dt′ . (5.17)

Define t ≡ t′′ − t′, and change variables t′′ → t + t′. In so doing, the limits of
integration for t are shifted by −t′, but this is not of concern for integrations

2After Norbert Wiener and Aleksandr Khinchin.
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performed over all of time:

I(ω) =

∞∫
−∞

( ∞∫
−∞

f ∗(t′) f (t + t′) e−iω·tdt
)

dt′ , (5.18)

I(ω) =

∞∫
−∞

( ∞∫
−∞

f ∗(t′) f (t + t′)dt′
)
e−iω·tdt . (5.19)

Using the definition of (5.13), we rewrite (5.19):

I(ω) =

∞∫
−∞

M(τ) e−iω·tdt . (5.20)

Equation (5.20) shows that the inelastic intensity is the Fourier transform of the
Memory function:

I(ω) = FM(τ) , (5.21)

and by the inverse transformation we must have:

M(τ) = F−1I(ω) . (5.22)

These equivalent equations (5.22) and (5.23) are the Wiener–Khinchin theorem.
For comparison, the scattered wave,ψ(ω) of (5.1), is the Fourier transform of

the scattering factor distribution, f (t). We therefore have another relationship
between I(ω) and f (t):

I(ω) = ψ∗(ω)ψ(ω) , (5.23)

I(ω) =
(
F f (t)

)∗
F f (t) =

∣∣∣F f (t)
∣∣∣2 . (5.24)

Comparing (5.21) and (5.24):

FM(τ) =
∣∣∣F f (t)

∣∣∣2 . (5.25)

Equation (5.25) is consistent with the convolution theorem that states “a con-
volution in real time (the Memory function of (5.13)) corresponds to a multipli-
cation in frequency space (right-hand side of (5.25)).” Note how (5.24) shows
the effects of the flip and the complex conjugation of f (t) in the convolution of
(5.13):

F
[

f ∗(t) ∗ f (−t)
]
=

(
F f (t)

)∗
F f (t) =

∣∣∣ f (ω)
∣∣∣2 , (5.26)

as compared to:

F
[

f (t) ∗ f (t)
]
= F f (t) F f (t) =

(
f (ω)

)2
. (5.27)
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Figure 5.1: (a) Periodic pulse with a smaller echo occurring slightly later, shown
unshifted in time (top), with unshifted pattern shown as dashed curves below
it. The other solid curves are time-delayed patterns shown for shifts up to
0.45τ0. (b) The Memory function, obtained by integrating the product of the
solid and dashed curves for all shifts, r.

5.2 Properties of Memory Functions

It is instructive to illustrate the steps in constructing a Memory function (5.13).
The steps in any convolution are shift, multiply, and integrate, and are shown
in Fig. 5.1. Figure 5.1a shows the overlap of a function delayed by the time t
against the original position shown as a dashed curve. To obtain the Memory
function in Fig. 5.1b, at each shift the function was multiplied by its shifted
counterpart, then integrated.

The peaks of the Memory function in Fig. 5.1b are broader than the peaks
in the scattering factor distribution of Fig. 5.1a. Since the peaks in Fig. 5.1a
are Gaussian functions of equal width, the peaks in the Memory function are
broadened by a factor of

√
2. Second, the periodicity of the Memory function

is one vibrational cycle, τ0 = 1/ν, where ν is a pure vibrational frequency (and
2πν = ω). This is expected, since the overlap of the peaks in the function of
Fig. 5.1a is maximized each time delay equal to an integral number of cycles.
The intensities of these primary maxima are proportional to A2 + B2. There are
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secondary maxima that occur at shifts of ±0.3τ0 when the large peak overlaps
the small peak. The intensities of these secondary maxima are proportional
to AB. The Memory function has a peak at each distance corresponding to a
separation between the peaks in Fig. 5.1a.

The Memory function, M(τ) of Fig. 5.1b, has a higher symmetry than the
f (t) of Fig. 5.1a. Identical secondary peaks occur in M(τ) when the large peak
is shifted to the right by +0.3τ0 and overlaps the small peak, or when the small
peak is shifted to the left by −0.3τ0 and overlaps the large peak. For this reason,
even when f (t) has no center of inversion, M(τ) has inversion symmetry. The
Memory function is unchanged if the original function is inverted.3 Equation
(5.22) shows that the measured inelastic intensity provides the Memory func-
tion, not the scattering factor distribution. We therefore have the time analog
of Friedel’s law:
Inelastic experiments cannot distinguish the time ordering of an event and its echo, or
the echo and the event.

This is essentially the same as the “phase problem” in structure determi-
nation, since the phase of the scattered wave ψ(ω) is not measured, only its
intensity, ψ∗ψ.

5.2.1 Perfect Periodicity

In working problems with Memory functions, it is often convenient to write
the scattering factor distribution for the entire time of the periodicity, f (t), in
the following way:

f (t) = fat(t) ∗
∑

tn

δ(t − tn) . (5.28)

Here fat(t) is the form factor of one atom. It increases the time duration for an
atom to pass a point in space, which increases with the size of the atom and
inversely with its velocity. In (5.28) the form factor of the atom is convoluted
with a sum of delta functions, each at a different time, tn. (These may be times
when a vibrating atom crosses its neutral point, for example.) We evaluate
(5.28) by first writing explicitly the convolution:

f (t) =

∞∫
−∞

fat(t′)
∑

tn

δ
(
t − (t′ − tn)

)
dt′ . (5.29)

Rearranging the operations on independent variables:

f (t) =
∑

tn

∞∫
−∞

fat(t′) δ
(
t − (t′ − tn)

)
dt′ . (5.30)

3You can obtain the same M(τ) by taking the mirror image of the f (t) in Fig. 5.1a (with the small
peak to the immediate left of the large peak), and repeating the construction.
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The integral of (5.30) serves to pick out the value of fat(t′) at the location of the
delta function, cf., (5.3). By shifting the delta function continuously by t′, the
shape of fat(t) is generated around the center of each delta function. The centers
are at the, tn, so after the integration of (5.30):

f (t) =
∑

tn

fat(t − tn) . (5.31)

Please compare (5.28) and (5.31).
The Memory function of an infinite perfect periodicity, M0(τ), is:

M0(τ) = f ∗(t) ∗ f (−t) , (5.32)

which we write using (5.28) for N atoms:

M0(τ) =
(

f ∗at(t) ∗
+∞∑

n′=−∞

δ(t − n′τ0)
)
∗

(
fat(−t) ∗

−∞∑
n′′=+∞

δ(n′′τ0 − t)
)
. (5.33)

Here τ0 is the precise periodicity of the wave of frequency ν. Convolutions are
commutative and associative, so we rearrange (5.33):

M0(τ) =
(

f ∗at(t) ∗ fat(−t)
)
∗

( +∞∑
n′=−∞

δ(t − n′τ0)
)

∗

( −∞∑
n′′=+∞

δ(n′′τ0 − t)
)
. (5.34)

Recall that a convolution of two functions requires a shift, overlap, multi-
plication, and integration. Because the δ-functions are infinitesimally narrow,
there is zero overlap of the two series of δ-functions unless the shift, t, satisfies
the condition t = nτ0, where n is an integer. Therefore:( ∞∑

n′=−∞

δ(t − n′τ0)
)
∗

( ∞∑
n′=−∞

δ(t − n′τ0)
)
= N′

( ∞∑
n=−∞

δ(t − nτ0)
)
. (5.35)

Here N′ = ∞, which is as expected for an infinite number of overlaps of an
infinite chain of atoms. For a chain of N atoms, the Memory function is:

M0(τ) = N
(

f ∗at(t) ∗ fat(−t)
)
∗

( ∞∑
n=−∞

δ(t − nτ0)
)
, (5.36)

The Fourier transformation of M0(τ) provides the scattered intensity, I(ω).
By the convolution theorem, the two convolutions and one multiplication of
(5.36) become, after Fourier transformation, two multiplications and one con-
volution. Using (5.26):

I(ω) = N
∣∣∣ fat(ω)

∣∣∣2 ∗ F
[ ∞∑

n′=−∞

δ(t − n′τ0)
]
. (5.37)
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The Fourier transform of the δ-function series is:

F
[ ∞∑

n′=−∞

δ(t − n′τ0)
]
=

∞∫
−∞

e−iωt
∞∑

n′=−∞

δ(t − n′τ0) dx . (5.38)

The condition ωτ0 = 2πh (where h is an integer) must be satisfied, or the
integration over an infinite range of x is zero. The ω-space Fourier transform is
therefore zero except when ω = 2πh/τ0 precisely, so:

F
[ ∞∑

n′=−∞

δ(t − n′τ0)
]
= N

∞∑
h=−∞

δ(ω − 2πh/τ0) . (5.39)

Here again N is the number of terms in the sum in (5.39). In a formal problem, N
becomes a mathematical infinity, but it is useful to keep the N because it shows
the proportionality to the duration of the periodicity. The inelastic intensity of
(5.37) is:

I(ω) = N2
∣∣∣ fat(ω)

∣∣∣2[ ∞∑
h=−∞

δ(ω − 2πh/τ0)
]
. (5.40)

Equation (5.40) is a series of δ-functions at the primary frequency ν = 1/τ0,
and all of its harmonics. The harmonic structure is extensive in ω if the f (t) is
a series of sharp δ-functions. In general, these sharp peaks will be attenuated
at large ω by the atomic form factor, | fat(ω)|2. If the fat(t) creates a sine wave
when convolved with the f (t), of course only the fundamental ν will appear in
the spectrum of I(ω).

5.3 Deviations from Periodicity

In many cases of interest, a scattering factor distribution, f (t), can be expressed
as the sum of a perfectly periodic function,

〈
f (t)

〉
, plus a deviation function,

∆ f (t), which provides the random or semi-random deviations from perfect
periodicity. We know that the perfectly periodic function,

〈
f (t)

〉
, gives intensity

at a fundamental frequency and its harmonics, but how does the deviation
function, ∆ f (t), affect the scattered intensity? To find out, we calculate the
Memory function of f (t):

f (t) =
〈

f (t)
〉
+ ∆ f (t) , (5.41)

M(τ) ≡ f ∗(t) ∗ f (−t) , (5.42)
M(τ) =

〈
f ∗(t)

〉
∗
〈

f (−t)
〉
+

〈
f ∗(t)

〉
∗ ∆ f (−t)

+∆ f ∗(t) ∗
〈

f (−t)
〉
+ ∆ f ∗(t) ∗ ∆ f (−t) . (5.43)

Look at the second term in (5.43). We rewrite it with the aid of (5.25):〈
f ∗(t)

〉
∗ ∆ f (−t) =

[ 〈
f ∗at(t)

〉
∗

∑
tn

δ(t − tn)
]
∗ ∆ f (−t) . (5.44)
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Figure 5.2: Overlap of periodic delta functions,
∑

n δ(t − nτ0), with a random
function of zero mean, ∆ f (t). Since the deviation function ∆ f (t) has zero mean
and is non-periodic, the periodic delta functions overlap ∆ f (−t) at as many
positive values as negative values, demonstrating (5.46).

Convolutions are associative, so we can group the second and third factors in
(5.44), and consider the new convolution:∑

tn

δ(t − tn) ∗ ∆ f (−t) =
∑

tn

∆ f (−tn) , (5.45)

where we used (5.3) in the same way as for (5.30)–(5.31). We assume that the
deviation function, ∆ f (−tn), has zero mean value.4 Therefore:

∑
tn

δ(t − tn) ∗ ∆ f (−t) = 0 . (5.46)

The second term for M(τ) in (5.43) is therefore zero (see also Fig. 5.2). Because
tn has precise periodicity over an infinite distance, (5.46) also holds true when
∆ f (t) has short-range structure. By the same argument, the third term in (5.43)
is also zero. Equation (5.43) becomes:

M(τ) =
〈

f ∗(t)
〉
∗
〈

f (−t)
〉
+ ∆ f ∗(t) ∗ ∆ f (−t) . (5.47)

The Memory function for a periodicity with disorder is reduced to two parts
defined as the two terms in (5.47): 1) a Memory function from the average
periodicity, Mavge(τ), and 2) a Memory function from the deviations from peri-
odicity, Mdevs(τ):

M(τ) =Mavge(τ) +Mdevs(τ) . (5.48)

The scattered intensity is the Fourier transform of the total Memory function:

I(ω) = F
[
Mavge(τ) +Mdevs(τ)

]
, (5.49)

and since Fourier transforms are distributive:

I(ω) = F
[
Mavge(τ)

]
+ F

[
Mdevs(τ)

]
. (5.50)

4This does not restrict generality because any non-zero mean could have been transferred into〈
f (t)

〉
in (5.41).
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Equation (5.50) shows that the inelastic scattering from the average periodicity,〈
f (t)

〉
, and the deviation periodicity,∆ f (t), are additive. In terms of the scattered

waves from these average and deviations (cf., (5.25)):

I(ω) =
∣∣∣F 〈

f (t)
〉 ∣∣∣2 + ∣∣∣F[∆ f (t)

]∣∣∣2 . (5.51)

We are familiar with the first term in (5.51), |F
〈

f (t)
〉
|
2, which gives well-defined

peaks in I(ω).

The second term in (5.51),
∣∣∣F[∆ f (t)

]∣∣∣2, gives a broad, diffuse intensity, as
we show next. We will also show that with increasing disorder and larger
∆ f (t), the sharp periodicities in the inelastic spectrum become weaker, and the
diffuse intensity becomes stronger. Two important sources of ∆ f (t) are phase
disorder and amplitude disorder. Phase disorder comprises small deviations of
atom motions from perfect periodicity. Amplitude disorder exists when there
is randomness in the heights of the peaks in f (t). For simplicity, we assume
that these two types of disorder can be treated separately.

5.3.1 Amplitude Noise

The argument of Section 5.3 can be used to understand amplitude noise in
inelastic scattering. The idea is that the scattering length bi from atom i contains
a part that is the same for all nuclei, ⟨b⟩, and a deviation part, δbi. Since this δbi is
a deviation from the average, it is both positive and negative. When averaged
over all atoms, the sum of the deviations is zero, i.e.,

⟨δbi⟩ = 0 . (5.52)

The scattering length at atom i is

bi = ⟨b⟩ + δbi(t) . (5.53)

The scattered neutron wavefunction is constructed as usual

ψ(ω) =
∑

i

bi eiω·ti , (5.54)

ψ(ω) =
∑

i

[⟨b⟩ + δbi(t)] eiω·ti . (5.55)

The intensity, ψ∗ψ, is

I(ω) =
∑

i

[⟨b⟩ + δbi(t)] e−iω·ti
∑

j

[
⟨b⟩ + δb j(t)

]
eiω·t j , (5.56)

I(ω) =
∑

i

∑
j

[
⟨b⟩2 + ⟨b⟩ δb j(t) + δbi(t) ⟨b⟩ + δbi(t) δb j(t)

]
eiω·(t j−ti) . (5.57)

We define the time delay tk ≡ t j − ti. Averaged over all pairs of times, the two
middle terms give zero. The last term δbi(t) δb j(t) is also zero, except for the
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special case when i = j, which denotes the same time (so tk = 0)

I(ω) = N
∑

k

⟨b⟩2 eiω·tk +
∑

i

δb2
i eiω·0 , (5.58)

I(ω) = N
∑

k

⟨b⟩2 eiω·tk +
∑

i

δb2
i . (5.59)

Equation (5.59) separates the intensities of sharp spectral peaks from the
diffuse background in ω. The first term depends on the pattern of waves
scattered by the periodic motion. It gives a series of frequency peaks. The
second term is independent of ω. The intensity of the second term increases
in proportion to the number of atoms in the material, but the flat shape of the
intensity in ω is the same for one atom or for N atoms.

Sometimes the second term in (5.59) is rewritten after the following rear-
rangement:

⟨b2
⟩ =

〈(
⟨b⟩ + δbi

)2
〉
, (5.60)

⟨b2
⟩ =

〈
⟨b⟩2 + 2⟨b⟩δbi + δb2

i

〉
, (5.61)

⟨b2
⟩ = ⟨b⟩2 + 2⟨b⟩⟨δbi⟩ + ⟨δb2

i ⟩ , (5.62)

⟨b2
⟩ = ⟨b⟩2 + ⟨δb2

i ⟩ , (5.63)

⟨δb2
i ⟩ = ⟨b2

⟩ − ⟨b⟩2 . (5.64)

Substituting (5.64) into (5.59), recognizing that the last term in (5.59) can be
expressed as the average of δb2

i over all N atoms

I(ω) = N
∑

k

⟨b⟩2eiω·tk +N
(
⟨b2
⟩ − ⟨b⟩2

)
. (5.65)

We see that the scattered intensity includes a contribution that depends on the
time structuring, or time differences {tk}, and a featureless diffuse scattering.
Written as a continuous variable, the average pair distribution is the average
Memory function Mavge(τ), so

I(ω) = N⟨b⟩2
∫
∞

−∞

Mavge(τ) eiω·t dt +N
(
⟨b2
⟩ − ⟨b⟩2

)
. (5.66)

5.4 Phase Noise on a Pure Frequency

Suppose there is an underlying periodicity in time of frequency ν, perhaps
imposed externally as a pure frequency. Phase disorder exists when atoms do
not follow precisely this periodic waveform. The result is a scattered intensity
that is diffuse in ω. Here we consider a simple type of phase disorder where
each atom has a small, random shift, ξ, off its waveform of perfect periodicity,
as shown in Fig. 5.3.



5.4. PHASE NOISE ON A PURE FREQUENCY 117

Figure 5.3: Phase disorder of a pe-
riodic waveform.

For now we assume there are no correlations between the timing errors, ξ j.5

The Memory function, f (t) ∗ f (−t), for this displacement distribution is shown
in Fig. 5.4a. To understand this Memory function, consider the overlap of the
atom center distribution with itself after a shift of t = nτ0 + ξ, where τ0 is the
cycle time, n is an integer, and ξ is a small delay or advance (typically ξ≪ τ0).
With no correlation between the delays or advances, the probability of overlap
of the atom centers at the same velocity is the same for a delay of many cycles,
nτ0 + ξ, as it is for a delay of one cycle, 1τ0 + ξ. The important exception occurs
around t = 0, i.e., when n = 0. All the atom centers overlap perfectly with
themselves when n is zero, where even for the smallest shift, ξ , 0, there are
zero overlaps of atom centers.

The best way to work with the Memory function in Fig. 5.4a is to break it
into periodic and non-periodic parts (5.48), as shown in the two plots in Fig.
5.4b. The scattered intensity from our waveform with phase noise is obtained
from (5.50) as the sum of the Fourier transforms of these two functions, Mavge(τ)
and Mdevs(τ). The Fourier transform of Mavge(τ) is a series of sharp peaks in the
frequency spectrum. These peaks are suppressed at large values of ω owing to
the breadths of the peaks in Mavge(τ) caused by phase errors (see top of Fig. 5.5).
This suppression of the frequency peaks at large ω is similar to the suppression
caused by the atomic form factor, which spreads the time when an atom passes
a fixed point in x.

The Fourier transform of Mdevs(τ) is new for us. To understand its con-
tribution to the inelastic intensity, we split Mdevs(τ) into two parts, Mdevs1(τ)
and Mdevs2(τ) (Fig. 5.4c). The first, Mdevs1(τ), is a Dirac delta function, whose
Fourier transform is a constant inω-space (F

[
Mdevs1(τ)

]
in Fig. 5.5). The second

part, Mdevs2(τ), is a short, broadened function with negative sign. (We could
consider it to be a Gaussian function in ω, following Sect. 4.5.) Its Fourier
transform, F

[
Mdevs2(τ)

]
, is also shown in Fig. 5.5. The areas of these two parts,

Mdevs1(τ) and Mdevs2(τ), are equal, since both arise from the same number, N,
of atom-atom overlaps. This has an important consequence for the scattered
intensity at ω = 0:

I(ω=0) =

∞∫
−∞

Mdevs(τ) e−i0t dx =

∞∫
−∞

Mdevs(τ) dx = 0 . (5.67)

5For example, if one cycle is delayed, the subsequent cycle could be either advanced or delayed.
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Figure 5.4: (a) Memory function for the random displacements of Fig. 5.3 and
(5.48). (b) The Memory function at top is the sum of Mavge(τ) and Mdevs(τ). (c)
Mdevs(τ) is the sum of Mdevs1(τ) and Mdevs2(τ).

Figure 5.5: The Fourier trans-
form of the Memory functions
of Fig. 5.4. Fourier trans-
form of Mavge(τ) (top), Fourier
transforms of the two com-
ponents of Mdevs(τ) (middle).
The sum of all three compo-
nents (bottom) is the inelas-
tic intensity from our periodic
displacements plus Gaussian
errors in time. This is the effect
of “phase noise” on a periodic
waveform.
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The F
[
Mdevs2(τ)

]
has a negative sign that decreases in magnitude withω. The

diffuse scattering therefore increases with ω, as the flat contribution originat-
ing from F

[
Mdevs1(τ)

]
increasingly dominates over F

[
Mdevs2(τ)

]
. The function

Mdevs2(τ), incidentally, has the same shape as the individual peaks in Mavge(τ).
In this case the ω-dependence of the rolloff of the frequency peaks is the same
as the ω-dependence of the diffuse scattering. The effects of displacement dis-
order increase with the characteristic size of the displacements, ξ j. The larger
the characteristic ξ, the faster the rolloff of the frequency peaks with ω, and the
greater the diffuse intensity in ω.

5.5 Cumulative Phase Noise

5.5.1 Model of Phase Noise

The previous section described a type of phase noise that was on top of a strict,
underlying periodicity. The atom vibrations were locked to this periodicity,
except for a bit of jitter. Every cycle, there was a slight delay or advance of
the phase of the vibrating atom, but over long times this phase error did not
accumulate. Such might be the case for a system of atoms driven by a pure
frequency that is applied from an external source.

Here we consider a scatterer without knowledge of an underlying period-
icity, but there is still a tendency of the scattering atom to execute a particular
vibrational frequency. Over long times, however, we allow the phase to drift,
so the phase noise accumulates, and can exceed τ0 after a while. With random
advances and delays in phase at each cycle, the problem becomes a bit like a
random walk in time, where the phase drift increases as

√
nγ, where n is the

number of cycles, and γ is an average shift in time from the phase error.
We seek M(τ), a Memory function for this model. We assume:
1) a statistical independence of errors in advances or delays in the phase of

different cycles, and
2) a Gaussian probability distribution for adjacent the distribution of these

timing errors.
In this model, the probability distribution for the timing error in the 1st cycle is
P1(τ), centered about an average separation τ0:

P1(τ) =
1
√
πγ

e−(t−τ0)2/γ2
. (5.68)

Figure 5.6 depicts the time separations between the original and the 2nd cycle.
The 1st cycle has a Gaussian distribution, P1(τ), with respect to t = 0 (Fig. 5.6a).
The event at the 2nd cycle is separated by an average time of τ0 from the 1st,
but with a distribution of times. Three arrows are drawn from the time of the
1st cycle in Fig. 5.6b. This gives a spread, P1(τ), which is characteristic of the
possible times of the 2nd cycle event with respect to the 1st on the left. This
extra spread makes the time of the 2nd cycle even more uncertain than the time
of the 1st.
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Figure 5.6: Construction of the Memory function for a model of cumulative
phase errors. (a) Probability distribution for times of 1st cycle. (b) The time of
the 2nd cycle has a distribution about each point that is separated from 1st by
times τ0. (c) Composite distribution of 2nd cycle timing errors, accounting for
uncertainty in 1st plus 2nd cycle times.

The probability distribution for the 2nd cycle, P2(τ), is obtained as P1(τ) ∗
P1(τ), but this distribution is centered about 2τ0. Its width, the width of two
convoluted Gaussians, is

√
2γ:

P2(τ) =
1
√

2πγ
e−(t−2τ0)2/(2γ2) . (5.69)

(Except for the offset in t, this step is identical to the analysis of the model of
timing error discussed with Fig. 5.4, and it may be useful to examine both
figures to look at the differences. The two models now depart, however.) In
an analogous way, the probability distribution for the time of the 3rd cycle is
obtained as P3(τ) = P1(τ) ∗ P1(τ) ∗ P1(τ), giving a Gaussian centered at t = 3τ0

with width
√

3γ:

P3(τ) =
1
√

3πγ
e−(t−3τ0)2/(3γ2) . (5.70)

Examining (5.68), (5.69), (5.70), by induction we obtain Pn(τ) for the timing
distribution for any subsequent cycle, n. The total autocorrelation function,
M(τ), is the sum of all distributions of pair separations:

M(τ) =
∞∑

n=−∞

1
√
|n|πγ

e−(t−nτ0)2/(|n|γ2) . (5.71)

A graph of this Memory function is shown in Fig. 5.7.
The case n = 0 always deserves special consideration. For zero time shift

(t = 0), there is no timing error associated with the overlap of the atom with
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Figure 5.7: Memory func-
tion of (5.71) for cumula-
tive phase noise with γ =
a/3.

itself. (Conveniently, the n = 0 term in (5.71) is in fact a δ-function.) The time
between an atom and its nth cycle at |n|τ0 is increasingly more uncertain as n is
larger (growing as

√
n).

The scattered intensity, I(ω), is proportional to the Fourier transform of M(τ)
of (5.71):

F
[
M(τ)

]
=

∞∫
−∞

e−iωt
( ∞∑

n=−∞

1
√
|n|πγ

e−(t−nτ0)2/(|n|γ2)
)

dx . (5.72)

When we substitute t′ = t − nτ0 to simplify the Gaussians, the phase factor
becomes a product of two factors, exp(−iωt′) exp(−iωnτ0), where the second
factor is independent of t′6:

F
[
M(τ)

]
=

∞∑
n=−∞

e−iωnτ0

∞∫
−∞

e−iωt′ 1
√
|n|πγ

e−t′2/(|n|γ2) dx′ . (5.73)

The Fourier transform of a Gaussian is a Gaussian, and neglecting a constant
prefactor:

I(ω) =
∞∑

n=−∞

e−ω
2
|n|γ2/4 e−iωnτ0 . (5.74)

This sum can be evaluated by first rearranging (5.74) into two geometric
series, where the first series includes the terms from −∞ to −1 and the second
from 0 to +∞. Examining the sign of the n and |n| in the first sum:

I(ω) =
+1∑

n=+∞

e(−ω2γ2/4+iωτ0)n +

∞∑
n=0

e(−ω2γ2/4−iωτ0)n . (5.75)

6This is a handy result. A shift by a constant, b, in time, t′ = t − b, amounts to a multiplication
by the factor exp(−iωb) in ω-space.
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These two geometric series have the forms:

∞∑
n=0

yn
− 1 =

1
1 − y

− 1 , (5.76)

∞∑
n=0

xn =
1

1 − x
. (5.77)

So (5.75) becomes:

I(ω) =
1

1 − exp
[
− ω2γ2/4 + iωτ0

] − 1

+
1

1 − exp
[
− ω2γ2/4 − iωτ0

] . (5.78)

Using algebra to create common denominators and combine terms, it can be
shown that:

I(ω) =
1 − e−ω

2γ2/2

1 + e−ω2γ2/2 − 2e−ω2γ2/4 cos(ωτ0)
. (5.79)

Figure 5.8 presents graphs of the I(ω) of (5.79). There is a δ-function at the
origin, surrounded by a set of broad peaks spaced at intervals of ω ≃ 2π/τ0.
These peaks are particularly broad and weak at larger values of ω. The curves
in Fig. 5.8 are labeled with the characteristic width, γ, of the Gaussian function
in (5.68). Notice the large, nonlinear sensitivity of the peaks to γ. As γ decreases
to zero, the scattered intensity of (5.79) tends to a sequence of sharp spectral
peaks (lower part of Fig. 5.8). The delta function at the origin of our Memory
function (the n = 0 term in (5.71)) causes some flat intensity at large ω, seen
easily in the top part of Fig. 5.8. Finally, we note that the scattered intensity of
(5.79) does not include effects of the atomic form factor, which would suppress
the scattered intensity at large ω.
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Figure 5.8: Scattered inten-
sities for Memory function
of Fig. 5.7 (5.79). The verti-
cal scale of the lower graph
is 100× that of the upper
graph.
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Chapter 6

Coherent Inelastic Scattering

Elastic scattering involves momentum transfers and positions {Q⃗, r⃗}, which are
complementary variables in quantum mechanics: Q⃗↔ r⃗. Inelastic scattering is
an extension into energy and time {Q⃗,E, r⃗, t}, which provides pairs of comple-
mentary variables: (Q⃗,E) ↔ (⃗r, t). The amplitude of the scattered wave, ψ, is
the sum of phase factors of wavelets emitted from individual atoms, but now
we allow for a time variation. The phase information inψ(Q⃗,E) includes details
of atom positions and their motions. Recall the case for elastic scattering, where
we obtained by inverse Fourier transformation: f (⃗r) = F−1

Q⃗
ψ(Q⃗). For inelastic

scattering the analogous result is: f (⃗r, t) = F−1
Q⃗

F−1
E ψ(Q⃗,E).

An inelastic experiment measures an intensity and not a wave amplitude.
The experimental information on {⃗r, t} can be obtained directly from the scat-
tered intensity I(Q⃗,E) by Fourier inversion F−1

Q⃗
F−1

E I(Q⃗,E). As for the case with

the Patterson function for diffraction experiments, when we Fourier transform
the intensity instead of the wave itself, there is a similar loss of information
about atom positions and the phases of their motions. Nevertheless, the inten-
sity is the actual quantity measured in a scattering experiment and we must
make do with it. Inelastic scattering has an important analog to the Patterson
function of elastic scattering, the “Van Hove function,” defined in Sect. 6.1.1
as an autocorrelation function of the scattering factor distribution in space and
time.
Whereas the inelastically scattered wave, ψ(Q⃗,E), is the double Fourier transform
of the moving scattering factor distribution, the scattered intensity, I(Q⃗,E), is the
double Fourier transform of the Van Hove correlation function of the scattering factor
distribution.
After proving this emphasized statement, subsequent sections use the Van
Hove function to explain scattering phenomena involving various dynamical
excitations. Then starting anew with Fermi’s Golden Rule, inelastic scattering is

125
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calculated in a more precise and general way. The Van Hove space-time corre-
lation function is developed by taking careful account of the non-commutivity
of the position and momentum operators. A proper treatment of magnetic scat-
tering is then presented. These latter sections are parallel to similar sections in
the books by Squires and Lovesey, which are recommended to all practitioners
of inelastic neutron scattering, especially persons inclined towards theory.

6.1 Correlation Function for Inelastic Scattering –
The Van Hove Function

6.1.1 Concept of Van Hove Function

Preliminary: Atom Centers at Points in Space and Time

As was the case for elastic scattering, most of the essential results for inelastic
scattering can be obtained by assuming the scatterers are points. The point
scatterer emits a wavelet from position r⃗ j at time tk. This r⃗ j and tk provide
the phase of the wavelet from the point emitter relative to wavelets from other
point emitters. This phase is Q⃗ · r⃗ j−ωtk. The amplitude of the scattering is given
by the scattering strength of the point emitter, f (⃗r j, tk), which is an amplitude
at a point in space and an instant in time. For a nucleus we may consider f as
being at a point, although for magnetic spin distributions the shape of electron
orbitals may be included later by convolution. For the distribution in time,
we will usually consider a Fourier series with different frequencies, or energies
E = ℏω.

It proves convenient to consider a distribution of scatterers, f (⃗r, t), with
continuous variables, r⃗ and t, rather than a sum over discrete points, {⃗r j}, and
snapshots in time tk. We change variables as:

ψ(Q⃗,E) =
N∑
r⃗ j

∑
tk

f⃗r j,tk
e−i(Q⃗·⃗r j−ωt) =

+∞"
−∞

f (⃗r, t) e−i(Q⃗·⃗r−ωt)d3r⃗ dt . (6.1)

To equate a continuous integral to a discrete sum requires that f (⃗r, t) is not a
smooth function of position or time. Over most of space and time, f (⃗r, t) is zero,
but when the scattering amplitude exists at r⃗ = r⃗i and t = tk, f (⃗ri, tk) is a Dirac
delta function times a constant, f⃗r j,tk

:

f (⃗r j, tk) = f⃗r j,tk
δ(⃗r − r⃗i)δ(t − tk) . (6.2)

To extend (6.2) to include many atom centers, we take the sum over r⃗ j and tk:

f (⃗r, t) =
N∑
r⃗ j

∑
tk

f⃗r j,tk
δ(⃗r − r⃗ j)δ(t − tk) , (6.3)

so we satisfy the equality in (6.1) between points in space and time, {⃗r j, tk}, and
continuous functions of r⃗, t.
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Definition of the Van Hove Function

We define the “Van Hove function,” G(⃗r, t):

G(⃗r, t) ≡

+∞"
−∞

f ∗ (⃗r′, t′) f (⃗r + r⃗′, t + t′) d3r⃗′dt′ . (6.4)

Equation (6.4) is a double autocorrelation function – a space-time correlation
function with limits of integration over all space and all time.

A most important feature of the Van Hove function is that its Fourier trans-
form is the scattered intensity in kinematical theory. To show this, we use (6.1)
to write I(Q⃗,E) = ψ∗(Q⃗,E) × ψ(Q⃗,E) as:

I(Q⃗,E) =

+∞"
−∞

f ∗ (⃗r′, t′) ei(Q⃗·⃗r′−ωt′)d3r⃗′dt′

×

+∞"
−∞

f (⃗r′′, t′′) e−i(Q⃗·⃗r′′−ωt′′)d3r⃗′′dt′′ . (6.5)

Since r⃗′ and r⃗′′ are independent variables, as are t′ and t′′:

I(Q⃗,E) =

+∞"
−∞

( +∞"
−∞

f ∗ (⃗r′, t′) f (⃗r′′, t′′)

× e−i[Q⃗·(⃗r′′−r⃗′)−ω(t′′−t′)] d3r⃗′′dt′′
)

d3r⃗′dt′ . (6.6)

Define r⃗ ≡ r⃗′′− r⃗′ and t ≡ t′′− t′, and change variables r⃗′′ → r⃗+ r⃗′ and t′′ → t+ t′.
In so doing, the limits of integration for r⃗ are shifted by −r⃗′ and −t′, but this is
not of concern for integrations performed over all of space and all of time:

I(Q⃗,E) =

+∞"
−∞

×

( +∞"
−∞

f ∗ (⃗r′, t′) f (⃗r + r⃗′, t + t′) e−i(Q⃗·⃗r−ωt) d3r⃗ dt
)

d3r⃗′ dt′ , (6.7)

I(Q⃗,E) =

+∞"
−∞

( +∞"
−∞

f ∗ (⃗r′, t′) f (⃗r + r⃗′, t + t′)d3r⃗′ dt
)

× e−i(Q⃗·⃗r−ωt) d3r⃗ dt . (6.8)

Using the definition of (6.4), we rewrite (6.8):

I(Q⃗,E) =

+∞"
−∞

G(⃗r, t) e−i(Q⃗·⃗r−ωt) d3r⃗ dt . (6.9)
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Equation (6.9) shows that the scattered intensity is the Fourier transform of the
Van Hove function:

I(Q⃗,E) = Fr⃗FtG(⃗r, t) , (6.10)

and by the inverse transformation we must have:

G(⃗r, t) = FQ⃗FEI(Q⃗,E) . (6.11)

For comparison, the scattered wave, ψ(Q⃗,E) of (6.1), is the Fourier trans-
form of the scattering factor distribution, f (⃗r, t). We therefore have another
relationship between I(Q⃗,E) and f (⃗r, t):

I(Q⃗,E) = ψ∗(Q⃗,E)ψ(Q⃗,E) , (6.12)

I(Q⃗,E) =
(
Fr⃗Ft f (⃗r, t)

)∗
Fr⃗Ft f (⃗r, t) =

∣∣∣Fr⃗Ft f (⃗r, t)
∣∣∣2 . (6.13)

Comparing (6.10) and (6.13):

Fr⃗FtG(⃗r, t) =
∣∣∣Fr⃗Ft f (⃗r, t)

∣∣∣2 . (6.14)

Equation (6.14) is consistent with the convolution theorem of Sect. A.1 – a
(double) convolution in real space (the Van Hove function of (6.4)) corresponds
to a multiplication in Fourier space (right-hand side of (6.14)).

6.1.2 Examples of Van Hove Functions

In this section we examine the scattering from a simple form of the Van Hove
function from 6.9 with one spatial dimension:

I(Q,E) =

∞∫
−∞

∞∫
−∞

G(x, t) e−i(Qx−ωt) dx dt . (6.15)

First assume coherent scattering so there are predictable phase relationships
between different scattering centers. Section 6.2 develops further the cases
where incoherent averaging of the space and time correlations produce a “self-
correlation function” and the “Patterson function.” We later treat the incoherent
case by following the “self-correlation function” of the individual scatterers.

Traveling Wave

Suppose an elementary excitation in a solid provides a periodic modulation of
the scattering factor in space and time:

f (x, t) = f0 ei(qx−ω0t) . (6.16)
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We use (6.4) to obtain its Van Hove function:

G(x, t) =

∞∫
−∞

∞∫
−∞

f ∗0 e−i(qx′−ω0t′) f0 ei[q(x+x′)−ω0(t+t′)] dx′dt′ , (6.17)

G(x, t) = | f0|2
∞∫

−∞

eiqxdx′
∞∫

−∞

e−iω0t dt′ = eiqx

∞∫
−∞

dx′ e−iω0t

∞∫
−∞

dt′ , (6.18)

G(x, t) = | f0|2 ei(qx−ω0t) . (6.19)

If we ignore the prefactor | f0|2, we find G(x, t) = f (x, t). In this case where G(x, t)
has the form of a wave (6.19), (6.15) becomes:

I(Q,E) = | f0|2
∞∫

−∞

∞∫
−∞

ei(qx−ω0t) e−i(Qx−ωt) dx dt , (6.20)

I(Q,E) = | f0|2
∞∫

−∞

ei(q−Q)x dx

∞∫
−∞

ei(ω−ω0)t dt , (6.21)

I(Q,E) = | f0|2 δ(q −Q − g) δ(ω − ω0) . (6.22)

Equation (6.22) shows that the energy transfer, ℏω, must match that of the
energy of the excitation in the material, ℏω0. Furthermore, the momentum
transfer must match that of the wave, modulo a reciprocal lattice vector, g
(which provides a factor of eigx = 1 in the integrand).

An elementary excitation in a solid with unique {q, ω0} provides intensity
at a single point in energy, and at a distance of Q away from each reciprocal
lattice point. This of course assumes coherent scattering – incoherent scattering
places a restriction on ω only.

Dispersive Excitations

Figure 6.1 presents simple sine waves of different wavelengths, but the same
velocity. Such is the case for long-wavelength sound waves in solids. This is
the “hydrodynamic limit,” where the wavelengths are so large that the material
behaves as a continuum (i.e., atomic features are not important). Three such
waves are presented in Fig. 6.1a, but these are not special ones, and we expect
that all intermediate wavelengths are possible. Each wave can be understood
individually with the same analysis of the traveling wave as in Sect. 6.1.2.

The simple wave of Eq. 6.16 had a scattered intensity that was a delta
function at one frequency and one wavevector, Eq. 6.22. If we allow a con-
tinuous range of wavevectors, we will have a continuous range of energies of
the waves. There will be a continuous set of delta functions on a plot of the
scattered intensity in Fig. 6.1b. These are related asω = v k, where v is the wave
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Figure 6.1: (a) Variations
of a scattering function in
space and time. Simple
cosine waves are assumed,
moving with equal veloci-
ties v. Their Van Hove func-
tions are also cosine waves
of the same wavelengths
and frequencies. (b) The
scattered intensity.

velocity. Note also that v = dω/dk.1 Each traveling wave contributes a point to
Fig. 6.1b, but for numerous wavelengths these points will make a straight line
in the first quadrant of positive ω and k.

There are also excitations where the scattering factor distribution moves to
the left in Fig. 6.1a, so we expect a mirror symmetry in−k. Also, we expect both
creations and annihilations of these excitations, so in the scattered intensity we
expect mirror symmetry in −ω, too. The resulting intensity appears as straight
lines are in all four quadrants of Fig. 6.1b.

Local Excitations

It is instructive to develop the Van Hove function and the scattered intensity
with a pictorial approach, as in Fig. 6.2. The scattering factor distribution is
shown in Fig. 6.2a as it undergoes a full cycle of oscillation.2 The construction
of the Van Hove function G(x, t) parallels that of the Patterson function in Fig.
4.1. The detailed steps of shifting and integrating in Fig. 4.1 are not shown here.
Suffice to say that situation along the x-dimension is quite analogous to that
of Fig. 4.1, but a different instantaneous structure exists at each different time.
For the case where t = 0, for example, it is necessary to average the shifting and
integrating of Fig. 4.1 for all nine times shown in Fig. 6.2a. Notice that although

1The slopes of these straight lines ω(k) are expected to decrease as k gets large, comparable to
a reciprocal lattice vector, and atomic-scale effects become important. Nevertheless, it is useful
to compare sound velocities obtained from macroscopic measurements to the slopes of phonon
dispersions from inelastic scattering. These two velocities generally agree.

2The convention is that times tk with larger subscripts are later times. The pattern is repeated
after 8 time steps.
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some of the scattering factor distributions have zero intensity for separations
that are at odd multiples of a, the result for G(x, t) always has intensity at these
locations (although weaker). The time dimension of G(x, t) is obtained in a
similar way. Consider the first time interval for time differences of t1. For
this case it is necessary to match all pairs of the scattering factor distributions
that differ by one in their vertical stacking in Fig. 6.2a. These eight cases are
then overlapped and shifted along the x-axis as before, and their results are
averaged. The other time intervals require taking pairs separated further in
time, but always it was eight cases whose shift and overlap are evaluated for
constructing Fig. 6.2b.

To see how some of the trends in G(x, t) in Fig. 6.2b come from the f (x, t) in
Fig. 6.2a, first identify the shifts in x and t that give optimal overlaps.3 There
is always optimal overlap at the origin, i.e., (x, t) = (0,0). Other strong overlaps
occur for shifts of x by 2na (n is an integer), and t = 0. There is also a strong
overlap for shifts of t by mt8 (m is an integer) and x = 0. The G(x, t) in in
Fig. 6.2b has maxima at these special shifts, and for any combination (x = 2na,
t = mt8). There is a second set of maxima, however, where the shifts in x and t
are correlated as (x = 2(n + 1)a, t = (m + 1/2)t8). Peaks in G(x, t) in in Fig. 6.2b
can be found for these combinations, too.

The final step is to obtain the I(Q, ω) of Fig. 6.2c. In this case the situation
is fairly simple. There is only one time frequency in Fig. 6.2a, equal to 2π/t8.
If we allow creation and annihilation of such an excitation, we expect intensity
at frequencies ω = ±2π/t8. The spatial periodicity of the problem includes a
superlattice periodicity, so peaks appear at intervals of ±nπ/a, where n is either
even or odd.

Propagating Excitations

The next example in Fig. 6.3a is essentially the scattering factor distribution
shown in Fig. 4.1, but now moves continuously to the right with increasing time.
Its Van Hove function for zero time therefore has the same inversion symmetry
along x as shown in Fig. 4.1, which was used to demonstrate Friedel’s law. In
assessing the overlap of the scattering factor distributions, for all cases of zero
time shift (i.e., the overlap of the scattering factor with itself before it moves
any further), the largest intensity occurs at lattice translation vectors. For most
other time shifts t, the evaluation of G(x, t) sums the overlaps of pairs of f (x, tk)
in Fig. 6.3a that are separated in time. The best overlaps of these time-shifted
f (x, tk) generally do not occur at lattice translations. Figure 6.3b shows that the
shape of G(x, t) is constant, but moves to the right with increasing time shift.

Peaks in the scattered intensity I(Q, ω) are shown in Fig. 6.3c. Along the
time dimension of Figs. 6.3a,b, the pattern repeats itself with a periodicity of
eight time snapshots in Figs. 6.3a. The inelastic part of the scattering therefore
occurs at ±2π/t8, assuming that excitations of the type shown in Fig. 6.3a can

3We assume that the space and time periodicities repeat outside the range shown in Fig. 6.2.
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Figure 6.2: (a) Variations of
a scattering function f (x, ti)
in space and time. Nine
snapshots are shown ver-
tically for nine ti. (b)
The Van Hove function,
G(x, t), obtained by over-
lapping all pairs of scatter-
ing factor distributions in
(a), and summing the re-
sulting product of overlaps
for all pairs separated by
the same number of time in-
tervals. (c) The scattered
intensity, I(Q, ω). It is as-
sumed possible to both cre-
ate and annihilate an excita-
tion as shown in (a), hence
points at ±ω.
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Figure 6.3: (a) Variations
of a scattering function in
space and time. Nine snap-
shots in time are shown ver-
tically. (b) The Van Hove
function, obtained by over-
lapping all pairs of scatter-
ing factor distributions in
(a), and summing the re-
sulting product of overlaps
for all pairs separated by
the same number of time in-
tervals. It was assumed that
the scattering factor distri-
bution moves to the right
continuously between the
time snapshots shown in
(a). (c) The scattered inten-
sity. It is assumed possible
to both create and annihi-
late an excitation as shown
in (a), hence points at ±ω0.
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be both created and annihilated. There is another point worth noting about
the time dependence in Fig. 6.3c. Along the time dimension we encounter sets
of three δ-functions for each fundamental periodicity of the wave. The basic
periodicity of the δ-functions, and their grouping into threes, requires that we
have higher-order Fourier components in the frequency domain – formally,
we expect a whole series of excitations of energies: ±nℏω0 = ±nℏ2π/t8. The
incident energy of the wave may be insufficient to excite some of these with
higher n, however. This is a bit different from the situation of elastic scattering
in k-space, where it is common to measure a series of Bragg peaks of multiple
orders, for example.

Disordered Excitations

Another example is presented in Fig. 6.4. This example is a space-time analog
of displacement disorder presented in Sect. 4.4. Here we assume that the
scattering factor distribution is initially periodic, but is set in motion. Each
atom is first displaced to the right, but each atom oscillates with a slightly
different frequency. We assume that the frequencies have a narrow spread ∆ω
about a central frequency ω0. Likewise, we assume that the amplitudes of the
displacements are not large, so each arrow does not travel far from its lattice
site. Eventually the oscillation damps away, and the scatterers are back to their
initial periodic configuration. It is easiest to first analyze the situation for long
times. Here the scatterers are in periodic positions, and have stopped moving.
As the time interval becomes long with respect to the damping time, most of the
spatial correlations will involve correlations in a precisely periodic structure.
For long times, G(x, t) will exhibit a set of peaks at equal intervals of x = a.

At short time separations, the individual arrows in Fig. 6.4b have not
displaced much. At the shortest times after the neutron impact, the scatterers
have nearly the same displacements since they move nearly in phase. It is
incorrect, however, to assume that the peaks in G(x, t) are displaced to the right.
Recall that it is an average over many different time-separated snapshots of
f (x, t) in Fig. 6.4a, many of which are moving to the left. For small t, G(x, t)
is therefore similar to that of a perfect crystal in its spatial periodicities, with
sharp peaks at each lattice translation.

At intermediate times, however, this this regularity is lost, even between
neighboring arrows in this example. Figure 6.4c shows the intensity from this
G(x, t). For ω = 0 the situation is as in Fig. 4.5, but for ω = 2π/t8 the intensity is
broadened along theω axis, owing the spread in frequencies. It is also expected
that the disorder along the time domain will produce extra incoherent scattering
between the sharp peaks in G(x, t).

The initial coherence of the arrows is lost at intermediate times (assuming
that the dephasing time 2π/∆ω is less than the damping time). If we assume
that there are no short-range spatial correlations, we have precisely the situation
considered in Sect. 4.4. Figures 4.4 and 4.5 show the situation for long times,
or equivalently for ω = 0 in the I(Q, ω) of Fig. 6.4.
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Figure 6.4: (a) Variations
of a scattering function in
space and time. Nine snap-
shots in time are shown ver-
tically. (b) The Van Hove
function, obtained by over-
lapping all pairs of scatter-
ing factor distributions in
(a), and summing the re-
sulting product of overlaps
for all pairs separated by
the same number of time in-
tervals. (c) The scattered
intensity. It is assumed
possible to both create and
annihilate an excitation as
shown in (a), hence points
at ±ω0.
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6.2 Autocorrelation Functions

The Van Hove function is worthy of deep respect, because it includes all the
information available from all four types of scattering:

(coherent, inelastic), (coherent, elastic),
(incoherent, inelastic), (incoherent, elastic).

Subsets of this total information are often important, perhaps because the scat-
tering is primarily incoherent, or is primarily elastic, for example. In particular,
two important, although less general, correlation functions are:

• The Patterson function, P(⃗r), contains the spatial information obtained
from diffraction measurements with elastic coherent scattering.

• The “self-correlation” function, Gs(t), contains the time information ob-
tained from measurements of incoherent inelastic scattering. It involves an
averaging over Q.

6.2.1 Autocorrelation Functions from Van Hove Functions

Concept of Patterson and Self-Corrrelation Functions

Figure 6.5 shows the essential ideas. A “snapshot in time” is obtained by
horizontal sampling across the figure. In a real experiment the samplings will
be at many different times, but here we see that all such snapshots have the same
periodic structure. As we know from Sect. 4.1.2, the diffraction intensity for
this time snapshot is obtained from the Patterson function, whose periodicity
in space gives the Bragg diffractions. In this particular case of a sine wave,
however, we have Bragg peaks only at Q = 0 and Q = ±g. If we had a series
of δ-functions with the same periodicity, however, we would have a series of
Bragg peaks to arbitrarily large orders of Q = ng. To obtain the Patterson
function, the horizontal lines in Fig. 6.5a, each at a particular tk, are convoluted
with themselves, and the results are averaged for all tk. The f (x, tk) for dfferent
tk in Fig. 6.5a do not interact with each other until after the convolution is
performed. Specifically:

P(x) =

∞∫
−∞

∞∫
−∞

f ∗(x′, t′) f (x′ + x, t′) dx′ dt′ , (6.23)

where we use the same value of t′ in both arguments of the scattering factor.
The P(x) includes an averaging over time, and does not consider correlations
in time. A P(⃗r) is shown in Fig. 6.5 as a horizontal line at a specific time. This
information is probed by elastic scattering experiments, which do not allow for
measuring the time variations and hence energy transfers.

Likewise we can take a “snapshot in space” by sampling the moving wave,
at a specific r⃗1 for example (although the results for all other values of r⃗ j are the
same in this example). Notice how the wave in Fig. 6.5 shows a time periodicity
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Figure 6.5: A simple sine wave, mov-
ing to the right with increasing time.
Three methods of sampling the inten-
sity of the wave in space and time
are shown as straight lines, as ex-
plained in the text. The relevant cor-
relation functions for each sampling
are shown for each line.

along a vertical line, labeled as Gs(t). The time periodicity of our moving wave
is, of course, ω, in the wave function: eiQx−ωt. The restriction to a single value
of Q eliminates the possibility of obtaining any spatial information on the
excitation, but the ω-dependence is retained. We obtain the time correlations
for a specific position:

Gs(t) =

∞∫
−∞

∞∫
−∞

f ∗(x′, t′) f (x′, t′ + t) dx′ dt′ , (6.24)

where we use the same value of x′ in both arguments of the scattering factor.
The Gs(t) includes an averaging over position, but does not consider correla-
tions in position. This information is probed by incoherent inelastic scattering
experiments, which do not allow for measuring the Q-dependences and hence
spatial information.

More information comes by identifying correlations in both time and space,
however, as is indicated by the diagonal line in Fig. 6.5. This requires the full
Van Hove function, G(⃗r, t). This G(⃗r, t) cannot be obtained by simply summing
the correlation functions of different space or time shapshots, i.e., summing
Gs(t) or P(⃗r). Nevertheless, it is instructive to evaluate the Patterson function
and self-correlation function for each of the three examples shown in Figs. 6.2,
6.3, 6.4 (see Problem 3).

Local Excitations

Along the horizontal axis of ω = 0 in Fig. 6.2c, we obtain a diffraction pattern
with strong fundamentals at Q = ±nπ/a, where n is an even integer, and
somewhat weaker superlattice diffractions for odd n. The same result is true
for two other values of ω = ±2π/t8. This periodic structure in Q is evident
from the Van Hove function G(x, t) in Fig. 6.2b. The spatial correlation function
of (6.23), P(x) =

!
f ∗(x′, tk) f (x′ + x, tk)dx′dtk has spatial periodicities that are

similar at any time tk, although different weights for the superlattice diffractions.
The average over all tk is of course what makes the final result for I(Q, ω = 0)
in Fig. 6.2c.
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Now look at the correlation functions along lines parallel to the time axis
for fixed x′ in G(x′, t) of Fig. 6.2b. The time periodicity of G(x′, t) in Fig. 6.2b
differs in phase for even and odd n in x′ = ±na. All time periodicities are
the same, however, and include only the frequencies −2π/t8, 0,−2π/t8.4 The
frequency spectrum of G(x′, t), measured along x′ = 0, is generally the same as
the inelastic scattering along any other x′ = na. If we average the intensities
along these individual x′, we lose the information on phases of scattering
between the scatterers at different x′. The mixed constructive and destructive
interference between these different scatterers results in intensities between
individual atoms only. The result is a “self-correlation” function of (6.24), or a
case of incoherent inelastic scattering, Gs(t) =

!
f ∗(x j, t′) f (x j + x, t′ + t)dx jdt′.

In this particular case, the incoherent average of these (obtained by summing
the intensities at all Q) looks generally the same as the spectrum along a slice
along any particular Q.

The Patterson and self-correlation functions of Fig. 6.3 can be understood
in much the same way. The largest horizontal periodicity in Fig. 6.3b is a, so
this Patterson function gives diffraction peaks at multiples of 2π/a. The self-
correlation function likewise has the simple periodicities of −2π/t8, 0,−2π/t8,
neglecting the detailed structure in cuts along the time axis that would give
higher-order Fourier components.

Acoustic Excitations

More interesting are the dispersions of different excitations that have the same
wave speed (presented in Fig. 6.1b). All these excitations would be measured in
an incoherent inelastic scattering experiment, since the averaging over all x′ of
G(x′, t) would preserve all time periodicities. An incoherent inelastic scattering
experiment would collapse all the inelastic intensity onto a single ω-axis, and
lose the relationship between ω and Q that is so evident from the coherent
inelastic scattering shown in Fig. 6.1b. For dispersive excitations, the self-
correlation function has considerably less information compared to the full Van
Hove function. On the other hand, if one is interested in obtaining an accurate
density of states (i.e., a total energy spectrum), irrespective of the values of Q,
the self-correlation function may be advantageous. It does not require accurate
measurements of intensities over all values of Q and ω.

Disordered Excitations

Finally we consider the Patterson function and self-correlation function of Fig.
6.4. The scatterers oscillate about their lattice sites, and the Patterson func-
tion is therefore as expected of a perfect crystal. For the time average, there
is displacement disorder in the arrangement, however, so we expect a diffuse

4Incidentally, if the arrows were to oscillate through zero in Fig. 6.2a, we would have no value
of ω = 0, and no elastic scattering. This corresponds to half the scatterings occurring out-of-phase
with the other half.
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background, increasing with Q as shown in Fig. 4.5. The self-correlation func-
tion for incoherent inelastic scattering is the same for all x, since the scatterers
are assumed independent in their motions, without positional correlations that
may case neighbors to move together in phase. In this case we expect the
same time structure for Gs(t) and G(x, t), and hence inelastic incoherent scat-
tering will have the same energy spectrum as the coherent inelastic scattering
for all Q. Both will show a broadening in frequency of the excitation around
ω0. The broadening arises from two effects. First is the frequency spread of
the oscillators, postulated to be ∆ω. The second effect is the damping of the
oscillations. The damping time of τ provides a broadening in energy of ℏ/τ,
known as “lifetime broadening.” In the present problem we have assumed that
the broadening of the excitation at ω0 is dominated by the frequency spread
∆ω, since the dephasing time was assumed shorter than the damping time.

6.2.2 Inelastic Scattering from Diffusion

Atom Correlations from Diffusion Equation

Here we pick a simple case for uncorrelated atom movements in diffusion.
We begin with the Gaussian concentration profile, c(x, t), which is a standard
solution of the 1D diffusion equation

c(x, t) =
c′

√
4πDt

e−
x2

4Dt . (6.25)

The Van Hove function of Eq. 6.4 is

Gdiff(x, t) =

+∞∫
−∞

〈
c(x′, 0) c(x′ + x, t)

〉
dx′ . (6.26)

An important point is that there are no space or time correlations between
different atoms in diffusion – two different atoms do not know about each
other’s jumps, and all atoms follow the same concentration profile.5 Ensemble
averaging is therefore unnecessary.

Gdiff(x, t) =

+∞∫
−∞

c(x′, 0) c(x′ + x, t) dx′ . (6.27)

As t→ 0, the function c(x′, t→ 0) of Eq. 6.25 becomes a Dirac delta function of
unit area

Gdiff(x, t) =

+∞∫
−∞

δ(x′) c(x′, t) dx′ . (6.28)

5This is unlike phonon scattering, for example, where the motion of one atom follows the motion
of another as a vibrational wave moves from one atom to the other.
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so the spatial integral simply returns the function c(x, t) of Eq. 6.25

Gdiff(x, t) =
c′

√
4πDt

e−
x2

4Dt . (6.29)

We calculate the S(Q, ω) by using Eq. 6.29 in the Fourier transform relation-
ship of Eq. 6.9

S(Q, ω) =
c′

2πℏ

+∞∫
t=0

+∞∫
x=−∞

e−
x2

4Dt

√
4πDt

e−i(Qx−ωt) dx dt , (6.30)

S(Q, ω) =
c′

2πℏ

+∞∫
t=0

e−Q2Dt eiωt dt , (6.31)

S(Q, ω) =
c′

2πℏ
DQ2

(DQ2)2 + ω2 , (6.32)

where we used a standard result that the Fourier transform of a Gaussian
is a Gaussian to obtain Eq. 6.31, and that the Fourier transform of a decaying
exponential is a Lorentzian function to obtain Eq. 6.32. The Lorentzian function
is a symmetrical, peaked function with a maximum at ω = 0, or ∆E = 0. Its
half-width at half-maximum is at ω = DQ2, or

∆E = ℏD Q2 . (6.33)

Physical interpretation – quasielastic scattering

We can interpret Eq. 6.32 in terms of how inelastic scattering is sensitive to the
atom jumps in diffusion. The energy width of the inelastic intensity of Eq. 6.33
corresponds to a time ∆τ by the uncertainty relationship

∆τ =
ℏ

∆E
=

1
D Q2 (6.34)

An important result attributed to Einstein relates the diffusion coefficient D to
the atom jump frequency Γ and the jump length a. A factor of 1/6 is appropriate
for 3D diffusion

D =
Γ a2

6
, (6.35)

where Γ is the atom jump frequency and a is its jump length. The time uncer-
tainty becomes

∆τ =
1(

Γa2

6

) (
2π
a

)2 , (6.36)

∆τ =
0.30
Γ

, (6.37)
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for a representative Q of 2π/a. In other words, without diffusion (D = 0) the
inelastic spectrum would be a sharp peak at E = 0, corresponding to elastic
scattering only. When the atoms jump frequently, there is time-broadening of
the energy ∆E = ℏΓ at a characteristic Q. This is typical of wave scattering that
is interrupted by a jump of the scattering center, which shortens the coherence
time for the emitted wave, broadening it in energy. This process of scattering
by moving atoms is often called “quasielastic scattering” because it can be
considered as elastic scattering (no overall energy shift), but with an energy
broadening as the moving atoms interrupt the coherence of the elastic line.

6.2.3 Relationships Between Intensities, Correlation Functions,
Waves, and Scattering Lengths

Much of scattering science involves relationships between the wavefunction
ψ(Q, ω) and physical scattering lengths f (r, t) in the sample. Many important
functional relationships are obtained by:

• Fourier transformation F

• autocorrelation ⊛

• multiplication ||2

• averaging ⟨⟩

A map of the important physical functions and how they are transformed into
one another is presented in Fig. 6.6. It is a map of the universe of scattering
functions.

When using Fig. 6.6, reverse transformations are possible in all cases, but
information is lost by averaging over an argument of a function. For example,
I(ω) can be transformed to S(Q, ω) in the incoherent approximation, but disper-
sive information about ω(Q) cannot be obtained. (Of course, if the scattering is
incoherent, there is no dispersive information to begin with.) Averaging over
ω is not shown in Fig. 6.6 because a more common manipulation in scattering
science is to identify the elastic scattering within a set of inelastic data at E = 0.
Finally, the functions f (r, ω) and ψ(Q, t) are not shown. They may prove useful
as intermediate steps in some calculations, but they mix the phase information
about the wave and the scatterer.

Some definitions are:

• S(Q, ω) is the “scattering law.”

• Y(Q, τ) is the momentum-time corrrelation function. It is called the “in-
termediate scattering function.”

• Γ(R, ω) is the dynamical pair distribution function.

• G(R, τ) is the Van Hove space-time correlation function.
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• P(R) is the Patterson function.

• M(τ) is the “memory function,” a time correlation function for dynamics
at a site (sometimes called Gs(τ), a self-correlation function).

• I(Q) is a diffraction pattern.

• I(ω) is an inelastic spectrum.

• f (r, t) is a scattering length density.

• ψ(Q, ω) is a wavefunction.

Two correlation functions in Fig. 6.6 have special uses. The function Γ(R, ω),
the dynamical pair distribution function, is used for projections of excitations
onto specific sites. More precisely, it gives the vibrational spectrum between a
particular pair of atoms. The function Y(Q, τ) is useful for studies of transient
phenomena that may occur after an impulsive perturbation.

6.3 Essence of Coherent Inelastic Neutron Scatter-
ing

6.3.1 Spherical Waves from Point Scatterers in Motion

An intuitive shortcut from (1.58) to (1.65) is to regard (∇2 + k⃗2
i ) as a scattering

operator that generates a scattered wavelet proportional to U(⃗r′)Ψ(⃗r′). The
scattered wavelet must have the properties of (1.50) for its amplitude and
phase versus distance. The scattered wavelet amplitude emitted from a small
volume, d3r⃗′, centered about r⃗′ is:

dΨsc(⃗r, r⃗′) = U(⃗r′)Ψ(⃗r′)
ei(kf |⃗r−r⃗′|−ω0t)∣∣∣⃗r − r⃗′

∣∣∣ d3r⃗′ . (6.38)

This is an expression for a spherical wave at r⃗ originating from the small volume
d3r⃗ surrounding r⃗′. It is isotropic – note that the exponential factor kf

∣∣∣⃗r − r⃗′
∣∣∣ is

a product of scalars.
We obtain the total scattered wave by integrating around all volume of

the scatterer. The incident plane wave, ∝ ei⃗ki ·⃗r′ (1.68), helps sets the phase of
the scattering at each volume interval. The phase of the outgoing wave also
depends on the orientation of the outgoing k⃗f with respect to the position of the
scattering point, r⃗′. The relative phase from each scattering point depends on
the change in wavevector, Q⃗ ≡ k⃗i − k⃗f, as eiQ⃗·⃗r′ .

Ψsc(Q⃗, r⃗) = −
ei(⃗kf ·⃗r−ω0t)∣∣∣⃗r∣∣∣ m

2πℏ2

∫
V(⃗r′) eiQ⃗·⃗r′d3r⃗′ . (6.39)
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Figure 6.6: Interrelationships between Correlation Functions, Scattering Length
Densities, Intensities, Wavefunctions
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In arriving at (6.38) we have repeated, in an intuitive way, the steps to (1.74) and
(1.75). We note that the momentum transfer from the neutron to the sample is
ℏQ⃗.

The trick now is to replace the potential, V(⃗r), with a suitable potential for
neutron scattering. For nuclear scattering, relevant to phonon measurements,
we use the “Fermi pseudopotential,” which places all the potential at a point
nucleus:

Vnuc(⃗r) = 4π
ℏ2

2m
b δ(⃗r) , (6.40)

where b is a simple constant (perhaps a complex number). For thermal neutrons,
the δ-function is an appropriate description of the shape of a nucleus.6 Fermi
pseudopotentials are placed at crystal translation vectors, {R⃗ j}, accounting for
all N nuclei in the crystal

Vn (⃗r′) = 4π
ℏ2

2mn

N∑
j=1

b j δ(⃗r′ − R⃗ j) . (6.41)

This sum of δ-functions transforms the integration of Eq. 6.39 into a sum
over points at R⃗ j. For laboratory distances (large compared to the size of the
scatterer), r⃗≫ R⃗ j, the outgoing spherical wave can be treated as a plane wave,
allowing rearrangement

Ψsc(⃗r, t′) =
ei(⃗kf ·⃗r−ωft′)∣∣∣⃗r∣∣∣

∑
j

b j ei(⃗ki−k⃗f)·R⃗ j ei(ωf−ωi)t . (6.42)

The factor eiQ⃗·⃗r−ωft′) gives the precise phase at the time and place of neutron
detection. It has modulus unity, and we ignore it because we measure the
intensity of scattering. We use Eq. 8.44 for R⃗ j,

R⃗ j = r⃗l + r⃗κ + u⃗lκ(t) , (6.43)

where the three terms are the lattice vector, basis vector of the unit cell (con-
taining R atoms), and the displacement vector. We allow the scattered wave to
emanate from the nucleus at later times

Ψsc(⃗r) =
1
r

∑
l,κ

bκ eiQ⃗·(⃗rl+r⃗κ)ei⃗ki·u⃗lκ(0)e−i⃗kf·u⃗lκ(t)ei(ωf−ωi)t , (6.44)

where we note that because all unit cells are identical, b depends on the basis
vector only.

6Typically of a nuclear scale of 10−12 cm or so, sometimes with an imaginary component to
account for absorption. For magnetic scattering, however, the δ-function should be convoluted
with a real-space form factor for the magnetic electrons. This could be done at the end of the
calculation by multiplying the k-space result with a form factor.
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It is easiest to understand the case when the scattering is a fast process,
such as for x-ray scattering, where an x-ray traverses the crystal more rapidly
than typical vibrational periods of atoms. Incoherent neutron scattering is
also fast, where the thermal neutron is scattered from individual atomic nuclei
without concern for phase relationships between nuclei. This motivates a
first approximation; ignore the time dependence of the potential by setting
u⃗lκ(t) = u⃗lκ(0), and take the time average

Ψsc(Q⃗, r⃗) =
1
r

∑
l,κ

bκ eiQ⃗·(⃗rl+r⃗κ) eiQ⃗·u⃗lκ(0) 1
τ

τ∫
0

ei(ωf−ωi)tdt , (6.45)

Ψsc(Q⃗, r⃗) =
1
r

∑
l,κ

bκ eiQ⃗·(⃗rl+r⃗κ) eiQ⃗·u⃗lκ(0) δ(ωf − ωi) . (6.46)

The δ-function enforces no change of frequency or energy, so Eq. 6.46 pertains
to elastic scattering, where the modes of atom vibrations are unchanged. We
need to perform an ensemble average over the different values of u⃗lκ(0), which
evaluates as7

⟨eiQ⃗·u⃗(0)
⟩N = e−

1
2 ⟨[Q⃗·u⃗(0)]2

⟩N ≡ e−W . (6.47)

Equation 6.46 for elastic scattering becomes

Ψel
sc(Q⃗, r⃗) =

e−W

r

∑
κ

bκ eiQ⃗·⃗rκ
∑

l

eiQ⃗·⃗rl ≡
e−W

r
F (Q⃗)S(Q⃗) . (6.48)

Here we separated the sums over basis and lattice vectors into a structure
factor, F (Q⃗), and a shape factor, S(Q⃗). Equation 6.48 can be used to calculate
the neutron diffraction pattern from a crystal, giving the average static structure.
The factor e−W is the “Debye–Waller factor,” which becomes appreciably less
than 1 when the atom displacement u⃗κ is comparable to 1/Q ∼ λ/2π, the
“wavelength” associated with the scattering angle and energy. This is consistent
with the origin of the Debye–Waller factor from the destructive interference
of scattered wavelets that are emitted from different spatial positions of the
displaced nuclei. Note that the ensemble average of Eq. 6.47 does not reveal
the energy of an atom vibration, only how displaced atom positions alter the
phase.

Next consider a process of scattering that is slow compared to the atomic
vibrational period. Such is the case for coherent scattering of neutrons by

7An approximate demonstration of this is by expanding exp(iQ⃗ · u⃗) = 1 + iQ⃗ · u⃗ + ... and taking
either an ensemble average or a time average. The average of the second term, iQ⃗ · u⃗ is zero owing
to positive and negative excursions of u⃗, leaving the quadratic term, consistent with Eq. 6.47. The
average of the subsequent cubic term also vanishes, conveniently, but unfortunately the quartic
term has the wrong sign. Nevertheless, it can be proved that Eq. 6.47 is exact if the probability
distribution of u⃗ is Gaussian about the origin, and this is often reasonable for lattice dynamics.
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phonons, and for nuclear resonant scattering of photons by phonons. For
clarity, we pick a single phonon with wavevector k⃗. The form of u⃗lκ⃗k(t) is
obtained later in Eq. 8.56, but is presented here (mostly for interest, with
normalization for a quantum vibration)

u⃗lκ⃗k(t) =

√
2 ℏ

N mκ ωk⃗
e⃗κ (⃗k) ei(⃗k·⃗rl−ωk⃗t) . (6.49)

Equation 6.49 shows that u⃗lκ⃗k(t) = u⃗lκ⃗k(0)e−iωk⃗t. We need to take a time average
of the displacement factors in Eq. 6.44

⟨ei⃗ki·u⃗lκ⃗k(0) e−i⃗kf·u⃗lκ⃗k(t)
⟩t = ⟨ei⃗ki·u⃗lκ⃗k(0) e−i⃗kf·u⃗lκ⃗k(0)e

−iω
k⃗

t

⟩t (6.50)

Coherent phonon scattering involves correlations of displacements u⃗lκ⃗k(t) at
different atom positions at different times. This Van Hove space-time correla-
tion function (1) is a rich approach to studying dispersive excitations in solids.
The proper quantum mechanical treatment of time and temperature averages
is taken up in Section 7, but Eq. 6.51 below is the proper result for incoherent
scattering. Furthermore, it is possible to average the coherent scattering over
all Q⃗ to recover this incoherent result (2; 3; 4), and the incoherent approximation
serves us well in the following analysis of multiphonon scattering. The loss
of phase information by averaging the coherent scattering over all Q⃗ brings us
back to consideration of a fast scattering process.

6.3.2 One-Phonon and Multiphonon Scattering

Equation 6.48 is the elastic scattering only. It does not conserve the nuclear
scattering cross section. Nuclear interactions do not necessarily depend on the
displacements of atoms, so we need a compensating factor e+⟨(Q⃗·u⃗)2

⟩ to conserve
the cross-section and account for the rest of the scattering intensity. Expanding
this new factor, we calculate the intensity asΨ∗scΨsc, and for clarity we normalize
the intensity

⟨Ψ∗scΨsc⟩N =
1
R

R∑
κ

e−⟨(Q⃗·u⃗κ)2
⟩

×

(
1 + ⟨(Q⃗ · u⃗κ)2

⟩ +
1
2

(⟨(Q⃗ · u⃗κ)2
⟩)2 + ...

)
(6.51)

The first and second terms in parentheses of Eq. 6.51 are the fractions of elastic
(0-phonon) and 1-phonon scattering. The third term with the 1

2 (⟨(Q⃗ · u⃗κ)2
⟩)2 ac-

counts for 2-phonon scattering processes. Only the 1-phonon scattering proves
useful for obtaining a phonon DOS, but it is important to have an understand-
ing of the higher-order terms (called “multiphonon scattering”) for designing
an experiment, or performing quantitative corrections of experimental data.
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The incoherent approximation proves more robust than it may seem to
deserve. Energy and momentum conservation suppress the possibilities for
cross-terms between scattering by 0-phonon and 1-phonon processes. The
frequencies of the incident and scattered waves are mismatched. Integrated
over many periods of the neutron wavefunction, these mismatched waves
will not add constructively or destructively, so there is no coherent interaction
between these two scattering processes. 8

A more detailed treatment of 1-phonon scattering includes the thermal
factors for phonon populations, giving the double-differential scattering cross
section9

d2σ
dΩdE

=
kf

ki

(2π)3

2V0

∑
g⃗,⃗k

n(⃗k) + 1
2 ±

1
2

ωk⃗

×

∣∣∣∣∑
κ

bκ
√

mκ
e−⟨(Q⃗·u⃗κ)2

⟩
[
Q⃗ · e⃗κ (⃗k)

]
eiQ⃗·⃗rκ

∣∣∣∣2
× δ(Q⃗ + k⃗ ± g⃗) δ(ω − ωk⃗) , (6.52)

where the phonon occupancy factor, n(⃗k), is the Planck distribution of Eq. 8.16
at the temperature of interest and εi = ℏωk⃗.

n(⃗k) =
1

eℏω(⃗k)/kBT − 1
. (6.53)

The signs in the factor n(⃗k) + 1
2 ±

1
2 in Eq. 6.52 are such that it is n(⃗k) for

phonon annihilation, and n(⃗k) + 1 for phonon creation – it is always possible
to create a phonon, even at T = 0 when no phonon excitations are present.
The δ(Q⃗ + k⃗ ± g⃗) and δ(ω − ω(⃗k)) enforce the conservation of momentum and
energy on the neutron scattering process. The phonons on different branches
must be considered separately in Eq. 6.52, and it is traditional to add a “branch
index,” sometimes denoted j, to ω(⃗k), since more than one ω j may correspond
to a specific k⃗.

Why should the expansion of an evidently classical exponential in Eq. 6.51
produce the series of neutron-phonon interactions? In the classical limit, the
scattering of every neutron is inelastic, generating heat composed of a number
of phonons with total energy, E, the energy transfer from the neutron. For
classical scattering, an atom of mass m will recoil with velocity v = ℏQ/m, with

8Perhaps they exist as quantum beats of the wavetrains, but we ignore them because we do not
have sufficient time resolution at the detector to sense them.

9A new factor is the ratio kf/ki, which expresses the effect on flux caused by the rate at which
neutrons leave the sample. Compared to an elastically-scattered neutron, fewer neutrons per
second will pass into an increment of solid angle dΩ if they are slowed to smaller values of kf.
Also, the use of solid angle eliminates the need for the factor r−2.
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momentum transfer ℏQ, and energy transfer

ER =
ℏ2 Q2

2m
. (6.54)

In the quantum limit where Q is small, the energy recoil may or may not occur,
depending on whether phonons are created or not. The total scattering, S(Q,E),
is the sum of components,

∑
∞

n=0 Sn(Q,E), from neutrons scattered after creating
different numbers, n, of phonons in the sample.10 The thermal energy is

kBT = 2mω2
⟨u2
⟩ (6.55)

for one harmonic mode of frequency ω. From Eqs. 6.54 and 6.55

Q2
⟨u2
⟩ =

ER

ℏω
kBT
ℏω

(6.56)

This is the quantity in which which the multiphonon expansion is performed
(Eq. 6.51). From Eq. 6.56 we see that the relative intensities of the sequence
of phonon scattering terms scale with 1) the ratio of the recoil energy to the
oscillator energy, and 2) the ratio of temperature to the oscillator energy. When
the first ratio is small, quantum mechanics requires that some recoils excite
the oscillator, but most do not. The same is true for temperature (and at low
temperatures we of course have low heat capacity because the oscillator is
usually not excited).

It remains to get the spectral shape of each order of the multiphonon scat-
tering. The spectrum for one-phonon scattering weights more heavily the
low-energy modes because they have larger amplitudes of motion, provid-
ing a factor of g(ε)/ε. The number of phonons is the Planck distribution
1/[exp(ε/kBT) − 1], and the two factors provide the shape of the 1-phonon
profile, A1(ε):

A1(ε) =
g(ε)
ε

1
eε/kBT − 1

. (6.57)

When two phonons are created simultaneously, the total spectrum of energies
is the convolution of the 1-phonon profile with the 1-phonon profile.11 The
2-phonon spectrum is the convolution of two 1-phonon profiles,

A2(E) = A1 ∗ A1 =

∞∫
−∞

A1(E − E′) A1(E′) dE′ , (6.58)

10Phonon annihilation is handled by extending the range of E to negative values for each Sn(Q,E).
11Consider each phonon excitation to be a random variable with a probability distribution of

A1. The sum of two random variables has a distribution that is the convolution of the probability
distributions A1 ∗ A1.
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The n-phonon profile is the convolution of another 1-phonon profile with the
(n − 1)-phonon profile

An(ε) = A1 ∗ An−1 =

∞∫
−∞

A1(ε − ε′) An−1(ε′) dε′ . (6.59)

Starting with A1, we can generate the spectral shapes of all orders of multi-
phonon scattering by the systematic application of Eq. 6.59.

The total scattering is the sum of these spectral profiles, weighted by the
corresponding terms of Eq. 6.51

S(Q,E) =
∞∑

n=0

exp(−2W)
(2W)n

n!
An(E) , (6.60)

where we have defined S(Q,E) as the double-differential cross-section d2σ/dΩdE
without prefactors.12

In much experimental work, we seek to isolate the single scattering profile,
A1(E), from the measured S(Q,E), and then determine the phonon DOS g(E)
by Eq. 6.57. One way to correct for multiphonon scattering is by iteration on
an initial guess of the phonon DOS. With an initial guess at the DOS or A1(E)
(often the S(Q,E) with a constant background removed), the various A2(E),
A3(E), A4(E)... are calculated and subtracted from S(Q,E) to give a better A1(E).
Iteration is complete when there is a good match between the measured S(Q,E)
and the S(Q,E) recalculated with Eq. 6.60. When the multiphonon scattering
is weak, perhaps only two iterations are necessary. When the multiphonon
scattering is strong, the procedure becomes difficult and slow. If there is strong
multiphonon scattering, however, the experiment is moving into the limit of
classical scattering, so isolating the single phonon spectrum becomes more
challenging. Section 7.3.2 develops further these concepts of multiphonon
scattering.

6.3.3 Neutron Weighting

Strictly speaking, the phonon DOS from the procedure outlined above is not
the true phonon DOS, but rather the neutron-weighted DOS. For an elemental
scatterer, the neutron-weighted DOS is identical to the phonon DOS. This is
not the usual case for a sample that contains more than one type of atom. The
neutron-weighted phonon DOS is

gNW(ε) ∝
∑

d

gd(ε) exp(−2Wd) exp(2W)
σd

md
(6.61)

12This S(Q,E), called the “scattering law,” is normalized so that it is the double Fourier transform
of the Van Hove correlation function G(⃗r, t).
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where exp(−2Wd), σd and Md are the Debye-Waller factor, total scattering cross-
section and mass of atom d. The gd(ε) are the phonon partial DOS functions
of Eq. 8.62. The Debye-Waller factor is an explicit function of gd(ε). The
term exp(2W) is the average Debye-Waller correction; it is calculated from
the self-consistent neutron-weighted DOS. At low temperatures, the factor
exp[2(W −Wd)] is approximately unity.

For the case where σd/md is the same for all species d, gNW(ε) ≈ g(ε), but
in general obtaining the true phonon DOS from the neutron-weighted phonon
DOS requires a full analysis of the lattice dynamics. This can be performed by
simulational procedures or by some types of analytical methods. The neutron-
weight correction as well as other approximations involved in the data analysis
can be overcome by fitting a dynamics model to the neutron-scattering data
directly. Although this approach is both scientifically and computationally de-
manding, we foresee no better method for extracting the vibrational dynamics
from inelastic neutron scattering measurements.

Further Reading

The contents of the following are described in the Bibliography.
M. Born and K. Wang: Dynamical Theory of Crystal Lattices (Oxford Classic series,
1988).
B. Fultz and J. M. Howe: Transmission Electron Microscopy and Diffractometry of
Materials, Fourth Edn. (Springer–Verlag, Heidelberg, 2013).
A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova: The Theory of
Lattice Dynamics in the Harmonic Approximation, Second Edn. (Academic Press,
New York, 1971)
G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Dover,
Mineola, New York 1996).

Problems

1.) Suppose the scattering factor distribution is a rectangular function in time:

f (τ) =
1
t

f0 when 0 < τ < t , and (6.62)

f (τ) = 0 otherwise. (6.63)

Calculate the self-correlation function Gs(τ), and the scattered intensity, I(ω).
(Hint: See section 9.4.1 in main text. You can sample time in intervals δt if you
like.)
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2.) Is it possible to have a self-correlation function Gs(τ) of the form:

Gs(τ) =
1
t

g0 when 0 < τ < t , and (6.64)

Gs(τ) = 0 otherwise? (6.65)

(a) If yes, give an example. If not, why not?
(b) For very long t and short τ the practical situation may be different. If so,
how?

3.) Make graphs of the self-correlation functions Gs(t) for the three cases of Figs.
6.2, 6.3, 6.4.

4.) Perhaps with the help of Fig. 6.6,
(a) Propose two paths to get from the Van Hove function G(R, τ) to the diffraction
pattern I(Q).
(b) Suppose you have f (r) and f (t). Why can you not obtain a rigorous f (r, t)
using some combination of f (r) and f (t)?
(c) Suppose you have I(Q) and I(ω). Why can you not obtain a rigorous S(Q, ω)
using some combination of I(Q) and I(ω)? List a couple of things you can learn
about S(Q, ω) if you have both I(Q) and I(ω).
(d) Suppose you have I(Q) and I(ω), and suppose that the scattering is incoher-
ent. How could you construct an estimate of the measured intensity I(Q, ω)?
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Chapter 7

Fundamental Theory of
Neutron Scattering

7.1 Basic Quantum Mechanics of Neutron Scatter-
ing

This chapter develops a more rigorous treatment of nuclear scattering than
was presented in the previous Sect. 6.3. It starts with Fermi’s golden rule, and
avoids the explicit use of wavefunctions for the scatterer (i.e., it does not require
phonon solutions like u⃗l,κ(q⃗, t) of (6.49)).

7.1.1 Fermi’s Golden Rule

Fermi’s golden rule gives the transition rate from an initial state to a final state,
W, at time t′:

W(t′) =
2π
ℏ

∣∣∣⟨Ψf (⃗r, t′)|V(⃗r, t′)|Ψi(⃗r, t′)⟩
∣∣∣2 . (7.1)

For nuclear scattering of a neutron, the states |Ψ⟩ include coordinates for the
neutron and coordinates for the crystal. The interactions between them are
through nuclear forces of very short range, compared to the thermal displace-
ments of the atoms in the crystal. The potential in (7.1), Vnuc(⃗r, t′), moves during
thermal vibrations over distances that are large compared to the dimensions
of the potential itself. We will use a Fermi pseudopotential as in (6.40), with
δ-functions located at the instantaneous positions of the nuclei.1

Although the Fermi pseudopotential moves with the vibrating nuclei, its
strength (the scattering length b) remains unchanged. This conveniently allows

1The electrons of the atom, and the chemical bondings between atoms, are not affected by
the neutron. There are magnetic scatterings of neutrons from unpaired electrons, but these are
considered later in this chapter.
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us to first use basic conservations of momentum and energy to understand
general features of inelastic neutron scattering, but later we will employ phonon
excitations to present a more complete picture of thermal neutron scattering
from crystals. We can therefore separate the state |Ψi(⃗r, t)⟩ into a lattice part |λi⟩

and a neutron part |⃗ki⟩:

|Ψi(⃗r, t)⟩ = |λi(⃗rnu, t)⟩ |⃗ki(⃗rne, t)⟩ , (7.2)

where the independent coordinates r⃗nu and r⃗ne refer to the postions of the
nucleus and neutron. We have assumed the neutron states are plane-wave
states characterized by the wavevector k⃗f (as in (1.49) and (1.68), but here
ki , kf). In practice, the ⟨ | | ⟩ in (7.1) denotes an integration over all positional
coordinates at the instant t′ when W is evaluated. To get the total probability of
the transition, Pi→f, we integrate this over all times when the two states interact
in the presence of the perturbing potential V(⃗r, t):

Pi→f =
2π
ℏ

∫
⟨λi(⃗r, t)| ⟨⃗ki(⃗r, t)|V∗ (⃗r, t)|λf (⃗r, t)⟩ |⃗kf (⃗r, t)⟩

⟨λf (⃗r, t)| ⟨⃗kf (⃗r, t)|V(⃗r, t)|λi(⃗r, t)⟩ |⃗ki(⃗r, t)⟩ dt , (7.3)

where we have substituted (7.2) into (7.1), written out the | |2, and integrated
over all times.

Recall that the time evolution of the state of the scatterer is:

|ψ(t)⟩ = e−iHt/ℏ
|ψ(t=0)⟩ , (7.4)

⟨ψ(t)| = ⟨ψ(t=0)|e+iHt/ℏ . (7.5)

We assume that the states of the crystal {|λj⟩} are eigenstates with specific
energies {εj}, so we can simplify (7.4 ) and (7.5) using εi = ℏωi as:

|λi(t)⟩ = e−iωit|λi(t=0)⟩ , (7.6)
⟨λi(t)| = ⟨λi(t=0)|e+iωit . (7.7)

The general formulation makes use of these expressions because they allow us
to work with states of the crystal at t = 0 such as |λ1(0)⟩ and |λ2(0)⟩, which
are constant and can be pulled out of any integration over time. Similarly for
the position evolution of plane-wave states of the neutron {|⃗k⟩}, which have
constant momentum:2

|⃗ki(⃗r)⟩ = e−i⃗ki ·⃗r |⃗ki(⃗r=0)⟩ , (7.8)

⟨⃗ki (⃗r)| = ⟨⃗ki (⃗r=0)|e+i⃗ki ·⃗r . (7.9)

2Plane waves prove their convenience here. For other states we would have to integrate over
k-space.
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Returning to the evaluation of (7.3), into it we substitute (7.6), (7.7) and (7.8),
(7.9):

Pi→f =
2π
ℏ

∫
⟨λi(0)|eiωit ⟨⃗ki(0)|ei⃗ki ·⃗r V∗ (⃗r, t) e−i⃗kf ·⃗r |⃗kf(0)⟩ e−iωft|λf(0)⟩

⟨λf(0)|eiωft ⟨⃗kf(0)|ei⃗kf ·⃗r V(⃗r, t) e−i⃗ki ·⃗r |⃗ki(0) ⟩e−iωit|λi(0)⟩ dt , (7.10)

where the operators r⃗ refer to the neutron coordinates, and the (0) refer to t = 0
and r⃗ = 0 (although we are not concerned about the time-dependence of the
neutron wavefunction or the position-dependence of the crystal excitation).

The next step in simplifying (7.10) is to substitute the scattering potential
for V. As before, we use the sum of Fermi pseudopotentials at all crystal sites
(i.e., (6.41)). These δ-functions are most convenient in selecting the r⃗ where
the neutron sees the nuclei, because the integrations over spatial coordinates
become trivial — we delete the integral over position, and in each matrix
element we substitute the nuclear positions with R⃗ j and R⃗k, and the times t j
and tk. We sum over all nuclei in the crystal:

Pi→f =
2π
ℏ

∫ ∑
j

⟨λi(0)|eiωit j ⟨⃗ki(0)|ei⃗ki·R⃗ j b∗j e−i⃗kf·R⃗ j |⃗kf(0)⟩ e−iωft j |λf(0)⟩

∑
k

⟨λf(0)|eiωftk ⟨⃗kf(0)|ei⃗kf·R⃗k bk e−i⃗ki·R⃗k |⃗ki(0)⟩e−iωitk |λi(0)⟩dt . (7.11)

The notation (0) refers to both t = 0 and r⃗ = 0, since we made use of
the relations (7.6)–(7.9). At t = 0), r⃗ = 0, the phase factors, ei(⃗(Q)·⃗r−ωt), of the
plane-wave states of (1.49) and (1.68) are equal to 1. Therefore:

⟨⃗ki(0)|⃗kf(0)⟩⟨⃗kf(0)|⃗ki(0)⟩ = 1 . (7.12)

We define the difference in frequency as ω:

ωi − ω f ≡ ω . (7.13)

Substituting (7.12) and (7.13) into (7.11):

Pi→f =
2π
ℏ

∫ ∑
j

eiωt j b∗j⟨λi(0)| ei⃗ki·R⃗ j(t j)e−i⃗kf·R⃗ j(t j)
|λf(0)⟩

∑
k

e−iωtk bk⟨λf(0)|ei⃗kf·R⃗k(tk) e−i⃗ki·R⃗k(tk)
|λi(0)⟩dt , (7.14)

The integration is over all times, so we can redefine t as a difference between
scattering times:

t ≡ t j − tk , (7.15)



156 CHAPTER 7. FUNDAMENTAL THEORY OF NEUTRON SCATTERING

and likewise we define the scattering vector Q⃗:

Q ≡ k⃗i − k⃗f . (7.16)

Substituting these differences into (7.14):

Pi→f =
2π
ℏ

∫
eiωt

∑
j

b∗j⟨λi(0)| eiQ⃗·R⃗ j(t)|λf(0)⟩

∑
k

bk⟨λf(0)|e−iQ⃗·R⃗k(0)
|λi(0)⟩dt , (7.17)

Now we consider how scattering changes the state of the crystal, the {|λ(0)⟩}.
First consider the final states, {|λf(0)⟩}, and work with them in a slightly-
rearranged form of (7.17)

Pi→f =
2π
ℏ

∫
eiωt

∑
j

∑
k

b∗jbk⟨λi(0)| eiQ⃗·R⃗ j(t)|λf(0)⟩⟨λf(0)|e−iQ⃗·R⃗k(0)
|λi(0)⟩dt , (7.18)

We do not have control over which final state is obtained, and in prinicple all
acceptable final states will occur over the duration of a long experiment. In
effect, an experiment sums over final states, but the final states are assumed to
form a complete set: ∑

f

|λf(0)⟩⟨λf(0)| = 1 , (7.19)

for each term in the double sum (7.17). Equation (7.19) simplifies (7.18)

Pi→Σf =
2π
ℏ

∫
eiωt

∑
j

∑
k

b∗jbk⟨λi(0)| eiQ⃗·R⃗ j(t) e−iQ⃗·R⃗k(0)
|λi(0)⟩dt , (7.20)

where going from Pi→f to Pi→Σf means that we are calculating the total scattering
out of the intial state (not to just from one f as in (7.18)).

Next, consider the initial states {|λi(0)⟩}. The intial states are set by ther-
modynamics. Temperature will alter the distribution of intial states by the
appropriate thermodynamic distribution, i.e., a Bose–Einstein distribution for
phonons. Instead of writing this distribution n(ε) directly, we define the brack-
ets

〈 〉
to mean the thermodynamic average. This is arguably just a notational

change to (7.20) that is now

Pi→f =
2π
ℏ

∫
eiωt

∑
j

∑
k

b∗jbk

〈
eiQ⃗·R⃗ j(t) e−iQ⃗·R⃗k(0)

〉
dt . (7.21)

We make use of the prefactors described in Sect. 6.3 to convert the transition
probability into a cross-section:

d2σ
dΩdE

=
kf

ki

(2π)3

2V0

∑
j

∑
k

b∗jbk

∫
eiωt

〈
eiQ⃗·R⃗ j(t) e−iQ⃗·R⃗k(0)

〉
dt . (7.22)
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Equation (7.22) is the most general result that can be obtained from Fermi’s
Golden Rule. At its heart is a thermodynamic average of phase factors from
scattering by atoms j and k at their different positions in space for different
snapshots in time. Note that the space coordinates for the two atoms are
generally not evaluated at the same time. If there were no time dependence to
the atom positions, the Fourier transform would yield a delta function δ(ω −
0), indicating pure elastic scattering. If there were no spatial periodicities,
the thermodynamic average over all phase factors would not produce any
constructive or destructive interferences at different angles, so there would be
no structure of the cross section in solid angle, Ω.

The topic of this book is inelastic scattering, so we assume motion of the
nuclei (the scattering centers), and we will be alert to relations between the
two phase factors (the exponentials in (7.22)) in space and in time. We need
to address the thermal spread of atom positions over time. Even the analysis
of small displacements requires confronting some subtleties of quantum me-
chanics, but later our treatment in Sect. 7.2.3 will assume the distributions of
atom displacements are Gaussian functions, or at least the displacements are
small. We will also assume that the scattering centers have the translational
periodicity of a crystal. This is a more restrictive assumption about the sample,
and can be misleading in cases of disordered solids. Therefore it is sometimes
important to return to (7.22) for guidance on the scattering problem, since its
only assumption is that the neutron is scattered once.

There is, however, another very general and useful feature of inelastic neu-
tron scattering that depends only on thermodynamic equilibrium for the pop-
ulations of the initial states of the scatterer. This principle of detailed balance
is described next in Sect. 7.1.2.

7.1.2 Detailed Balance

The intensities of inelastic spectra depend on the ratio of energy transfer to
temperature, at least in the usual case where the sample is in thermodynamic
equilibrium before scattering. There is a detailed balance between the rates of
two scattering processes, one with the creation of an excitation, and the other
with the annihilation of the same excitation. Consider the temperature depen-
dence of the positive and negative energy transfers between the neutron and
the specimen. One extreme is when the sample is at a very low temperature
(in practice, where kBT is much smaller than the energy resolution of the in-
strument). In this case there are no excitations present in the sample, so no
scattering can occur with the annihilation of excitations. Excitations can be
created by transfer of energy from the incident neutron, of course. At low tem-
peratures the inelastic spectrum will have intensity on one side of the elastic
peak, but no intensity on the other side. This is seen in Fig. 7.1, at 30 K, where
there is no intensity for S(−E), but a weak but reasonable spectrum is seen at
S(+E).

The other extreme is for very high temperatures where kBT is much larger
than the energy transfer |E|. Because the probability of creating or annihilating
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Figure 7.1: Incoherent inelastic scattering of phonons in fcc 57Fe64Ni36. Data
were for equal incident flux, but different temperatures as labeled. Elastic peak
at ε = 0 rises to 15,000 counts in both spectra. Compare the relative intensites
at ±ε, which are related by detailed balance. From (7.35), the ratio of the sharp
features at ±16 meV should be 1.9 at 300 K and 600 at 30 K. (Incidentally, some
multiphonon scattering is evident in the 300 K data above 37 meV.) These
spectra were from nuclear resonant inelastic x-ray scattering of 57Fe with a high
resolution monochromator at Sector 3 of the Advanced Photon Source (courtesy
S.H. Lohaus and P. Guzman). The principles are similar to incoherent inelastic
neutron scattering, but these are inelastic x-ray measurements.
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one additional excitation such as a phonon makes little difference to the energy
of the sample, we expect the measured intensities to be more similar at ±E.
Scattering processes involving the creation or annihilation of excitations occur
with similar probabilities when the sample is at high temperatures.

Each creation process has an inverse annihilation process, and the intensities
of these two processes in an inelastic spectrum are related by a thermal factor
that we show to be a simple Boltzmann factor. We will compare intensities at
pairs of energies ±E, i.e., at S(−E) and S(+E). The systematics to be explained
can be seen with Fig. 7.1.

The energy equivalence to 300 K is kB 300=25 meV, and at 30 K it is 2.5 meV.
The heights of each spectrum differ by a factor of e at these energies, i.e., at 300 K,
with E in meV, S(+25) = 2.71828 S(−25), and at 30 K, S(+2, 5) = 2.71828 S(−2, 5).
This ratio is visible at ±25 meV for the 300 K spectrum but the 30 K spectrum
is covered by the tails of the elastic line at 2.5 meV. Notice also the differences
in the shapes of the two spectra on the phonon creation side of the elastic
peak +E. The 30 K spectrum is actually close to the shape of the phonon DOS
itself, whereas the 300 K spectrum is enhanced at energies below approximately
25 meV, owing to the large phonon occupancy factor.

A picture inspired by quantum mechanics can account for the detailed
balance of the intensities of spectral features at ±E in Fig. 7.1. The density of
states for excitations is symmetric, i.e., S(−E) = S(+E), because an excitation
can be created or annihilated in each mode at E. Suppose that the observed
intensities are proportional to the thermal occupancies before scattering, which
are the Planck factors nE,T

nE,T =
1

e
E

kBT − 1
. (7.23)

The idea follows stimulated emission in optics, where both phonon absorption
and phonon emission to the neutron increase with nE,T, but emission (phonon
creation) has an extra spontaneous contribution of +1. This relates the intensi-
ties at ±E as

I(+E)
I(−E)

=
nE,T + 1

nE,T
. (7.24)

This Eq. 7.24 is easy to remember, and readily shows that as nE,T → 0 at low T,
only the right side of the spectrum will be observed (see 30 K spectrum in Fig.
7.1).

However, Eq. 7.24 is not quite so quantum mechanical as it may seem.
Rearranging

I(+E)
I(−E)

=

 1

e
E

kBT − 1
+

e
E

kBT − 1

e
E

kBT − 1

 (e E
kBT − 1

)
,

I(+E)
I(−E)

= e
E

kBT , (7.25)
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and the intensities for phonon creation and annihilation are in the ratio of
the simple Boltzmann factor exp( E

kBT ). The Planck occupancy does express
the quantum statistics of bosons, of course. Furthermore, a simple classical
analysis might give the incorrect ratio of I(+E)/I(−E) = exp( 2E

kBT ) because spectral
components at ±E are separated in energy by 2E.

The condition of detailed balance follows from two assumptions:

• The probability of the initial state of the sample, the |λi⟩ in (7.2), is as
expected for thermodynamic equilibrium.

• The interaction operator for the transition probability, the V(⃗r, t′) of (7.1),
is Hermitian. (This is certainly true for the delta function (6.40) for the
Fermi pseudopotential.)

To show the essence of the derivation of the detailed balance condition, assume
the initial state |λ1⟩ exists, and consider the probability, W′

1→2, for a transition
to a final state |λ2⟩, and the probability for the reverse transition, W′

2→1 from a
pre-existing state |λ2⟩:

W′

1→2 = |⟨λ2|V|λ1⟩|
2 , (7.26)

W′

2→1 = |⟨λ1|V|λ2⟩|
2 , (7.27)

which are both products of a number with its complex conjugate:

W′

1→2 = ⟨λ2|V|λ1⟩
(
⟨λ2|V|λ1⟩

)∗
, (7.28)

W′

2→1 =
(
⟨λ1|V|λ2⟩

)∗
⟨λ1|V|λ2⟩ . (7.29)

For a Hermitian operator, recall that V = (VT)∗ ≡ V†. We use the transpose to
operate on the other side of V, for which we use the complex conjugates of the
bras and kets:

W′

1→2 = ⟨λ2|V|λ1⟩ ⟨λ1|V|λ2⟩ , (7.30)
W′

2→1 = ⟨λ2|V|λ1⟩ ⟨λ1|V|λ2⟩ , (7.31)

so:

W′

1→2 =W′

2→1 ≡W′ . (7.32)

This result (7.32) is true so long as V is Hermitian. Starting in the known states
|λ1⟩ and |λ2⟩, the transition probabilites between these states are equal.

Now assume that the states |λi⟩ are populated in thermodynamic equi-
librium, differing by a Boltzmann factor. The measured cross sections are
proportional to W1→2 and W2→1:

W1→2 =
e−E1/kBT

Z
W′

1→2 =
e−E1/kBT

Z
W′ , (7.33)

W2→1 =
e−E2/kBT

Z
W′

2→1 =
e−E2/kBT

Z
W′ , (7.34)
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where Z is the partition function. Now that we have taken into consideration the
fact that the initial states have probabilities as expected from thermodynamic
equilibrium, we can relate the observed intensity for the transition 1→ 2 to the
observed intensity for its reverse transition 2→ 1:

W1→2 = e(E2−E1)/kBT W2→1 . (7.35)

Suppose the state |λ2⟩has an energy higher (more positive) than |λ1⟩, because
the state |λ2⟩ has an extra excitation in the sample. The transition 1→ 2 is uphill
energetically, and requires the neutron to transfer energy to create an excitation
sample. Nevertheless, this transition is more intense experimentally because
the initial state |λ1⟩ is more probable thermodynamically. Equation (7.35) shows
that the intensity W1→2 > W2→1 because E2 > E1 and the exponential is greater
than 1. To clarify (7.35), we recognize that the difference in energy, E = E2 − E1,
is the energy of the excitation in the solid. It is more traditional to write the
condition of detailed balance as:

S(E) = eE/kBT S(−E) . (7.36)

where E is the energy of the excition in the solid, and the argument −E cor-
responding to W2→1 signifies that S(−E) is on the phonon annihilation side of
the elastic peak in the spectrum. Detailed balance remains valid when a sin-
gle scattering creates or annihilates multiple excitations – a detailed balance
between forward and reverse processes still exists because the thermodynamic
probabilities of the required initial states are set by E.

A practical use of detailed balance is to check the quality of experimental
data. For example, in a spectrum measured at 300 K, equivalent to 25 meV,
the intensities at ±25 meV on the two sides of the elastic peak must be in
the ratio of e−1. If this were not true, we might suspect instrument artifacts,
such as differences in sensitivity or resolution. A noise background could
also cause measured data to violate the condition of detailed balance, and
perhaps detailed balance could be exploited to help subtract some sources of
background from experimental data. We warn the reader, however, about such
simple interpretations with data from a time-of-flight chopper spectrometer.
The value of Q varies across the energy scale of data from a particular detector,
and the relationship is not symmetric, i.e., Q(E) , Q(−E). When multiphonon
scattering is strong, and the Debye–Waller factor is significant, detailed balance
will not be observed in the experimental data unless they are rebinned for
constant Q.

7.1.3 Crystalline Periodicity

The translational periodicity of crystals allows the reduction of the double sum
in (7.22) to a single sum. We separate the atom position operators, R⃗ j(t), into
static, x⃗l,κ, and time-varying, u⃗l,κ(t), components:

R⃗ j(t) = x⃗l + x⃗κ + u⃗l,κ(t) , (7.37)
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where the static positions were broken into lattice vectors (index l) and basis
vectors (index κ) in (7.37). The exponentials in (7.22) refer to pairs of atoms
separated by a distance x⃗ j − x⃗k. In an infinite crystal, where all unit cells are
equivalent, these exponentials cannot depend on the absolute position of the
unit cell, but only on the lattice translation vector x⃗l. Any one of the N unit
cells can be taken as the origin, and the terms from the lth neighbor must be the
same. This distance, x⃗l, has no time dependence, and is a constant. It therefore
commutes through the other distance operators, and we can write:

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l

∫
eiωt

〈
eiQ⃗·u⃗l(t) e−iQ⃗·u⃗0(0)

〉
dt . (7.38)

Here, for simplicity we have also assumed all nuclei are the same so b j =
bk ≡ b, and we have assumed a simple lattice without a basis. The result
in (7.38) accounts for the interactions of waves scattered from pairs of nuclei,
recognizing that their instantaneous displacements may differ by a phase factor.
This difference in phase factor gives a constant prefactor eiQ⃗·x⃗l . The other
exponentials are not constants, however, and need to be handled with care.
The temptation would be to combine the exponentials into a single factor such

as eiQ⃗·(R⃗ j(t)−R⃗ j(0)). Unfortunately, this tempting step would be incorrect, except
for classical systems. The quantum argument, described next, is subtle.

7.2 More Subtle Quantum Behavior

7.2.1 Commutation Relations

Calculating the expectation value of an operator A using the left- and right-hand
sides of (7.4) and (7.5) gives:

⟨ψ(t)|A|ψ(t)⟩ = ⟨ψ(t=0)|e+iHt/ℏAe−iHt/ℏ
|ψ(t=0)⟩ . (7.39)

Evidently the time-dependence of the matrix element can be transferred from
the state functionsψ to the operator A by replacing the operator by e+iHt/ℏAe−iHt/ℏ.
This moves us into the “Heisenberg picture” of quantum mechanics where state
functions are fixed, but the time-dependence is in the operator. The motivation
for putting the dynamics into the operators is as follows. In passing from clas-
sical mechanics to quantum mechanics, we replace the position vector R⃗(t) with
an operator, denoted R⃗(t). In particular, we will alter soon work with phase
factors that are a time-dependent operators:

eiQ⃗·R⃗
−→ eiQ⃗·R⃗ . (7.40)

Changing R⃗ to the operator R⃗ leads to a subtlety in calculating the intensity
from the wave amplitude. It turns out that the operator R⃗(0) does not commute
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with the operator R⃗(t) for the same atom at a different time. The operators are
related as:

R⃗(t) = e+iHt/ℏR⃗(0)e−iHt/ℏ , (7.41)

e−iHt/ℏR⃗(t) = R⃗(0)e−iHt/ℏ , (7.42)

and likewise for the exponentiated operators:

eiQ⃗·R⃗(t) = e+iHt/ℏeiQ⃗·R⃗(0)e−iHt/ℏ , (7.43)

e−iHt/ℏeiQ⃗·R⃗(t) = eiQ⃗·R⃗(0)e−iHt/ℏ . (7.44)

We cannot interchange the order of R⃗ and H because H includes the momentum
operator.

To get better expressions for calculating with these operators, we need
a result about exponentiations of non-commuting operators. Operators in
exponential functions are defined in terms of the power series expansion of the
exponential. Consider the exponentiation of two operators A and B:

exp(A) = 1 + A +
1
2

A A + . . . , (7.45)

exp(−B) = 1 − B +
1
2

B B + . . . , (7.46)

Now take the product, including all terms to the second order:

exp(A) exp(−B) =
[
1 + A +

1
2

A A + . . .
][

1 − B +
1
2

B B + . . .
]
. (7.47)

Group the terms in order of the nth power of operators A and B as On, and stop
at the second order. (This truncations may seem like an approximation now,
but it proves exact after a physical fact is brought out later.)

exp(A) exp(−B) = O
0 + O1 + O2 , (7.48)

O
0 = 1 , (7.49)
O

1 = A − B , (7.50)

O
2 =

1
2

AA − AB +
1
2

BB , (7.51)

exp(A) exp(−B) = 1 + A − B +
1
2

AA − AB +
1
2

BB , (7.52)

where we have been fastidious about keeping the operator A to the left of the
operator B, because they may not necessarily commute.

Now evaluate the exponentiation of the sum A + B, again to second order
in the operators:

exp(A − B) = 1 + (A − B) +
1
2

(A − B) (A − B) , (7.53)

exp(A − B) = 1 + A − B +
1
2

[
A A − A B − B A + B B

]
, (7.54)
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Note that (7.52) and (7.54) are unequal when A does not commute with B. We
need one more exponentiation expression to make an equality. It is, to second
order in the operators

exp(
1
2

[B,A]) = 1 +
1
2

[B,A] , (7.55)

exp(
1
2

[B,A]) = 1 +
1
2

(BA − AB) . (7.56)

Multiplying the expressions for (7.54) and (7.56)

exp(A − B) exp(
1
2

[B,A]) =
[
1 + A − B +

1
2

(
A A − A B − B A + B B

)]
×

[
1 +

1
2

(BA − AB)
]

(7.57)

and considering terms only to second order in the operators

exp(A − B) exp(
1
2

[B,A]) = 1 + A − B +
1
2

AA − AB +
1
2

BB , (7.58)

This is exactly (7.52), so we conclude

exp(A − B) exp(
1
2

[B,A]) = exp(A) exp(−B) . (7.59)

This is the “Weyl identity.”
Not so fast, you may say. What about the terms O3 and higher? The next

subsection shows how these higher terms can be identically zero when the
commutator [B,A] is a constant, and gives a practical case where this happens.
If you are satisfied with the approach in this section, you can skip the next
section because it is not crucial for the development.

7.2.2 An Operator Identity (Optional Section)

Another useful identity can be obtained from an expansion for projection op-
erations. We take the expression e+ABe−A and write out expansions for the
exponentiated operators

e+A = 1 + A +
1
2!

A2 +
1
3!

A3 + ... , (7.60)

e−A = 1 − A +
1
2!

A2
−

1
3!

A3 + ... , (7.61)

and develop a scheme for working with all terms to higher order beyond the
cubic. Expanding the typical projection expression in the Heisenberg represen-
tation

e+ABe−A =
(
1 + A +

1
2!

A2 +
1
3!

A3 + ...
)
B
(
1 − A +

1
2!

A2
−

1
3!

A3 + ...
)
, (7.62)
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we seek to group all terms in the same order of operators, denoted O0, O1, O2,
... such as the lowest ones that are easy to see in Eq. 7.62

O
0 = B , (7.63)

O
1 = BA − AB = [B,A] . (7.64)

It turns out that the big trick is already evident in the expression (7.64) for O1.
To go from O0 to O1, we commute O0 with A. This works to all higher orders.
For example, go from O1 to O2, first laboriously by writing out all the terms to
second order

O
2 =

(
1 + A +

1
2!

A2
)
B
(
1 − A +

1
2!

A2
)
, (7.65)

O
2 =

1
2!

BA2
− ABA +

1
2!

A2B , (7.66)

where the ends of the underlines in (7.65) denote the product factors that
contribute terms to second order in A in (7.66). Equation (7.66) can be written
alternatively as

O
2 =

1
2!

(
BA2
− ABA − ABA + A2B

)
, (7.67)

O
2 =

1
2!

(
(BA − AB)A − A(BA − AB)

)
, (7.68)

O
2 =

1
2!

[
[B,A],A

]
, (7.69)

The same trick works for going from O2 to O3

O
3 =

1
3!

[[
[B,A],A

]
,A

]
, (7.70)

What we do by commuting with A, perhaps clear in (7.68) is making a term
with a power of A to the right, and a term with the opposite sign with A to the
left. This is just what we need when working the expansion to higher orders,
using the method of underlines in (7.65). It is a good exercise to obtain O3 by
the method of (7.65), but to the next order there will be four underlines that
denote the terms for O3.

This elegance can be hard to use, but it is valuable in our case of position and
momentum operators, X and P. The important point is that the commutation
of these operators is a constant,

[X,P] = iℏ . (7.71)

Any later commutation with a constant is zero, because the two terms in the
commutator are equal. Therefore, all terms beyond O1 vanish identically. For
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example, consider

e−iPX′/ℏXe+iPX′/ℏ = X + [X, iPX′/ℏ] , (7.72)

e−iPX′/ℏXe+iPX′/ℏ = X +
i
ℏ

(
XPX′ − PX′X

)
, (7.73)

e−iPX′/ℏXe+iPX′/ℏ = X +
i
ℏ

(
(iℏ + PX)X′ − PX′X

)
, (7.74)

e−iPX′/ℏXe+iPX′/ℏ = X − X′ , (7.75)

where we substituted the commutation result (7.71) in the small ( ) in (7.74).
This is an exact result when the commutator [B,A] is a constant – the higher
terms obtained by commuting [B,A] with A give zero identically.

7.2.3 Gaussian Thermal Averages

Now that we have the expression (7.59), we can use it to rearrange (7.38) into
a form that shows intensity contributions from different numbers of phonon
excitations. To clarify the next steps, it is traditional to make the definitions:

U⃗ ≡ −iQ⃗ · u⃗0(0) , (7.76)

V⃗ ≡ iQ⃗ · u⃗l(t) . (7.77)

Now we substitute (7.76) and (7.77) into (7.59):

exp(U⃗) exp(V⃗) = exp(U⃗ + V⃗) exp
(1
2

[
U⃗ V⃗ − V⃗ U⃗

])
. (7.78)

At this point we need to take a thermal average (the ⟨⟩ in (7.38)). In doing so, we
make the assumption that the vibrational atom displacements are distributed
with a Gaussian spread. The Gaussian distribution function can be used to
average a squared displacement, X2:

⟨X2
⟩ =

∞∫
−∞

X2 1
√

πσ2
e−X2/σ2

dX , (7.79)

⟨X2
⟩ =

1
2
σ2 , (7.80)

a standard result.
For comparison, we next average an exponential eX:

⟨eX
⟩ =

∞∫
−∞

eX 1
√

πσ2
e−X2/σ2

dX , (7.81)

by completing the square:

− (X/σ − σ/2)2 = −
(
X2/σ2

− X + σ2/4
)
, (7.82)
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so by adding and subtracting the last term of (7.82) in the exponential:

⟨eX
⟩ =

∞∫
−∞

1
√

πσ2
e−(X/σ−σ/2)2

eσ
2/4 dX , (7.83)

⟨eX
⟩ = eσ

2/4

∞∫
−∞

1
√

πσ2
e−(X/σ−σ/2)2

dX , (7.84)

⟨eX
⟩ = eσ

2/4 , (7.85)

where the last result was obtained by integrating the normalized Gaussian
function. By comparing (7.80) and (7.85), we obtain:

⟨eX
⟩ = eX2/2 . (7.86)

Using (7.86), we obtain a factor with our operators U⃗ and V⃗:

⟨exp(U⃗ + V⃗)⟩ = exp
(1
2

(
U⃗ + V⃗

)2)
. (7.87)

This is the “Bloch identity” for Gaussian thermal averages, usually written
more simply with C = U⃗ + V⃗. We use this result to obtain the thermal average
of (7.78):

⟨exp U⃗ exp V⃗⟩ = exp
(1
2

(
U⃗ + V⃗

)2)
exp

(1
2
⟨U⃗ V⃗ − V⃗ U⃗⟩

)
, (7.88)

⟨exp U⃗ exp V⃗⟩ = exp
(1
2
⟨U⃗

2
+ V⃗

2
+ U⃗V⃗ + V⃗U⃗ + U⃗V⃗ − V⃗U⃗⟩

)
, (7.89)

⟨exp U⃗ exp V⃗⟩ = exp
(1
2
⟨U⃗

2
+ V⃗

2
⟩

)
exp⟨U⃗V⃗⟩ . (7.90)

By examining (7.76) and (7.77), we can see that:

⟨U⃗
2
⟩ = ⟨V⃗

2
⟩ , (7.91)

because the average vibrational amplitudes do not change over time, and all
unit cells are equivalent in the crystal. This allows a final simplification of
(7.90):

⟨exp U⃗ exp V⃗⟩ = exp⟨U⃗
2
⟩ exp⟨U⃗V⃗⟩ . (7.92)

Equation (7.92) was obtained with the one assumption of a Gaussian thermal
spread of atom positions. Even if this in not quite the case, (7.92) is expected to
be valid when the atom displacements are small. By expanding both sides of
(7.86), and recognizing that the thermal average of odd powers of X are zero,
(7.86) seems a reasonable approximation.
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Finally, we use (7.92) to rewrite (7.38) in a way that will later let us identify
individual phonon scatterings. Making use of the definitions (7.76) and (7.77):

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l

∫
eiωt exp⟨U⃗

2
⟩ exp⟨U⃗V⃗⟩dt . (7.93)

Taking the thermal averages has removed much of the time dependence in our
factors. The only remaining time dependence is within the ⟨U⃗V⃗⟩ factor, so we
rewrite:

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l exp⟨U⃗
2
⟩

∫
eiωt exp⟨U⃗V⃗⟩dt . (7.94)

Using (7.76), the factor exp⟨U⃗
2
⟩ in (7.94) becomes exp(−⟨[Q⃗ · u⃗l(0)]2

⟩). We
recognize this as a Debye–Waller factor. To its right in (7.94) is a sum over pairs
of atoms separated by x⃗l. There is a phase associated with the atom separation
in the pair. Suppose for the moment that there were no displacements of the
atoms from their lattice sites. In this case the final exponential exp⟨U⃗V⃗⟩would
equal e0 = 1. This is the case of elastic scattering, and the sum of phase factors
of (7.94) would reduce to to the elastic scattering result of (6.48). It is the final
factor, the Fourier transform of exp⟨U⃗V⃗⟩, that makes (7.94) interesting, and it is
in a convenient form for further development.

7.3 Practical Expressions for Phonon Scattering

7.3.1 Impulse Approximation

It is relatively easy to adapt the general result (7.22) to the case where the
energy of the incident neutron is much higher than the characteristic excitations
in the solid. We therefore ignore the interatomic interactions, and consider
the collision of the neutron with a single nucleus at R⃗. This approaches the
problem of hitting a ball with a classical projectile, so we lose some features of
wave mechanics.3 We do have to account for momentum and energy transfer,
of course. The impulse approximation begins with the replacement of the
operator:

R⃗ j(t) −→ R⃗ j(0) + tv⃗ j , (7.95)

R⃗ j(t) −→ R⃗ j(0) +
t

M j
p⃗

j
, (7.96)

3Another viewpoint is that we expect multiple excitations to occur in the solid. The effects
of coherence are generally washed out when multiple excitations occur. For incoherent inelastic
scattering as in Sect. 6.2, we expect to analyze the scattering by considering only a single nucleus
at a time. We expect the excitations to be incoherent.
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where we expect t to be small since the neutron is moving fast. Because the
incoherent character of the multiple excitations suppresses the phase relation-
ships between different scatterers, and we consider terms j = k in (7.22). It is
tempting to substitute (7.96) directly into (7.22) to obtain:

d2σ
dΩdE

? =?
kf

ki

(2π)3

2V0

∑
j

∑
k

b∗jbkδ j,k

×

∫
eiωt

〈
e

iQ⃗·(R⃗ j(0)+t/M jp⃗
j
)
e−iQ⃗·R⃗k(0)

〉
dt , (7.97)

and with R⃗ j(0) = R⃗k(0):

d2σ
dΩdE

? =?
kf

ki

(2π)3

2V0

∑
j

|b j|
2
∫

eiωt
〈
e

it/M jQ⃗·p⃗
j
〉

dt . (7.98)

The missing piece in (7.98) is a phase factor associated with the energy gain of
the scatterer. The energy gain is kinetic, Ekin =

p2

2M j
= ℏ

2Q2

2M j
. Fermi’s Golden Rule,

which connects the wavefunctions before and after the scattering, is senstitive
to the phases of the initial and final states of the scatterer. The transfer of
energy causes a relative change in the phase of these two states by the factor:
exp(iEkinℏ−1 t). This phase relationship for the total energy transfer leaves a
minimal amount of quantum mechanics in the scattering problem (which we
expect to go away at very high incident energies):

d2σ
dΩdE

=
kf

ki

(2π)3

2V0

∑
j

|b j|
2
∫

eiωte
i
(
ℏ2Q2

2Mj

)
ℏ−1 t〈

e
it/M jQ⃗·p⃗

j
〉

dt . (7.99)

In Sect. 7.2.3 we calculated the thermal average, ⟨⟩, when the displacements
of the scatterer had a Gaussian thermal spread. To apply this result to (7.99),
we use the result: ⟨eiX

⟩ = e−X2/2:

d2σ
dΩdE

=
kf

ki

(2π)3

2V0

∑
j

|b j|
2
∫

eiωte
i
(
ℏ2Q2

2Mj

)
ℏ−1 t

e
−(⟨Q⃗·p⃗

j
⟩t/M j)2/2

dt . (7.100)

We complete the square in the exponential, defining:

x2
≡

(
√

at −
b

2
√

a

)2

= at2
− bt +

b2

4a
, (7.101)

and we obtain a result:

∞∫
−∞

e−at2+bt dt =

∞∫
−∞

e−x2

√
a

dx =
√
π
a

eb2/4a . (7.102)
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With the associations for a and b:

a =
1
2


⟨Q⃗ · p⃗

j
⟩

M j


2

, (7.103)

b = i
(
ω +
ℏQ2

2M j

)
, (7.104)

(7.100) becomes:

d2σ
dΩdE

=
kf

ki

(2π)7/2

2V0

∑
j

|b j|
2

 M j

⟨Q⃗ · p⃗
j
⟩


2

exp

−
(
ℏQ2

2M j
+ ω

)2

2
(
⟨Q⃗·p⃗

j
⟩

M j

)2

 . (7.105)

The differential scattering cross section in (7.105) has the shape of a Gaussian
function, centered at an energy ℏω:

ℏω = −
ℏ2Q2

2M j
. (7.106)

The center of the Gaussian is simply the energy transfer from a scattering with a
single-particle recoil. This result could be obtained by classical mechanics. The
spread of this Gaussian is obtained from from the denoninator in the Gaussian
of (7.105). This width increases with Q and with the mean-squared velocity
of the scatterers. The ratio of shift to width grows larger with Q, however. In
the classical limit of very large Q, the width is negligible, so the energy and
momentum transfers are well-defined.

7.3.2 Multiphonon Expansion

We return to develop (7.94) with the “multiphonon expansion,” which is ob-
tained from the expansion of the exponential exp⟨U⃗V⃗⟩. This is seen most easily
in the incoherent approximation, where we replace:

exp⟨U⃗V⃗⟩ −→ exp⟨U⃗⟩⟨V⃗⟩ = exp⟨U⃗⟩⟨U⃗⟩ . (7.107)

so that, treating U⃗ as a displacement and not an operator:

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l exp⟨U⃗
2
⟩

×

∫
eiωt exp

(
−iQ⃗ · u⃗ iQ⃗ · u⃗

)
dt . (7.108)
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The harmonic oscillator energy Mω2u2
max, is assumed quantized in units of ℏω.

From ℏω ∝ Mω2u2
max, we replace the displacement u =

√
ℏ/(2Mω), for which

we expect a time-dependence:

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l exp⟨U⃗
2
⟩

×

∫
eiωt exp

(
Q2ℏ

2Mω
Υ(t)

)
dt , (7.109)

The function Υ(t) serves to convert between phonon energy and nuclear dis-
placement, and varies with the phonon DOS, g(E), and temperature through
the Planck factor, n(E). It can be shown to be [Lovesey Vol 1. Eq. 4.238]

Υ(t) =
∫
∞

−∞

g(E)
E

n(E) e−i(E/ℏ)t dE . (7.110)

Assuming the argument of the exponential in (7.109) is small, we expand this
exponential

d2σ
dΩdE

=
kf

ki

(2π)3N|b|2

2V0

∑
l

eiQ⃗·x⃗l exp⟨U⃗
2
⟩

×

∫
eiωt

1 +
ℏ2Q2

2M

ℏω
Υ(t) +

1
2

 ℏ
2Q2

2M

ℏω
Υ(t)


2

+ . . .

 dt . (7.111)

The terms in the expansion of (7.111) are recognized as a series in powers of
ERecoil/(ℏω) — the recoil energy, p2/(2M), divided by the energy of the phonon,
ℏω. It is instructive to compare (7.111) to (6.51), which is re-written here. Note
that it did not include a Debye–Waller factor:

Ψsc(Q⃗, r⃗) = −
ei(⃗kf ·⃗r−ω0t)∣∣∣⃗r∣∣∣

×

∑
l,κ

bκ eiQ⃗·x⃗l,κ

(
1 + iQ⃗ · u⃗l,κ(t) −

1
2

(Q⃗ · u⃗l,κ(t))2 + . . .
)
. (7.112)

Analyzing the two series in (7.111) and (7.112), term-by-term, we find:

• The first term, the 1, provides a Fourier transform of a constant, which
is a delta function, δ(ω). Since the excitation energy is therefore zero,
this is an elastic scattering process. Note that the sum of phase factors

eiQ⃗·x⃗l over lattice sites and the Debye–Waller factor e⟨U⃗
2
⟩ are as expected

for diffracted neutron wavefunctions. Elastic nuclear scattering has no Q
dependence, except through the Debye–Waller factor.
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• The second term, involving ℏ
2Q2

2M /(ℏω), is the inelastic scattering that occurs
by exciting one phonon. We found in (6.52) that its Fourier transform
led to a delta function δ(ω − ω(q⃗)) from the conservation of energy. A
conservation of momentum led to a similar delta function, δ

(
(q⃗ − Q⃗) − g⃗

)
.

Single phonon scattering increases with Q as Q2.

• The third term, involving
(
ℏ2Q2

2M
ℏω

)2

, is the scattering that involves the exci-

tation of two phonons. This occurs in one scattering event, not through
the creation of two phonons by two different deflections of the neutron.
(The latter is “multiple scattering.”) When the time function is squared,
such as cos2(ωt) = 1/2

(
1+cos(2ωt)

)
, the frequency is doubled, and energy

conservation provides the delta function δ(ω − 2ω(q⃗)). Two-phonon scat-
tering involves twice the energy transfer as a one-phonon process. Note
how it increases rapidly with Q, going as Q4.

• Higher order terms, involving+ . . ., involve the excitation of many phonons
in one scattering of the neutron. These higher-order terms approach clas-
sical behavior. Typically the scattering of a particle with a large a large
momentum transfer causes the excitation of many phonons, sometimes
better described as the creation of heat.

We note that the analysis here has assumed ignored phase relationships in
multiphonon scattering. This is typical of even more sophisticated treatments
of the problem. Multiphonon scattering is usually analyzed in the incoherent
approximation.

7.4 Magnetic Scattering

7.4.1 Magnetic Form Factor and Scattering Amplitude

Magnetic scattering originates with the interaction between the spin of the
neutron and the spins of electrons and/or the motions of electrons. Magnetic
scattering is inherently more complicated than nuclear scattering because the
potentials have vector character. The magnetic forces are also long range.

The scattering potential can be written in the general form V = −µ⃗n · B,
where B, which originates with the electrons, has a spin component BS and an
orbital component BL:

B = BS + BL . (7.113)
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These components have different mathematical forms4:

BL ∝

̂⃗R × p⃗
R2 , (7.114)

BS ∝ ∇⃗ ×

 s⃗ × ̂⃗R
R2

 . (7.115)

From (1.75) we obtain the scattering amplitude in the first Born approximation
as the Fourier transform of the scattering potential V = −µ⃗n · B

fmag(Q⃗,E) =

√
kf

ki

2m
ℏ2

1
4π

∞∫
−∞

eiQ⃗·⃗r (
−µ⃗n · B

)
dr⃗ . (7.116)

fmag(Q⃗,E) =

√
kf

ki
(−γre)

∞∫
−∞

eiQ⃗·⃗r σ⃗ ·

1
ℏ

̂⃗R × p⃗
R2 + ∇⃗ ×

 s⃗ × ̂⃗R
R2


 dr⃗ , (7.117)

where σ⃗ is the neutron spin, later to be the spin operator. Many constants
were combined into the “classical electron radius,” re = e2/(mec2), and γ is the
gyromagnetic ratio of the neutron, γ = 1.913.

The evaluation of (7.117) is most expedient with two mathematical tricks:

∞∫
−∞

̂⃗R
R2 e−iQ⃗·R⃗ dR⃗ = −4πi

̂⃗Q
Q
, (7.118)

∇⃗ ×

 s⃗ × ̂⃗R
R2

 =
1

2π2

∞∫
−∞

̂⃗q × (⃗s ×̂⃗q) e−iq⃗·R⃗ dq⃗ . (7.119)

The derivation of (7.118) is not difficult – it involves transformation to spherical
coordinates where the R2 in the denominator is cancelled by an R2 in the
differential volume element.5 Unfortunately, (7.119) is much more work to
obtain unless one is rather clever with, or accepting of, vector identities. A
sketch of its derivation is given in Appendix B.2 of Squires’ book.

In using the tricks (7.118) and (7.119), the necessary steps are:

• With the neutron at r⃗ and the ith electron at r⃗i, the position for the magnetic
field, R⃗ in (7.114) and (7.115), is the distance separating r⃗ and r⃗i: R⃗ = r⃗− r⃗i.

4Note that BL has the form of the Biot-Savart law for the electron current (with electron mo-
mentum p⃗) about the atom. The BS can be written as a curl of a vector potential, BS = ∇⃗ × A, if
A = µe × R⃗/R2, and µe = −eℏ/me = −2µB s⃗.

5Note that (7.118) is the inverse transformation of (A.27) in the Appendix, with the interchange
of R⃗ and Q⃗.
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• The Fourier transform of ̂⃗R× p⃗/R2 first involves replacing the exponential
e−iQ⃗·R⃗ = e−iQ⃗·⃗r e+iQ⃗·⃗ri , in order to use coordinates of the neutron and the ith

electron. The second phase factor e+iQ⃗·⃗ri , is a constant, and is removed
from the integration over all space. The remaining spatial integration

becomes, from (7.118), −i4π ̂⃗Q × p⃗/Q.

• Notice that the right-hand side of (7.119) has its only dependence on R⃗
in the exponential (which we again write as e−iq⃗·R⃗ = e−iq⃗·⃗r e+iq⃗·⃗ri ). When
is (7.119) substituted into (7.117), a double integral (over r⃗ and q⃗) is ob-
tained. After the phase factor, eiq⃗·⃗ri , is isolated, the r⃗-integral is of the form∫

ei(Q⃗−q⃗)·⃗rdr⃗. The r⃗-integral therefore gives a three-dimensional δ-function,

(2π)3δ(Q⃗ − q⃗).

The result from these manipulations with (7.118) and (7.119) is:

fmag(Q⃗,E) =

√
kf

ki
(−γr0)

×σ⃗ ·
( ∞∫
−∞

eiq⃗·⃗ri
1

2π2
̂⃗q × (⃗s ×̂⃗q) (2π)3δ(Q⃗ − q⃗) dq⃗

−
i4π
ℏ

eiQ⃗·⃗ri

̂⃗Q × p⃗
Q

)
. (7.120)

Integrating over the δ-function forces q⃗ −→ Q⃗:

fmag(Q⃗,E) =

√
kf

ki
(−γr0) eiQ⃗·⃗ri

×4πσ⃗ ·

̂⃗Q × (⃗s × ̂⃗Q) −
i
ℏ

̂⃗Q × p⃗
Q

 . (7.121)

With the definition of ˜⃗M⊥(Q⃗), which involves a sum over all electrons in the
sample:

˜⃗M⊥(Q⃗) ≡

∑
r⃗i

eiQ⃗·⃗ri

̂⃗Q × (⃗s × ̂⃗Q) −
i
ℏ

̂⃗Q × p⃗
Q

 , (7.122)

fmag(Q⃗,E) = 4π

√
kf

ki
(−γr0) σ⃗ · ˜⃗M⊥(̂⃗Q) . (7.123)

Equation (7.123) is a general expression for the magnetic scattering from
the spin and orbital moment of the electrons. It includes a sum over the phase
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factors for electrons at all {⃗ri}. Unfortunately, the spin and orbital terms in
the large parentheses in (7.122) have different forms, and to see more cearly
the vectorial character of magnetic scattering it is convenient to make them
equivalent using the expression (proved with some effort in Squires Appendix
H.1)

˜⃗M⊥L ≡
i
ℏQ

∑
r⃗i

eiQ⃗·⃗ri (̂⃗Q × p⃗) =
1

2µB

̂⃗Q × ( ˜⃗ML(Q⃗) × ̂⃗Q)
, (7.124)

where the Fourier transform of the magnetic form factor from the spatial dis-
tribution of electron currents is:

˜⃗ML(Q⃗) ≡
∫

M⃗L(⃗r) eiQ⃗·⃗ri dr⃗ . (7.125)

It is natural to write (7.122) as:

˜⃗M⊥ ≡
˜⃗M⊥s +

˜⃗M⊥L , (7.126)˜⃗M⊥ =
1

2µB

̂⃗Q × ( ˜⃗M(Q⃗) × ̂⃗Q)
, (7.127)

where ˜⃗M(Q⃗) is the Fourier transform of the spatial distribution of all magneti-
zation (as in (7.125)):

˜⃗M(Q⃗) ≡
∫

M⃗(⃗r) eiQ⃗·⃗ri dr⃗ , (7.128)

We arrive at the cleaner expression for the magnetic scattering factor

fmag(Q⃗,E) = 4π

√
kf

ki
(−γr0)

∑
r⃗i

eiQ⃗·⃗ri σ⃗ ·
(̂⃗Q × ( ˜⃗M × ̂⃗Q)

)
, (7.129)

7.4.2 Vector Orientations in Magnetic Scattering

Equation (7.129) shows that the magnetic scattering is proportional to the vector̂⃗Q × ˜⃗M × ̂⃗Q. The maximum magnetic scattering therefore occurs when the
direction of the spin, S⃗, or magnetization, M⃗(⃗r), is perpendicular to the scattering
vector, Q⃗. This is illustrated in Fig. 7.4.2, which shows intensity contours
measured about the forward beam in a small-angle scattering experiment. A
magnetic field of 8 kG was applied to the specimen, perpendicular to the
direction of the incident beam. This field should was sufficient to saturate
the magnetic moment of the sample (a soft magnetic material), aligning all its
spins. Notice that the contours are oriented perpendicularly to the direction of
the applied magnetic field. The scattering along the direction of the magnetic
field is non-zero, however, because Ni-Fe has strong nuclear scattering. By
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Figure 7.2: Experimental intensity contours from small-angle neutron scattering
(SANS) from fcc Ni-Fe in the presence of an 8 kG applied magnetic field. The
forward beam was perpendicular to the plane of the paper. The intensity
decreases with angle from the forward beam, but more rapidly in the direction
of the applied magnetic field.

Figure 7.3: Important vectors for magnetic scattering. (left) The gray plane,

parallel to the paper, is defined by the vectors ˜⃗M and ̂⃗Q. The vector product˜⃗M × ̂⃗Q is perpendicular to the plane of the paper and ˜⃗M⊥ ≡
̂⃗Q × ˜⃗M × ̂⃗Q again

lies in the plane. (right) The vector of length ˜⃗M · ̂⃗Q along the direction ̂⃗Q.

comparing intensities parallel and perpendicular to the applied magnetic field,
it is possible to extract individual profiles for magnetic and nuclear scattering.

The relationship between the generalized magnetization, ˜⃗M, its projection,˜⃗M⊥, and the scattering vector, Q⃗, is illustrated with the help of Fig. 7.4.2 and its
caption. By comparing the two parts of this figure, we find

̂⃗Q × ˜⃗M × ̂⃗Q = ˜⃗M − ̂⃗Q( ˜⃗M · ̂⃗Q) . (7.130)

The cross-section for magnetic scattering is proportional to | fmag|
2. We need

to take the product of ˜⃗M⊥ with its Hermitian adjoint to obtain the intensity

˜⃗M†

⊥

˜⃗M⊥ =

( ˜⃗M†

−
̂⃗Q( ˜⃗M†

·
̂⃗Q)

) ( ˜⃗M − ̂⃗Q( ˜⃗M · ̂⃗Q)
)
. (7.131)
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When distributing the product in (7.131), the two middle terms have the same
form but opposite sign to the fourth term, so

˜⃗M†

⊥

˜⃗M⊥ =
˜⃗M† ˜⃗M − ( ˜⃗M†

·
̂⃗Q)( ˜⃗M · ̂⃗Q) . (7.132)

We resolve ˜⃗M and Q⃗ into Cartesian components

˜⃗M†

⊥

˜⃗M⊥ =
∑
α,β

S†αSα − S†αQ̂αSβQ̂β , (7.133)

˜⃗M†

⊥

˜⃗M⊥ =
∑
α,β

(
δαβ − Q̂αQ̂β

)
S†αSβ . (7.134)

7.4.3 Averaging over Neutron Polarizations

To obtain an experimental cross-section from (7.129), we need to average over
the spin orientations of the incident neutrons (orientations of σ⃗). We expect to
write the cross-section as | fmag|

2

d2σ
dΩdE

= (γre)2 k f

ki

∣∣∣∣⟨λ f , σ f |⃗σ ·
˜⃗M⊥|λi, σi⟩

∣∣∣∣2 δ(E f−Ei+ℏω) . (7.135)

Compared to nuclear scattering, (7.135) includes additional coordinates in the
matrix element, σi and σ f , to account for the change in spin of the neutron after
scattering. Again, the λi and λ f refer to states of the scatterer. For magnetic
scattering, a change in λ may originate with the creation or annihilation of an
excitation of the electron spins. Further progress with these coordinates will
require a magnetic dynamics model. The total cross-section requires that we
sum over all initial and final states of the neutron:

d2σ
dΩdE

= (γre)2 k f

ki

∑
i

∑
f

∣∣∣∣⟨λ f , σ f |⃗σ ·
˜⃗M⊥|λi, σi⟩

∣∣∣∣2 δ(E f−Ei+ℏω) . (7.136)

The coordinates σi and σ f describe to the neutron spin, which we expect to
be up or down (sometimes ↑, ↓). Equation (7.135) is the cross-section for one
scattering process, but in an experiment we expect to average over the spins
of many neutrons. The total cross-section should include weighting functions
such as pσi to account for different probabilities of initial spin up and spin
down neutrons, as for example with polarized beam experiments. The final
spin states are assumed unbiased, however, and so have no associated weight
function.

The operator in (7.136) can be resolved into its vector components:

σ⃗ ·
˜⃗M⊥ = σxM̃⊥x + σyM̃⊥y + σzM̃⊥z . (7.137)



178 CHAPTER 7. FUNDAMENTAL THEORY OF NEUTRON SCATTERING

The coordinates of σα pertain to the neutrons only, and the coordinates of M̃⊥α

pertain only to the electrons. The products in (7.137) serve to group the factors
involving electrons and neutrons, but they separate as for example:

⟨λ f , σ f |σxM̃⊥x|λi, σi⟩ = ⟨λ f |M̃⊥x|λi⟩ ⟨σ f |σx|σi⟩ . (7.138)

The cross-section of (7.136) can be separated into nine different terms by use of
(7.137) and (7.138) (note the sequencing of subscripts x and y):

d2σ
dΩdE

= (γre)2 k f

ki

∑
i

∑
f(

⟨λi|M̃⊥x|λ f ⟩ ⟨σi|σx|σ f ⟩⟨σ f |σx|σi⟩⟨λ f |M̃⊥x|λi⟩

+⟨λi|M̃⊥x|λ f ⟩ ⟨σi|σx|σ f ⟩⟨σ f |σy|σi⟩⟨λ f |M̃⊥y|λi⟩

+⟨λi|M̃⊥y|λ f ⟩ ⟨σi|σy|σ f ⟩⟨σ f |σx|σi⟩⟨λ f |M̃⊥x|λi⟩ + . . .

)
δ(E f−Ei+ℏω) . (7.139)

By closure,
∑

f |σ f ⟩⟨σ f | = 1, there is simplification of the spin factors

d2σ
dΩdE

= (γre)2 k f

ki

∑
i

∑
f(

⟨λi|M̃⊥x|λ f ⟩ ⟨σi|σxσx|σi⟩⟨λ f |M̃⊥x|λi⟩

+⟨λi|M̃⊥x|λ f ⟩ ⟨σi|σxσy|σi⟩⟨λ f |M̃⊥y|λi⟩

+⟨λi|M̃⊥y|λ f ⟩ ⟨σi|σyσx|σi⟩⟨λ f |M̃⊥x|λi⟩ + . . .

)
δ(E f−Ei+ℏω) . (7.140)

The spin operators have the properties6

σx| ↑⟩ = | ↓⟩ , σy| ↑⟩ = +i| ↓⟩ , σz| ↑⟩ = +| ↑⟩ ,

σx| ↓⟩ = | ↑⟩ , σy| ↓⟩ = −i| ↓⟩ , σz| ↓⟩ = −| ↓⟩ . (7.141)

Equation (7.140) includes terms with the factors ⟨↑ |σxσy| ↑⟩ and ⟨↑ |σyσx| ↓⟩.
Evaluating them with (7.141) gives:

⟨↑ |σxσy| ↑⟩ = ⟨↑ |σx(+i)| ↓⟩ = ⟨↑ | + i| ↑⟩ = +i⟨↑ | ↑⟩ = +i , (7.142)
⟨↑ |σyσx| ↑⟩ = ⟨↑ |σy| ↓⟩ = ⟨↑ | − i| ↑⟩ = −i⟨↑ | ↑⟩ = −i , (7.143)

6These relations are obtained, for example, from explicit forms of the Pauli spin matrices.
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where the last result used the normalization ⟨↑ | ↑⟩ = 1. It is not surprising that
(7.142) and (7.143) give opposite results because the spin operators σx and σy
do not commute. The consequence is that there is a pairwise cancellation of the
six terms in (7.140) that involve the subscripts xy, yx, xz, zx, yz, zy.

For unpolarized neutrons with | ↑⟩ and | ↓⟩ of equal probabilities, we expect
no bias for the three remaining terms of (7.140), which becomes

d2σ
dΩdE

= (γre)2 k f

ki

∑
i

∑
f(

⟨λi|M̃⊥x|λ f ⟩ ⟨σi|σ
2
x|σi⟩⟨λ f |M̃⊥x|λi⟩

+⟨λi|M̃⊥y|λ f ⟩ ⟨σi|σ
2
y|σi⟩⟨λ f |M̃⊥y|λi⟩

+⟨λi|M̃⊥z|λ f ⟩ ⟨σi|σ
2
z |σi⟩⟨λ f |M̃⊥z|λi⟩

)
δ(E f−Ei+ℏω) . (7.144)

The three remaining terms have factors ⟨σi|σ2
x|σi⟩, ⟨σi|σyx2

|σi⟩, and ⟨σi|σ2
z |σi⟩.

These terms evaluate to 1 as for example

⟨↑ |σ2
x| ↑⟩ = ⟨↑ |σx| ↓⟩ = ⟨↑ | ↑⟩ = 1 . (7.145)

simplifying (7.144)

d2σ
dΩdE

= (γre)2 k f

ki

∑
i

∑
f(

⟨λi|M̃⊥x|λ f ⟩ ⟨λ f |M̃⊥x|λi⟩

+⟨λi|M̃⊥y|λ f ⟩ ⟨λ f |M̃⊥y|λi⟩

+⟨λi|M̃⊥z|λ f ⟩ ⟨λ f |M̃⊥z|λi⟩

)
δ(E f−Ei+ℏω) . (7.146)

In (7.146) we recognize that that the three terms in parentheses are the projec-

tions onto a set of final states of the three components of the vector ˜⃗M⊥. This

can be obtained as ⟨λ f |
˜⃗M⊥|λ f ⟩⟨λ f |

˜⃗M⊥|λi⟩. We therefore make use of (7.134) to
rewrite (7.146) as

d2σ
dΩdE

= (γre)2 k f

ki

∑
α,β

(δαβ − M̃α M̃β)∑
i

∑
f

⟨λi|M̃⊥α|λ f ⟩ ⟨λ f |M̃⊥β|λi⟩ δ(E f−Ei+ℏω) . (7.147)
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Further Reading

The contents of the following are described in the Bibliography.
S. W. Lovesey: Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Oxford,
1984).
S. W. Lovesey: Theory of Neutron Scattering from Condensed Matter, Vol. 2 (Oxford,
1984).
A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova: The Theory of
Lattice Dynamics in the Harmonic Approximation, Second Edn. (Academic Press,
New York, 1971)
V. F. Sears: Neutron Optics (Oxford, 1989).
G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering (Dover,
Mineola, New York 1996).

Problems

1.) (a) Develop the operator identity (7.70), working the algebra given before it
in Sect. 7.2.2.
(b) Show that the Weyl identity (7.59) is obtained when (7.71) is achieved.



Chapter 8

Phonon Dynamics

8.1 Phonon Thermodynamics

8.1.1 Phonon Statistical Mechanics

Phonons are useful for understanding the collective motions of atoms in crystals
because as normal modes of a solid, phonon modes can be treated indepen-
dently. Independent contributions to thermodynamic functions are then pos-
sible, simplifying analyses of the vibrational partition function and vibrational
entropy, for example.

Phonons are bosons, so there is no limit to how many of them can be present
in each mode, or oscillator. Consider a set of oscillators N, all of the same
energy ε, and assume these oscillators can exchange energy. Suppose there
are a number m of phonons that are free to distribute between these different
oscillators. We calculate the phonon entropy from the equation carved in stone
in Fig. 8.1

S = kB lnΩ , (8.1)

where there are a number of ways Ω, to arrange the m phonons in the N
oscillators.

Figure 8.2 illustrates five possibilities for distributing 4 phonons among 4
oscillators. The top configuration in Fig. 8.2 has all four phonons in the left
oscillator. The bottom configuration places one phonon in each oscillator. The
middle three are other possibilities, such as three phonons in the first oscillator,
one in the second, and none in the other two.

What is important about Fig. 8.2 is that it inspires the trick for calculating
Ω combinatorially. The trick is to consider the three vertical bars and the
four circles as distributed at random over the seven positions in each row.
The number Ω becomes the number of ways to distribute m indistinguishable
phonons over (N− 1)+m possible sites (equal to the probability of distributing
N − 1 indistinguishable bars over (N − 1) + m possible sites). The result is a

181
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..

Figure 8.1: The Boltzmann monu-
ment in Vienna. The constant k is
related to kB by the factor 2.3026
if log denotes log10. Our notation
uses Ω instead of W to avoid con-
flict with Debye–Waller factors.

..

Figure 8.2: Five
configurations
of placing 4 (m)
phonons into 4
(N) oscillators.
Vertical lines de-
mark oscillators;
circles denote
phonons.
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binomial coefficient.1 For systems of many oscillators we can replace N−1 with
N, of course:

Ω =
(N +m)!

N! m!
. (8.2)

Substituting (8.2) into (8.1), and using the Stirling approximation of ln(x!) ≃
x ln x − x

Sosc = kB

[
(N +m) ln(N +m) −N ln N −m ln m

]
. (8.3)

We now consider the entropy per oscillator, Sosc/N, and the occupancy of each
oscillator, n ≡ m/N.

Sosc

N
= kB

[
(1 + n) ln(N(1 + n)) − ln N − n ln(nN)

]
, (8.4)

Sosc

N
= kB

[
(1 + n) ln(1 + n) + (1 + n) ln N − ln N − n ln n − n ln N

]
, (8.5)

Sosc

N
= kB

[
(1 + n) ln(1 + n) + (1 + n) ln N − (1 + n) ln N − n ln n

]
, (8.6)

Sosc

N
= +kB

[
(1 + n) ln(1 + n) − n ln n

]
. (8.7)

It is interesting to compare (8.7) to the analogous equation for fermions,
where m electrons are distributed over N states of energy ε, for example. For
fermions, the combinatorics give Ω = N! / [(N − m)! m!]. Fermion entropy,
incidentally, is the same as the entropy of mixing of atoms on a crystal lattice,
were each lattice site can hold only one atom:

Smix

N
= −kB

[
(1 − c) ln(1 − c) + c ln c

]
. (8.8)

Equation (8.7) and (8.8) have two differences – all signs are reversed, and n can
exceed 1, whereas 0 ≤ c ≤ 1.

8.1.2 Phonon Free Energy

With (8.7) for the entropy per oscillator, we construct a Helmholtz free energy
for a system of oscillators, where the phonon energy is simply the number of
phonons per oscillator times the phonon energy, n ε

Fosc = Eosc − TSosc , (8.9)

Fosc = n ε − T kB

[
(1 + n) ln(1 + n) − n ln n

]
. (8.10)

1The first phonon can be placed in N−1+m possible sites, the second has one less, i.e. N−1+m−1
possibilities, and the mth phonon can be placed in N ways. The product of these independent
probabilities is (N + m − 1)! / (N − 1)!. There is, however, an overcounting because we put the
phonons down individually, labeling the first, second, etc., but the phonons are indistinguishable.
The overcounting is the number of ways of distributing m phonons over m sites, which is m!, so we
divide our result by m! in (8.2).
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We seek the equilibrium number of phonons per oscillator at temperature T by
calculating the minimum of Fosc with respect to n:

∂Fosc

∂n
= 0 , (8.11)

0 = ε − T kB

[
ln(1 + n) + 1 − ln n − 1

]
, (8.12)

−
ε

kB T
= ln

n
1 + n

, (8.13)

e−βε =
n

1 + n
, (8.14)

e−βε = n(1 − e−βε) , (8.15)

n(T) =
1

e+βε − 1
, (8.16)

where β ≡ (kB T)−1. Equation (8.16) is the Planck distribution for phonons, or
the Bose-Einstein distribution (for zero chemical potential). It is a consequence
of the statistics of configurations illustrated in Fig. 8.2.

8.1.3 Phonon Entropy and Some Chemical Trends

Here we extend the thermodynamics to a collection of phonon modes with
different energies, and we illustrate a handy calculational approach with the
partition function. A quantum harmonic oscillator has energies that increase
by ε for each phonon, and the partition function for a single harmonic oscillator
is

Zi =

∞∑
n

e−β(n+1/2)ϵi , (8.17)

Zi =
e−βϵi/2

1 − e−βϵi
, (8.18)

where (8.18) was obtained by identifying (8.17) as a geometric series times the
constant factor exp(−βϵi/2). The partition function for a harmonic solid with N
atoms and 3N independent oscillators is the product of these single oscillator
partition functions,

ZN =

3N∏
i

e−βϵi/2

1 − e−βϵi
, (8.19)

from which we can calculate the phonon free energy as F = −kBT lnZ,

Fph =
1
2

3N∑
i

ϵi + kBT
3N∑

i

ln
(
1 − e−βϵi

)
, (8.20)
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and the phonon entropy by differentiating F with respect to T:

Sph = kB

3N∑
i

[
− ln

(
1 − e−βϵi

)
+

βϵi

eβϵi − 1

]
. (8.21)

It is often useful to work with a phonon density of states (DOS), g(ϵ), where
3Ng(ϵ) dϵ phonon modes are in an energy interval dϵ. For a DOS acquired as
digital data in m intervals of width ∆ϵ (so ϵ j = j∆ϵ), the partition function can
be computed numerically as:

ZN =

m∏
j=1

(
e−βϵ j/2

1 − e−βϵ j

)3Ng(ϵ j)∆ϵ

. (8.22)

Given the phonon DOS, g(ϵ), using (8.7) it is possible to obtain this useful
expression for the phonon entropy of a harmonic material at any temperature

Sph = 3kB

∞∫
0

g(ϵ)
[(

n(ϵ) + 1
)

ln
(
n(ϵ) + 1

)
− n(ϵ) ln

(
n(ϵ)

)]
dϵ , (8.23)

where g(ϵ) is normalized to 1 and n(ϵ) is the Planck distribution for phonon
occupancy at the temperature of interest. A handy expression for the high-
temperature limit of the difference in phonon entropy between two harmonic
phases, α and β can be obtained readily from (8.21):

Sβ−αph = 3kB

∞∫
0

(gα(ϵ) − gβ(ϵ)) ln(ϵ) dϵ . (8.24)

The DOS is central to understanding the phonon contributions to thermo-
dynamics, but g(ϵ) must be known to high accuracy because small differences
in DOS curves are often important. For example, if we apply (8.24) to a case
where the phonon DOS curves of the α and β phases have the same shape,
but differ in energy scaling by 10%, we obtain a change in phonon entropy
of ∆Sph = 3kB ln(1.1) ≃ 0.3kB/atom. This change in phonon entropy is almost
half of the maximum possible change in configurational entropy of the order-
disorder transformation of a binary alloy, which is ln 2 kB/atom = 0.69 kB/atom.
When comparing the phonon entropies of different alloy phases, a 1% accuracy
in the difference in logarithmic-averaged phonon energy is often required. Al-
though the role of phonon entropy on phase transformations has been discussed
for many years [1,2], only in recent times have measurements and calculations
become adequate for assessing its thermodynamic importance to phase stabil-
ity [3-5]. Today it is clear that phonon entropy usually differs enough between
alloy phases and compositions to have thermodynamic importance.

At low temperatures it is possible to use electronic structure calculations
with the local density approximation to calculate phonon frequencies with rea-
sonable accuracy, but a 1% accuracy remains a challenge. Inelastic neutron
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scattering faces its challenges too.A triple axis spectrometer at a reactor neu-
tron source is highly accurate in its energy and momentum measurements,
and when a full set of phonon dispersions are measured on single crystals of
ordered compounds, the phonon DOS derived from a lattice dynamics model
is highly reliable. This technique is not so reliable for disordered solid solu-
tions, unfortunately, because the dispersions are inherently broadened, and
this broadening need not be symmetrical in energy. Direct measurements of
the full phonon DOS of disordered alloys are possible with chopper spectrom-
eters at pulsed neutron sources, but other difficulties arise. In general, the
neutron scattering from phonon excitations does not receive an equal contribu-
tion from the different elements in an alloy, and the displacement amplitudes
of the different elements may be different in different phonons. This causes a
“neutron-weight” that is difficult to correct, as discussed in Sect. 6.3.3, although
differential measurements are often possible.

Our knowledge about the phonon entropy of alloy phases is being orga-
nized today, but some trends are clear, and some correlations between phonon
entropy and alloy properties are known [5,6]. The Hume–Rothery rules of alloy
thermodynamics are based on the atomic properties of: 1) electronegativity, 2)
metallic radius, and 3) electron-to-atom ratio, with the first factors being the
most important. For phonon entropy, we should perhaps add 4) atom mass,
to this list. It is found that across the periodic table, where atomic weight
varies from 1 to 238 and beyond, for matrix having atoms of mass M0, and
solutes having mass MS, the phonon entropy upon alloying tends to scale with
ln(M0/MS) [7]. This is a general consequence of the relationship for an oscillator
of ω =

√
k/M, where the frequency, ω, scales as the inverse root of the mass, M,

assuming that the spring constant, k, is in fact a constant. There is a large scatter
in this correlation, however, and it is not a reliable one for most alloys. The
spring constants, or more specifically the interatomic force constants Φαα′lκl′κ′

(Eq. 8.47), are in fact not constant in alloys. In particular, a larger solute atom
will cause a local compression. Since interatomic forces generally become stiffer
under compression, alloying with an atom having both a large size and a large
mass will produce an uncertain result for the vibrational entropy.

Van de Walle and Ceder [8] proposed a model based upon a bond-stiffness
versus bond-length argument. In their model, an atom pair in different local
atomic configurations will have different bond stiffnesses, with greater stiff-
ness for shorter interatomic distances. These characteristics seem transferable
when atom pairs are in different crystal structures. The model is useful for
semi-quantitative arguments, and when calibrated for specific elements by ab-
initio calculations, for example, this model can be used for comparing phonon
entropies of different alloy phases.

In alloying there are chemical trends of phonon entropy. In a systematic
study of transition metal solutes in vanadium, it was found that the phonon
entropy had a robust correlation with the difference in electronegativity be-
tween the solute atom and the vanadium atom. Results, shown in Fig. 8.3,
indicate that this correlation works well for solutes from the 3d, 4d, and 5d
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..

Figure 8.3: Vibrational en-
tropy of alloying of 6 at% so-
lutes in bcc vanadium, plotted
versus Pauling’s electronega-
tivity of the solute element [9].

rows of the periodic table, in spite of their large differences in mass and atomic
size. Electronic structure calculations on transition metals have shown that the
large differences in electronegativity cause large charge transfers between the
solute and its first-nearest-neighbor atoms. These alter the charge screening
sufficiently to vary the interatomic forces, as implied by a substantial decrease
in electron states at the Fermi level [5, 6, 9, 10]. A simple explanation for tran-
sition metals is that with large charge transfers, the bonding tends to become
more ionic, leading to fewer metallic-like states near the Fermi level that can
become excited in response to atom displacements. The crystal becomes more
difficult to distort, and the interatomic forces become stiffer. For alloying of
free electron metals, the solute may donate electrons to the band, stiffening it.
There is also an effect from hybridizing the occupied local states at the host
atoms and the unoccupied local states at the solute, which can cause effects at
least as large [11].

8.2 Heat Capacity

8.2.1 Harmonic Heat Capacity

First consider a harmonic model where CV is obtained with a fixed set of
oscillator frequencies, or a fixed phonon DOS. The temperature derivative of
the Planck occupancy distribution (Eq. 8.16) with respect to T, weighted by the
energy of the mode, εi, shows that each mode of energy εi contributes to the
heat capacity at T the amount

CV,i(T) = kB

(
εi

kBT

)2 exp(εi/kBT)
(exp(εi/kBT) − 1)2 . (8.25)
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In the high temperature (classical) limit where kBT ≫ εi, the heat capacity
becomes 1 kB per mode. 2 Equation 8.25 is consistent with Eq. 8.21 if we
integrate over T for all modes

SV,vib(T) =

T∫
0

3N∑
i

CV,i(T′)
T′

dT′ . (8.26)

(Usually we integrate against the phonon DOS, g(ε), to obtain SV,vib(T).)
A Debye model predicts some general features of the heat capacity. Figure

8.4a shows heat capacity curves for two materials with similar Debye tempera-
tures. The curves look similar at low T, and are essentially identical at very high
T. Their most pronounced difference is found at approximately one-quarter of
the Debye temperature. The integrand of Eq. 8.26 has a maximum below about
a fifth of the Debye temperature, so experimental studies of vibrational entropy
by heat capacity should include this range of temperatures. The difference
between these two curves, shown in Fig. 8.4b, is typical of the shape of a dif-
ferential heat capacity curve obtained from real phonon DOSs, although there
are differences in detail. The Debye model assumes a phonon DOS that is a
quadratic function of ε, and increases monotonically up to a cutoff energy εD.
The actual DOS often has a more abrupt rise at low energies that comes from
the lower sound velocity of the low transverse modes, which are also weighted
at their cutoff energy by the effects of dispersion (e.g., from a high DOS at the
Brillouin zone boundary). Plots of εD versus T typically show a dip and a rise
from a mimimum at roughly a tenth of the Debye temperature θD = εD/kB, but
this varies from material to material.

8.2.2 Quasiharmonic Thermodynamics

More typically measured by calorimetry is the amount of heat going into the
solid at constant pressure, Cp, defined as

Cp(T) = T
dS
dT

)
p

. (8.27)

The difference between Cp and CV is a classical thermodynamic relationship

Cp − CV = 9Bvα2T , (8.28)

where B is bulk modulus, α is the linear coefficient of thermal expansion, v is
specific volume, and 9 is the square of three dimensions. Equation 8.28 can

2Even with phonon softening this could remain true. In the high-temperature limit, with
phonon occupancies of kBT/εi per mode, the softening of the modes gives an increase in occupancy
proportional to 1/εi, but a decrease in energy proportional to εi. The product of these two factors
produces a heat capacity CV at high temperatures that is unaffected by mode softening, so CV can
remain as 3kB/atom at high temperatures. This is not so if there are other phenomena at work, such
as a buildup of elastic energy as a crystal expands.
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Figure 8.4: (a) Heat capacity versus temperature for two Debye solids with
Debye temperatures of 450 and 500 K. (b) Difference of the two curves in part
a.

be derived from formal thermodynamic manipulations, aided for example by
techniques of Jacobian transformations.

A physical derivation of Eq. 8.28 can be performed by considering the free
energy of a crystal having only 1) phonons, and 2) thermal expansion. There are
energy terms from the phonons and from the elastic expansion, and an entropy
from the phonons (an average thermal expansion does not generate entropy
itself). The free energy is

F(T) = Eelas(T) + Eph(T) − TSph . (8.29)

The elastic energy of thermal expansion, using δV/V0 = 3αT is

Eelas =
1
2

B
(δV)2

V0
,

Eelas =
9
2

BV0 α
2T2 , (8.30)

The phonon energy in the classical limit is

Eph(T) = 3NkBT . (8.31)

In the high-temperature limit, the phonon entropy is (cf., Eq. 8.21 for large β)

Sph(T) = kB

3N∑
j

ln
(

kBT
ℏω j

)
. (8.32)
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For small δV/V0 (where the superscript 0 denotes a reference value at zero
temperature and pressure), we expect a typical phonon frequency ω j to shift as

ω j = ω
0
j (1 − γδV/V0) , (8.33)

ln(ω j) ≃ ln(ω0
j ) − γ

δV
V0 , (8.34)

where γ is the Grüneisen parameter. Using the approach of Eq. 8.34 with and
δV/V0 = 3αT for the thermal expansion

Sph(T) = kB

3N∑
j

ln

 kBT
ℏω0

j (1 − 3γαT)

 , (8.35)

Sph(T) =

kB

3N∑
j

ln

 kBT
ℏω0

j


 + 9NγαkBT , (8.36)

Sph(T) = S0
ph(T) + 9NγαkBT = S0

ph + Sq , (8.37)

where the first term, S0
ph(T), is the harmonic phonon entropy with phonon

frequencies characteristic of T = 0, and unchanged with temperature. Using
Eqs. 8.30, 8.31 and 8.37 in the free energy expression for the expanded crystal
with phonons, Eq. 8.29

F(T) =
9
2

BV0α
2T2 + 3NkBT − TS0

ph(T) − 9NαγkBT2 . (8.38)

First we obtain the equilibrium thermal expansion coefficient, α, by calcu-
lating

∂F(T)
∂α

= 0 = 9BV0αT2
− 9NγkBT2 ,

α =
CVγ

3BV0
, (8.39)

where we have used the classical result CV = 3NkB.3 If the electronic entropy
depends on volume, an additional term, CelV γel/(3BV0) is added to the right-
hand side of Eq. 8.39.

Substituting Eq. 8.39 for the thermal expansion into 8.38 for the free energy

F(T) = F0(T) −
9
2

BV0α
2T2 , (8.40)

where F0(T) is the harmonic free energy at finite temperature with zero thermal
expansion (α = 0). We use Eq. 8.39 to express the quasiharmonic entropy Sq of
Eq. 8.36 or 8.37 as

Sq = 9BV0α
2T (8.41)

3The effect of phonon energy is small as discussed in Footnote 2, although there is also a small
effect from a reduction in zero-point phonon energy as the solid expands.
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Figure 8.5: Heat capacity versus temperature for trial models of cerium metal.
Inset is the phonon DOS at 0 K, and the harmonic heat capacity curve was ob-
tained from this DOS (3R is the classical limit). The elastic energy from thermal
expansion was added to the harmonic curve to obtain the quasiharmonic one.
Using experimental α and B in Eq. 8.39, a γ was obtained from Eq. 8.39 that
predicted the phonon DOS would soften by 6.5 % from 0 to 300 K. (The real
heat capacity also includes an electronic contribution.)

(consistent with differentiating Eq. 8.40 with respect to T). Finally, if we
substitute Eq. 8.41 into Eq. 8.27, we can recover Eq. 8.28. Typical effects
on heat capacity are shown in Fig. 8.5. This Sq of Eq. 8.41 should always
be considered when comparing the vibrational thermodynamics of different
materials at elevated temperatures.

8.2.3 Anharmonic Heat Capacity

In mechanics, the word “anharmonic” describes any oscillator with generalized
forces that deviate from linearity with generalized coordinates. In vibrational
thermodynamics, “anharmonic” is used more restrictively. The word “quasi-
harmonic” accounts for the effects of thermal expansion on phonons just con-
sidered (e.g., Eqs. 8.28, 8.41), effects that are not strictly harmonic. An implicit
assumption of quasiharmonic theory is that an oscillation has a well-defined,
long-lived, harmonic-like frequency that changes modestly and predictably
with changes in T and P.

Equation 8.39 is useful for separating anharmonic from quasiharmonic be-
havior. Suppose we know (by inelastic scattering measurements for example)
the thermal softening of the phonon modes, from which we calculate an aver-
age Grüneisen parameter γ. With the phonon DOS we can also calculate CV
(or its molar quantity), and conventional measurements can provide B, V0 (or
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molar volume v), and α, accounting for all unknowns in Eq. 8.39. If Eq. 8.39
proves to be true with the γmeasured from the phonon softening, it is possible
that the solid is “quasiharmonic.”4

Anharmonic behavior is identified as phonon softening or stiffening that is
inconsistent with the Grüneisen parameter γ needed for equality in Eq. 8.39.
Anharmonicity involves phenomena beyond those of independent phonons.
Higher-order phonon-phonon interactions are the source of anharmonic be-
havior as discussed in Sect. 9.3.1. Section 9.3.2 discusses electron-phonon
interactions, which also vitiate Eq. 8.39.5 Substantial deviations from quasi-
harmonic behavior are known for Cr (6), V (7), Ce (8), Mo, W, Si, Ge (9), and
anharmonic or non-harmonic effects could be important in many other systems.

8.2.4 Thermodynamic Entropy

The temperature dependence of the entropy

dS(T,V)
dT

=
∂S
∂T

)
V

+
∂S
∂V

)
T

dV
dT

. (8.42)

contains harmonic, quasiharmonic, and anharmonic contributions, along with
non-harmonic effects from electron-phonon interactions. For the harmonic part
of the vibrational entropy we use Eq. 8.23, with a phonon DOS, g0(ε), from low
temperature measurement or calculation (ideally T = 0 K). The harmonic part
contributes to the first term on the right-hand-side of Eq. 8.42, i.e., ∂S/∂T)V.
Harmonic phonons undergo no change in frequency with T or V. The tem-
perature dependence of Sh(T) originates with the Planck occupancy factors
n(ε,T).6

Quasiharmonic phonons have frequencies that depend on volume only,
and make a contribution through the second term on the right-hand-side of Eq.
8.42. At a fixed volume, however, they behave as harmonic oscillators. Their
frequencies can change with temperature, but only because thermal expansion
alters the volume of the solid.

Anharmonic entropy, Sa, may contribute to either of the two terms on
the right-hand side of Eq. 8.42, but especially the first, a pure temperature-
dependence of the vibrational entropy at fixed volume caused by changes in
the interatomic force constants with temperature. Consider for example a quar-
tic term in the interatomic potential, which alters the force constants with larger
thermal displacements. The quartic term does not affect the thermal expansion,

4However, some phonon modes may be anharmonic and others quasiharmonic, or the quasi-
harmonic modes may have different Grüneisen parameters.

5It remains a challenge to differentiate between these sources of non-harmonic behavior (5),
so sometimes the effects of electron-phonon interactions are called “anharmonic.” More often
“anharmonic” is reserved for phonon-phonon interactions only.

6For harmonic solids at high temperatures, differences in the phonon DOS will cause a difference
in entropy for different phases, but this difference in entropy does not change with temperature.
(At high T, S increases with T by the same amount for each phase.)
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but it does change the phonon frequencies. It causes a type of “phonon-phonon
interaction,” so called because the existence of phonons affects the energy to
create new phonons. Other temperature-dependences of force constants at con-
stant volume may arise if the nature of the bonding changes as atoms are dis-
placed further from their equilibrium positions, or perhaps thermal excitations
of electrons alter the sensitivity of electronic energy to atom displacements (Sec-
tion 9.3.2 addresses such effects from adiabatic electron-phonon interactions).
The second term in Eq. 8.42 is associated with changes of the interatomic force
constants with volume. The quasiharmonic contribution is expected to account
for most of it, but the practice of using harmonic entropy expressions, while
correct to first order (5), is not fully verified. The cubic term associated with
thermal expansion also shortens phonon lifetimes, causing energy spreads of
phonon linewidths. This may not alter the vibrational entropy to first order,
but again the robustness of the harmonic approximation is not fully tested.
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8.3 Lattice Dynamics

8.3.1 Atomic Force-Constants

Since most of the atom mass is in the nucleus, for lattice dynamics we consider
the Hamiltonian for nuclear motions in a crystal

Hn =
∑
l,κ

p⃗2
lκ

2mκ
+ Φ , (8.43)

and the characteristics of the atom vibrations require attention to the potential
energy, Φ. Following the development of Maradudin, et al. (10) for a crystal
lattice with a basis, the basis vectors are

{⃗
rκ, κ = 1, 2...R

}
. Each atom κ, in the

unit cell l, is allowed to vibrate about equilibrium with the displacement u⃗lκ(t).
The instantaneous position R⃗lκ(t) of atom lκ at time t is

R⃗lκ(t) = r⃗l + r⃗κ + u⃗lκ(t) . (8.44)

We use Cartesian components uαlκ for the displacement vector, where α =
{x, y, z}. The total potential energy of the crystal, Φ, is a function of the in-
stantaneous positions of all the atoms in the crystal, but it is expanded in a
Taylor series of the atomic displacements about u⃗lκ(t) = 0 (i.e., the equilibrium
positions of the atoms R⃗lκ = r⃗l + r⃗κ)

Φ = Φ0 +
∑
αlκ

Φαlκ uαlκ

+
1
2

∑
αlκ

∑
α′l′κ′
Φαα′lκl′κ′ uαlκ uα′l′κ′ + ... , (8.45)

where the coefficients of the Taylor series are the derivatives of the potential
with respect to the displacements:

Φαlκ =
∂Φ
∂uαlκ

)
0

, (8.46)

Φαα′lκl′κ′ =
∂2Φ

∂uαlκ ∂uα′l′κ′

)
0

, (8.47)

where the subscript zero means that derivatives are evaluated in the equi-
librium configuration (all displacements equal to zero) and Φ0 is the static
potential energy of the crystal. Because the force on any atom must vanish in
the equilibrium configuration, we have (10)

Φαlκ = 0 ∀ α, l, κ . (8.48)

In the harmonic approximation of lattice dynamics we keep only the terms
of the series written explicitly in Eq. 8.45 – we neglect terms of order three and
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higher in the displacements

Hn =
∑

lκ

p⃗2
lκ

2mκ
+ Φ0 +

1
2

∑
αlκ

∑
α′l′κ′
Φαα′lκl′κ′ uαlκ uα′l′κ′ , (8.49)

where mκ is the mass of the atom at basis index κ of the unit cell. We rewrite
the Hamiltonian in matrix form

Hn =
∑

lκ

p⃗2
lκ

2mκ
+ Φ0 +

1
2

∑
lκ

∑
l′κ′

u⃗T
lκ Φlκl′κ′ u⃗l′κ′ , (8.50)

where a 3×3 force-constant sub-matrix is defined for each atom pair (lκ; l′κ′)

Φlκl′κ′ = [Φαα′lκl′κ′ ] . (8.51)

If (l, κ) , (l′, κ′), Eq. 8.47 applies. If (l, κ) = (l′, κ′), Φαα′lκlκ is a “self-force
constant,” derived from the requirement of no overall translation of the crystal

Φlκlκ = −
∑

(l′,κ′),(l,κ)

Φlκl′κ′ . (8.52)

Because −Φlκl′κ′ u⃗l′κ′ is the force acting upon atom (lκ) when atom (l′κ′) is dis-
placed by u⃗l′κ′ , it follows that Φlκl′κ′ must be a real symetric matrix:

Φlκl′κ′ =

a b c
b d e
c e f

 . (8.53)

Any crystal is invariant when translated by a lattice vector, so the force constant
matrices must also have the following property:

Φlκl′κ′ = Φ0κ(l′−l)κ′ = Φ(l−l′)κ0κ′ (8.54)

8.3.2 Equations of Motion

In the harmonic approximation, the equations of motion for all nuclei are

mκ

··

u⃗lκ(t) = −
∑
l′,κ′
Φlκl′κ′ u⃗l′κ′ (t) ∀ l, κ . (8.55)

In Eq. 8.55 there are 3×R×Ncell equations of motion to solve for a finite crystal
containing Ncell unit cells. We seek solutions having the form of plane waves7

7In general, the motion of an atom u⃗lκ(t) will be a sum over many phonons u⃗lκ⃗kj(t).
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of wavevector k⃗, angular frequency ωk⃗ j, and “polarization” e⃗κ j (⃗k) (where j is a
“branch index” discussed below)

u⃗lκ⃗kj(t) =

√
2 ℏ

N mκ ωk⃗ j
e⃗κ j (⃗k) ei(⃗k·⃗rl−ωk⃗ jt) . (8.56)

u⃗lκ⃗kj(t) = ℏ

√√
2n(εk⃗ j,T) + 1

N mκ εk⃗ j
e⃗κ j (⃗k) ei(⃗k·⃗rl−ωk⃗ jt) , (8.57)

where we take the real part to obtain physical displacements. The phase factor,
ei⃗k·⃗rl , provides all the long-range spatial modulation of u⃗lκ⃗kj(t). The dependence
on κ, a short-range basis vector index, is taken out of the phase factor and placed
in the complex constant e⃗κ j(⃗k). It is convenient for the e⃗κ j (⃗k) of Eq. 8.56 to have
modulus unity, as does the exponential. The prefactors are consistent with the
quantization of energy for one phonon, ℏω = mω2

⟨u2
⟩ = 1

2 mω2 u2
max, or for the

thermal population of phonons in mode εk⃗ j, having energy E = εk⃗ j[n(εk⃗ j,T)+ 1
2 ].

(For root-mean-squared displacements, delete the
√

2 in Eqs. 8.56 and 8.57.)
We impose periodic boundary conditions on the finite crystal. These require

the set of possible wavevectors {⃗k} to have Ncell values, a large number that gives
a very fine mesh of k⃗-points in reciprocal space. With R atoms in the basis of
the unit cell, the crystal has 3 × R × Ncell vibrational modes, in agreement
with its total number of mechanical degrees of freedom. Each wavevector k⃗ is
associated a-priori with 3×R types of vibrational modes, identified by a branch
index, j. Each of the 3R different modes corresponds to a different polarization
vector e⃗κ j(⃗k) and angular frequency ωk⃗ j (1 ≤ j ≤ 3R), although degeneracies can
be induced by symmetry.

8.3.3 The Eigenvalue Problem for the Polarization Vector

The polarization vector, e⃗κ j (⃗k), is a characteristic of each vibrational mode k⃗, j.
The vector e⃗κ j (⃗k) contains information on the excursion of each atom κ in the
unit cell for the phonon mode mode k⃗, j. Specifically, it gives 1) the displacement
direction of the atom, and 2) its phase lag in time with respect to the other atoms.
The vectors e⃗κ j (⃗k) for all the atoms in the basis (1 ≤ κ ≤ R) and their associated
angular frequencies ωk⃗ j can be calculated by diagonalizing the “dynamical

matrix” D(⃗k). The dynamical matrix is obtained by substituting Eq. 8.56 into
8.55. It has the dimensions (3N×3N) and is constructed from (3×3) submatrices
Dκκ′ (⃗k)

D(⃗k) =


D11 (⃗k) . . . D1N (⃗k)
...

. . .
...

DN1 (⃗k) · · · DNN (⃗k)

 . (8.58)
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Each sub-matrix Dκκ′ (⃗k) is the Fourier transform of the force-constant matrix
Φlκl′κ′ , considered as a function of (l′ − l):

Dκκ′ (⃗k) =
1

√
mκmκ′

∑
l′
Φ0κl′κ′ ei⃗k·(⃗rl′−r⃗0) , (8.59)

where we set l = 0 because the summation is over all l′ and the origin is
arbitrary. By similarly collecting the polarization vectors into a vector of size
3 × R, we rewrite the system of differential equations (Eq. 8.55) with the plane
wave solutions (Eq. 8.56) as an eigenvalue problem:

D(⃗k) e⃗ j(⃗k) = ω2
k⃗ j

e⃗ j (⃗k) , (8.60)

where

e⃗ j (⃗k) =



ex1 j (⃗k)
ey1 j (⃗k)
ez1 j (⃗k)
ex2 j (⃗k)
...

ezN j(⃗k)


. (8.61)

It can be shown that the (3R×3R) dynamical matrix D(⃗k) is hermitian (for any
value of k⃗). It is fully diagonalizable, and the ω2

k⃗ j
are real. The 3R eigenvectors

and eigenvalues of the dynamical matrix evaluated at a particular wavevector
k⃗ then correspond to the 3R eigenmodes of vibration of the crystal for that
wavevector.

8.3.4 Calculation of the Phonon Density of States

To calculate the phonon density of states (DOS) of the crystal, g(ε), the dy-
namical matrix is diagonalized at a large number of points in reciprocal space
(typically covering the first Brillouin zone). The diagonalization of D(⃗k) at each
k⃗ point returns 3R eigenvalues of angular frequency ωk⃗ j (1 ≤ j ≤ 3R), which are
then binned into the DOS histogram.

A phonon partial DOS, gd(ε), is a similar quantity, but it gives the spectral
distribution of motion by one atom, the species d in the unit cell. Unlike the
total DOS, g(ε), the eigenvalues of the crystal are not weighted equally in the
partial DOS

gd(ε) =
∑

k⃗

∑
ακ j

δdκ |eακ j (⃗k)|2 g(ε) , (8.62)
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where the Kroneker delta is zero unless the atom species d is at the site κ (when
δdd = 1). Because the eigenvalues of the dynamical matrix are normalized for
each k⃗ as ∑

ακ j

|eακ j(⃗k)|2 = 1 , (8.63)

the total DOS is the sum of the partial DOSs of all atoms in the unit cell,

g(ε) =
∑

d

gd(ε) . (8.64)

To calculate a partial DOS, for each diagonalization of the dynamical matrix
at a specific k⃗ point, the partial DOS histogram for atom d is incremented at
frequency ωk⃗ j by the amount

∑
α e∗

αdj (⃗k) eαdj (⃗k). The partial DOS for atom d is
large at energies where there are many modes with large displacements of atom
d. The histogram for the phonon partial DOSs are computed simultaneously
with the total DOS.

8.3.5 Symmetry Constraints on the Force-Constant Matrices
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8.4 Computer Simulations of Lattice Dynamics

8.4.1 Density Functional Theory

A large branch of computational materials science owes its predictive power to
developments in density functional theory (DFT), in conjunction with advances
in computing power. There are excellent reviews and books on density func-
tional theory and its applications to materials, some of which offer a broader
context of condensed matter theory (11)(12)(13)(14). This rich field is far too ex-
tensive to cover here. The techniques for calculating phonons from first princi-
ples also deserve a much more extensive presentation (43)(15)(16)(17)(18)(19)(20)(21)(22)(23).
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This brief overview of some key methods and concepts is presented with apolo-
gies that numerous intellectual achievements in this rapidly-moving field can-
not be covered.

Density functional theory elevates the importance of the electron density
with respect to the electron wavefunctions, relying on a theorem that all prop-
erties of an electronic system can be obtained from the ground state electron
density (24)(25). A functional relationship must exist between the density and
the physical quantity of interest, but finding this relationship is a challenge.
The successful approach developed by Kohn and Sham (26) assumes that the
ground state electron density of a system of interacting electrons can be equal to
that of a non-interacting system of electrons, with an interacting electron den-
sity. Working with independent electrons makes calculations practical, freeing
us from time-ordered-fermion field operators for electron-electron interactions.
In particular, the electron exchange and Coulomb correlation energy, which
are nonlocal multibody interactions, can be successfully approximated with
functionals of the local density, or the density and its local gradients, for exam-
ple. The density is obtained from the electron wavefunctions, so computational
algorithms require iteration to self consistency of the potential and the wave-
functions. The local density functional theory has been surprisingly successful,
although problems occur for strongly-correlated electron systems.

8.4.2 First-Principles Phonon Calculations

Principles for calculating phonon dispersions from the electronic energy were
outlined in the classic work of Ziman (27) and others (28). Two approaches
are used. The direct methods impose displacements of atoms, and calculate
energies of distorted configurations. In the supercell method, pairs of atoms
are displaced by u⃗ and u⃗′ along directions of symmetry, for example, and from
the energies of the distorted structures, E(u⃗, u⃗′), the force constantsΦlκl′κ′ of Eq.
8.55 can be calculated as

Φαα′lκl′κ′ =
∂2E(u⃗, u⃗′)
∂uαlκ ∂uα′l′κ′

)
0

, (8.65)

(cf., Eq. 8.47). With these ab-initio force constants, the lattice dynamics can
be calculated (17). The Hellman-Feynman theorem shows that errors in the
wavefunctions that cause only second-order errors in energy are responsible
for first-order errors in forces, so energy convergence is stringent (43)(21). With
the frozen phonon method, the potential energy of an individual phonon is cal-
culated directly by generating periodic distortions of a cell or supercell (29)(30).
Calculations with direct methods are versatile, and can account for unusual
structures. Frozen phonons of different amplitudes are a natural way to account
for anharmonic potential energies (31)(32)(33), although a good sampling of all
phonons is challenging. When periodic boundary conditions are used, the cell
should be comfortably larger than the longest-range interatomic force, and the
phonon wavevector should be commensurate with the structure. With many
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atoms and electrons in a large supercell, however, the calculations can become
unwieldy, especially since the computation time often scales as the cube of the
number of electrons.

The second approach calculates the sensitivities to small density modula-
tion, usually with a linear response theory (15)(16)(18)(34). These are second
derivatives of the energy, and the simplest approach to the problem is with
second order perturbation theory. For periodic crystals with both electrons
and phonons expressed as Bloch functions, the density susceptibility function
for the Fourier coefficient (⃗k) of the electron density depends on the Fourier
coefficient of the phonon modulation (⃗k′) as

χ(⃗k, k⃗′) = 2
∑

i

∑
j

⟨i|e−i⃗k·⃗r
| j⟩⟨ j|ei⃗k′ ·⃗r

|i⟩
ϵi − ϵ j

, (8.66)

where the intermediate electronic states | j⟩ are unoccupied, and the states |i⟩
are occupied. A considerable simplification is that k⃗ and k⃗′ must be related by a
reciprocal lattice vector, reducing the number of terms in Eq. 8.66, although for
more realistic interacting systems, the situation is not so simple. A variational
approach for obtaining the energy to second order has been developed to
obtain a linear response to periodic perturbations (18). In this method, the
dynamical matrix can be calculated directly (19). It is also possible to recover
real-space force constants by Fourier transformation of the dynamical matrix
for appropriate selections of k⃗.

8.4.3 Molecular Dynamics

Molecular dynamics simulations integrate equations of motion to follow in
time the positions and velocities of all atoms. Many molecular dynamics sim-
ulations are classical or semi-classical, using forces obtained as gradients of
model potential energy functions, for example. The atoms are allowed to move
under Newton’s law for a short time, and the forces are recalculated for the
new configuration of atoms. These simulations can be extended beyond a mi-
crocanonical ensemble by allowing contact of a small simulation system with
a reservoir, accounting for fluctuations of temperature or pressure, for exam-
ple. Realistic thermostatic or barostatic control can be achieved by extending
the dynamical system with degrees of freedom that represent the external sys-
tem (35)(36). Molecular dynamics is not restricted to harmonic forces, and
large-amplitude displacements allow investigations of anharmonic behavior.
Accurate force fields that account for all detail of the local atomic environment
can be a challenge. Such force fields can be obtained from quantum mechanics,
but often they are empirical.

The velocity-velocity autocorrelation function ⟨v(t)|v(0)⟩ can be calculated
from the trajectory of each atom in a molecular dynamics simulation.8 The

8The notation indicates that the velocity history of each atom is multiplied by the velocity history
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Fourier transform of the velocity-velocity autocorrelation function gives the
phonon DOS (37)

g(ω) =
∫

eiωt ⟨v(t)|v(0)⟩
⟨v(0)|v(0)⟩

dt . (8.67)

In another approach, it is possible to obtain differences in thermodynamic
quantities such as phonon free energy by parameterizing a Hamiltonian to
allow the system to switch from one structure to another, and integrating along
the path of this switching parameter.

It is possible to solve for the forces on the moving nuclei by performing a full
DFT calculation at each timestep of the simulation, but this is cumbersome. The
Car–Parrinello algorithm makes practical quantum molecular dynamics simu-
lations of greater complexity (38)(39). It uses the electron degrees of freedom as
dynamical variables in a set of coupled equations of motion for the nuclei and
the electrons. The nuclei have a classical kinetic energy of M/2 [dulκ/dt]2. The
trick to the algorithm is that the electrons are given a fictitious kinetic energy of
µ/2

∫
[dψ/dt]2dr⃗, with a mass µ that is an adjustable parameter (that helps with

the stability of the numerical calculations). With this coupling of nuclear and
electronic motions, constrained by the orthogonality of the electron wavefunc-
tions, the electrons stay near their ground states during the simulation. The
electron wavefunctions do not need to be recalculated at each step of the simu-
lation, offering an improvement in efficiency. The Car–Parrinello algorithm is
an adiabatic approximation.

8.5 Group Theory and Lattice Dynamics

8.5.1 Real Space

The paper by A. A. Maradudin and S. H. Vosko “Symmetry Properties of
the Normal Modes of a Crystal”, Reviews of Modern Physics 40, 1-37 (1968),
shows how group theory can be used to understand the normal modes of crystal
vibrations. The focus of their substantial manuscript is on using the symmetry
of the reciprocal lattice to find the eigenvectors of the dynamical matrix and
classify them. The degeneracies of the different normal modes are addressed
rigorously, and their association with the symmetry elements of the crystal
are useful in labeling them. Projection operator methods offer the possibility
of finding eigenvectors and eigenvalues without diagonalizing the dynamical
matrix.

The paper by J. L. Warren “Further Considerations on the Symmetry Prop-
erties of the Normal Modes of a Crystal”, Reviews of Modern Physics 40, 38-76
(1968), also describes the point group of the bond. The bond means the in-
teractions between an atom and its neighbors. The group of the bond refers

shifted by t, and integrated over all time.
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to the real space symmetries of the interatomic interactions, i.e., how the force
constants transform under the point group operations at a central atom.

Consider the space group operator in Seitz notation:

S ≡ {S | v⃗(S) + x⃗(m)} , (8.68)

where S is a rotation operation, x⃗(m) is a lattice translation, and v⃗(S) is an addi-
tional displacement that is required for non-symmorphic crystals (i.e., crystals
with screw axes or glide planes).9 Apply this operator to a displacement vector
u (the displacement of an atom off its site during a vibration):

u′α(L,K) =
∑
β

Sαβuβ(l, κ) , (8.69)

where the operation serves to mix the Cartesian components (denoted subscript
α) of the displacement vector for the atom at l, κ, and translates the vector to
the atom at L,K. The potential energy of the crystal depends quadratically on
the uα, times a force constant matrix involving the spatial derivatives of the
potential along the Cartesian axes of the uα. The potential energy of the crystal
is invariant under symmetry operations of (8.68). This leads to the equality:

Φµν(LK,L′K′) =
∑
αβ

SµαSνβΦαβ(lκ, l′κ′) . (8.70)

The matrix equation (8.70) must be true for all valid force constant matrices
Φαβ(lκ, l′κ′). It is instructive to set S = I, the identity, so there is no rotation, and
only translations are imposed. This can be used to show that force constants
can depend only on relative separations between atoms, not absolute positions.

A number of other tests of force constants can be performed with (8.70).
Imposing rotations that mix the Cartesian axes can be used to demonstrate that
some force constants are equal. Force constants that must equal their negative
are found – this result means that the force constant is zero. Equation (8.70)
could be handy for determining allowed force constants if a set of space group
matricies, S, are available.

8.5.2 k-space

Quantum Mechanics

In quantum mechanics, group theory addresses the symmetry of the hamilto-
nian, H. If an operator, R, commutes with H,

RH = HR , (8.71)∑
j

Ri jH jk =
∑

j

Hi jR jk , (8.72)

9Note that this vector v⃗(S) mixes the rotation and translation operations.
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it is convenient to select basis functions for which R is diagonal, so the single
remaining terms in the sums are:

RiiHik = HikRkk , (8.73)
(Rii − Rkk)Hik = 0 . (8.74)

Equation (8.74) shows that when i , k, then the off-diagonal elements Hik = 0.
The basis functions for which R is diagonal are the same for which H is diagonal.

For example, consider the rotational symmetry of a hydrogen atom about
the ẑ-axis. The Abelian group of rotations has 1-dimensional representations
in terms of functions eimϕ. Done. Obtaining the ϕ-dependence this way was
much easier than solving the Schrödinger equation in spherical coordinates.

Lattice Dynamics

The analogous question for lattice dynamics is, “Can we use symmetry to
get the eigenvectors of the dynamical matrix without solving the eigenvalue
problem in detail?” The dynamical matrix is:

Dαβ(κκ′ |⃗k) =
1

√
MκMκ′

∑
l′
Φαβ(lκ; l′κ′) exp[−i⃗k · (x⃗(l) − x⃗(l′))] , (8.75)

and the relevant eigenvalue equation is:∑
βκ′

Dαβ(κκ′ |⃗k)uβ(κ′) = ω2uα(κ) . (8.76)

All functions in (8.76) live in reciprocal space. The entire paper of Maradudin
and Vosko is in reciprocal space, or k-space.

Consider the matrix ΓS (⃗k) that performs symmetry operations S on the

dynamical matrix. Doing two such operations is tricky, since the k⃗ used in
constructing the matrix for the second operation depends on the result of the
first operation. Maradudin and Vosko choose instead to work with the space
group of a single wavevector k⃗, and designate the symmetry operations by
Ri = {R | v⃗(S) + x⃗(m)}. These symmetry operations on k⃗ produce equivalent
wavevectors. In particular, the rotational part of Ri therefore must generate a k⃗
that differs only by a reciprocal lattice vector g⃗:

Rk⃗ = k⃗ − g⃗ . (8.77)

This is quite restrictive, and means that g⃗ is zero for most vectors k⃗. The situ-
ation is much like the allowed k-vectors for ordered structures in the Landau-
Khachaturyan formalism of second-order phase transitions. The operations of
(8.77) eliminate the equivalent vectors from the star of k⃗. Inequivalent k⃗ can
exist only at special points such as the boundaries of Brillouin zones.
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Table 8.1: Elementary Variables Used by Maradudin and Vosko
l, l′ indices of unit cells
κ, κ′ indices of atom in basis
r number of atoms in basis
x⃗l,κ atom site in a crystal
x⃗l lattice site in a crystal
x⃗κ basis vector
Mκ mass of atom in basis
α, β Cartesian indicies {x, y, z}
u⃗(κ) and uα(κ), uβ(κ) atom displacement in a phonon,

and Cartesian components
Φαβ(lκ; l′κ′) force constant between two atoms
e⃗(⃗k, σ, λ) phonon polarization vector

(with components for all κ in unit cell)
σ (or s) denotes (or index for) a distinct value of ω2

j

λ (or a) denotes (or index for) independent
eigenvector for each σ or ω2

j

fσ number of eigenvectors for each
degenerate energy (1 ≤ a ≤ fσ)

S ≡ {S | v⃗(S) + x⃗(m)} Seitz space group operator
h order of the group (number of elements)
S matrix of rotation or improper rotation
v⃗(S) little displacement vector

for a screw axis operation
x⃗(m) lattice translation vector
ΓS(⃗k; {S | v⃗(S) + x⃗(m)}) 3r × 3r unitary matrix of symmetry

operator (in recip. space)
Ri ≡ {R | v⃗(S) + x⃗(m)} symmetry operator

for a single wavevector k⃗
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So although:

D(Sk⃗) = Γ−1
S

(⃗k)D(⃗k)ΓS(⃗k) , (8.78)

and therefore in general:

D(⃗k) , Γ−1
S

(⃗k)D(⃗k)ΓS (⃗k) , (8.79)

with the restriction to the group of the wavevector k⃗, the unitary matricies ΓRi

commute with D:

D(⃗k) = Γ−1
Ri

(⃗k)D(⃗k)ΓRi (⃗k) . (8.80)

These {ΓRi (⃗k)} actually form a 3r-dimensional unitary representation of the space
group of the wavevector, k⃗. They could be used to develop the symmetry
properties of the eigenvectors of the dynamical matrix, but this is not the
approach of Maradudin and Vosko.

Multiplier Representation

Maradudin and Vosko define a new matrix T(⃗k; Ri), which differs from the ΓRi (⃗k)
by an exponential phase factor of modulus unity:

T(⃗k; {Ri | v⃗(S) + x⃗(m)}) = exp[i⃗k · (v⃗(S) + x⃗(m))]

×ΓRi (⃗k; {R | v⃗(S) + x⃗(m)}) , (8.81)

This choice of T(⃗k; Ri) is somewhat unusual because these matricies do not form
a group in the usual sense – the product of two of them is not an element of the
group:

T(⃗k; Ri)T(⃗k; R j) = exp[ig⃗ · v⃗(R j)]T(⃗k; RiR j) . (8.82)

(where the product of exponentials of two cases of (8.81) were simplified by
noting the restrictive condition (8.77) on the allowed R, giving the condition
g⃗ · x⃗(m) = 2πm, and exponential phase factors of +1). The phase factor exp[ig⃗ ·
v⃗(S)] can differ from +1, although it differs from +1 only for crystals with screw axes
AND special k-points.10

Matrices {T(⃗k; Ri} that obey a multiplication rule of (8.82) are said to form
a “multiplier representation” of the group of {Ri}. The phase factor is the
“multiplier.” For most crystals this is +1, and we are back to ordinary group
representations. Even if the multiplier is complex, however, if we can get the

10Is it important to study phonons (or magnons) at special k-points in crystals with screw axes
(non-symmorphic crystals)?
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eigenvectors of these T, we can get the eigenvectors of the dynamical matrix,
D.

We rewrite (8.76):

D(⃗k)⃗e(⃗kσλ) = ω2
σe⃗(⃗kσλ) , λ = 1, 2, 3 . . . fσ , (8.83)

noting that:

D(⃗k)[T(⃗k; Ri)⃗e(⃗kσλ)] = ω2
σ[T(⃗k; Ri )⃗e(⃗kσλ)] . (8.84)

The {T}mix the degenerate e⃗(⃗kσλ) (i.e., they mix those λ that go with the same
σ). Showing this more clearly, we write:

T(⃗k; Ri )⃗e(⃗kσλ) =
fσ∑
λ′

τ(σ)
λ′λ (⃗k; Ri )⃗e(⃗kσλ′) , (8.85)

for every Ri in the group of the wavevector k⃗. The fσ functions transform
among themselves under T(⃗k; Ri). Furthermore, from (8.80) we can show that
T(⃗k; Ri) commutes with D. These conditions are sufficient to show that the
{τ(σ) (⃗k; Ri)} provide an fσ-dimensional irreducible multiplier representation of
the point group of the wavevector k⃗.

Now make a vector of all eigenvectors:

e⃗(⃗k) =
[⃗
e(⃗kσ1λ1), e⃗(⃗kσ1λ2), . . . e⃗(⃗kσ2λ1), e⃗(⃗kσ2λ2), . . .

]
, (8.86)

which transforms as:

T(⃗k; Ri )⃗e(⃗k) = e⃗(⃗k)∆(⃗k; Ri) , (8.87)

and the 3r × 3r dimensional matrix ∆(⃗k; Ri) has the block-diagonal form:

∆(⃗k; Ri) =



τ(1) (⃗k; Ri) 0 0 . . .

τ(2)(⃗k; Ri) 0 . . .

0 0 τ(3) (⃗k; Ri) . . .

.


. (8.88)

The unitary matrices τ(σ) (⃗k; Ri) are known for all 230 space groups. In a formal
sense, the problem is solved.

Projection Operators

In a practical sense, we can generate the eigenfunctions by projection operator
machinery. Maradudin and Vosko show that:

P
(s)
λλ′ (⃗k) = fs/h

h∑
Ri

τ(s)
λ′λ (⃗k; Ri)∗ T(⃗k; Ri) (8.89)
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is a projection operator.
The projection operator method is considered standard practice, and is not

developed further by Maradudin and Vosko. Perhaps it is useful to review it
in the context of group theory in quantum mechanics.

Suppose a set of {ϕ( j)
λ } are partner functions in the representation ( j), and

transform among themselves under operation of the symmetry operator PRi
.

Explicitly:

PRi
ϕ( j)
κ =

l j∑
λ=1

ϕ( j)
λ Γ

( j)
λκ(Ri) . (8.90)

Multiply by the complex conjugates of all representation matrices and sum over
all elements in the group:

h∑
Ri

Γ
(i)
λ′k′ (Ri)∗PRi

ϕ( j)
κ =

h∑
Ri

l j∑
λ=1

Γ
(i)
λ′k′ (Ri)∗Γ

( j)
λk(Ri)ϕ

( j)
κ , (8.91)

h∑
Ri

Γ
(i)
λ′k′ (Ri)∗PRi

ϕ( j)
κ = δi jδκκ′ϕ

( j)
λ′ , (8.92)

where the last line was obtained through the Great Orthogonality Theorem of
group representation theory. Equation (8.92) shows how a projection operator,
P

( j)
λk:

P
( j)
λk = l j/h

∑
Ri

Γ
(i)
λ′κ′ (Ri)∗PRi

, (8.93)

pulls out the function ϕ( j)
λ′ .

For the eigenvectors of the dynamical matrix for a particular k⃗, the projec-
tion operator of (8.89) does the same thing. Since the matricies τ(σ) (⃗k; Ri) are
available, one could use projection operator techniques to operate on an arbi-
trary vector and generate all eigenfunctions of the dynamical matrix. Labels
can be assigned to various phonons based on group theory designations. An-
other step could be to substitute the e⃗(⃗kσλ) into (8.83) and obtain ω2

σ by matrix
multiplication rather than by matrix inversion. Is this useful, or just elegant?
Projection operator methods will reveal all degeneracies of normal modes for
a particular k⃗. In such cases where a set of partner eigenvectors is found, it is
not possible to obtain them directly. This requires diagonalizing the dynamical
matrix to solve for the eigenvectors, or more accurately a block diagonal form
of the dynamical matrix as in (8.88).

Compatibility Relations

The paper by J. L. Warren “Further Considerations on the Symmetry Properties
of the Normal Modes of a Crystal”, Reviews of Modern Physics 40, 38-76 (1968),
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adds to the discussion of Maradudin and Vosko. Compatibility relationships
are described in more detail in Warren’s paper. Compatibility relationships refer
to the new degeneracies that appear when special high symmetry directions in
the Brillouin zone come together at special points, such as at the point Γ at the
center of the zone, or at the points {X, W, K, L} on the surface of the zone.

For example, when moving along a line in k-space along the (100) direction,
an abrupt change in symmetry occurs when the edge of the zone (X) or center
of the zone (Γ) is reached. The source of this new symmetry is the fact that
at these special points, translational vectors of the reciprocal lattice cause the
points to become equivalent (identical) to other points in the reciprocal lattice.11

For example, at an arbitrary position along the (100) direction, the symmetry
elements are {E, C2

4, 2C4, 2σv, 2σd}. This fourfold axis obviously does not have
threefold symmetry elements, but the situation changes at the origin, point
Γ. The (111) direction, which includes a threefold axis, also converges at Γ.
Some representations along the (100) axis are expected to be compatible with
some representations along the (111) axis when the two axes meet at the origin.
The larger symmetry group at the orgin, point Γ, contains the elements of the
threefold and fourfold axes as subgroups. Some representations of the groups
from the threefold and fourfold axes are compatible at Γ, while some are not.
Those that are compatible at Γ must have eigenvalues that are degenerate in
energy. Their associated phonon branches rigorously converge in energy at Γ.

The way to test for compatibility is to inspect the characters, χ(Ri) =
Tr[Γ(Ri)], of the representations of the three groups. This can be done with
the decomposition formula of group representation theory in exactly the same
way as is done for analyzing the degeneracies in crystal field theory. (After all,
we are considering only the point group of the wavevector.) The decomposition
formula for the characters is:

ai =
1
h

∑
Ri

χ(Ri)∗χ(R) , (8.94)

where ai is the number of times that a particular representation of the subgroup
(e.g., of the threefold axis) appears in the group representation of the special
point (e.g., Γ).

Equation (8.94) is most easily used by inspection of character tables.12 For
example, if all characters of a representation along the fourfold axis match
the characters of a representation at Γ, these representations are compatible.
In a more complicated situation where there is only one ai = 1, the sum of
the characters from the representations along the fourfold axis must equal the
character of a representation at Γ. For the simplest example, the characters of
all symmetry elements in the ∆1 representation of the group of the fourfold

11These k-vectors are not identical when they are just slightly displaced off these special points,
and related eigenvectors have to be considered independently.

12These are found in the classic paper by L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner,
Phys. Rev. 50, 58 (1936), and an excellent description is provided in Chapter 8 of M. Tinkham’s
book on Group Theory and Quantum Mechanics.
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axis are +1. The same symmetry elements have characters +1 for the Γ point
for the representation Γ1. The threefold axis has a different set of symmetry
elements than the fourfold axis, but these elements are also +1 for the Γ1 rep-
resentation, and are +1 only for the Λ1 representation. We deduce that the ∆1
representation of the (100) fourfold axis and the Λ1 representation of the (111)
threefold are compatible at the point Γ. These two representations have the
same basis functions as Γ1, but the symmetry operators at Γ interchange these
basis functions because they are degenerate in energy. The significance that the
basis functions of the ∆1 and Λ1 representations must have exactly the same
energy at the point Γ in k-space. They are not degenerate just away from the
Γ point (unless accidentally, or in the case of no crystal potential), but group
theory says that they are rigorously degenerate at Γ. This is a result of potential
use in the analysis of phonon data. We can determine the required conditions
for the merging of dispersion curves at special point in k-space. (Incidentally,
s-type functions are suitable basis functions for the symmetric representations
in this simple example.)

8.5.3 Time-reversal symmetry in the dynamical matrices

Time reversal symmetry must be considered in magnetic systems. Consider
the spin as a rotation in a particular direction. The spin is flipped upon time
reversal. Time reversal symmetry must also be considered in certain cases for
non-magnetic systems, and results in additional degeneracies. In most cases
time-reversal symmetry does not result in additional degeneracies, however.
(Perhaps we could consider additional degeneracies as “accidental,” but get
the software to flag them so we can inspect for this later.)

When the Hamiltonian is invariant by the time-reversal operation (the di-
rection of momentum, or spin is inverted), the system is said to have the
time-reversal symmetry. The system without the external magnetic field has
generally the time-reversal symmetry. The time-reversal symmetry often gives
the nontrivial physical significance like the additional degeneracy of the system.
One of most well-known examples is the Kramers degeneracy, i.e. a system
of an odd number of electrons has the extra degeneracy, but an even number
does not. Of course, the present ionic lattice system has such symmetry, too.
Therefore, it needs to be checked if there occur additional degeneracies or not
due to the symmetry, which can be done by investigating the symmetry of the
dynamical matrices.

Maradudin and Vosko begins the discussion by considering the additional
rotational element S k⃗ = −k⃗ in the point group of the crystal. In the same way
as R (in the the point group G0), with each element S R (in the coset S G0) we
associate a new matrix operator T(⃗k; S R), which is defined anti-unitary as it
should be. The analysis for T(⃗k; R) in section 4.4.3 can be extended straightfor-
wardly to include the anti-unitary matrix operator T(⃗k; A) (the element S R will
be denoted by A hereafter). It is highly desirable to derive the condition for
the existence of extra degeneracies due to the time-reversal symmetry, by look-
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ing into the linear dependence of the eigenvectors e⃗(⃗ksaλ) and T(⃗k; A)⃗e(⃗ksaλ) (it
is clear both should be eigenvectors because the system has the time-reversal
symmetry). We define

⃗̄e(⃗ksaλ) = T(⃗k; A)⃗e(⃗ksaλ) (8.95)

and consider and compare the transformation properties of e⃗(⃗ksaλ) and ⃗̄e(⃗ksaλ)
under T(⃗k; R)

T(⃗k; R)⃗e(⃗ksaλ) =
fs∑
λ′

τ(s)
λ′λ (⃗k; R)⃗e(⃗ksaλ′) , (8.96)

T(⃗k; R)⃗ē(⃗ksaλ) =
fs∑
λ′

τ̄(s)
λ′λ (⃗k; R)⃗ē(⃗ksaλ′) , (8.97)

where it is found that the irreducible multiplier representations {τ̄(s) (⃗k; R)} and
{τ(s)(⃗k; R)} belong to the same factor system. They can be either equivalent or
inequivalent. In particular, they can be separated into three types depending
on the relationship between two irreducible multiplier representations.

First, we think of a case the irreducible multiplier representations τ̄(s) and
τ(s) are inequivalent, which will be referred to as of the third type. In this case,
the eigenvectors e⃗(⃗ksaλ) and ⃗̄e(⃗ksaλ) are orthogonal and the fs-fold degeneracy
in the dynamical matrix is doubled by 2 fs by the time-reversal symmetry.

On the other hand, it is a bit complicated for an alternative situation τ̄(s) and
τ(s) are equivalent. In the case, two representations are related by a similarity
transformation, τ̄(s)(⃗k; R) = β−1τ(s)(⃗k; R)β, where β is a unitary matrix. Thanks to
the irreducibility of the matrices {τ(s) (⃗k; R)}, the uniqueness up to a phase fac-
tor is followed for the matrix β. By Schur’s Lemmas, the matrix ββ∗τ(s) (⃗k; A−2

0 )

commuting with all the matrices {τ(s)(⃗k; R)} of an irreducible multiplier rep-
resentation of the point group must be proportional to the unit matrix. This
results in two cases;

ββ∗ = ϕ(⃗k; A0; A0)τ(s)(⃗k; A2
0) , (8.98)

ββ∗ = −ϕ(⃗k; A0; A0)τ(s) (⃗k; A2
0) , (8.99)

where ϕ(⃗k; A0; A0) is a ”multiplier”. Further, as is often the case, ββ∗ = ±1 for a
suitable element A0 in S G0. Now we can turn our attention to the problem of
liner independence of e⃗(⃗ksaλ) and ⃗̄e(⃗ksaλ). For the purpose, it would be easy to
investigate the scalar product of two eigenvectors. For the necessary algebra,
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it is important to note the scalar products of a unitary and an anti-unitary
transformation on vectors are distinguished as

⟨T(⃗k; R)φ,T(⃗k; R)ψ⟩ = ⟨φ,ψ⟩ ,

⟨T(⃗k; A0)φ,T(⃗k; A0)ψ⟩ = ⟨ψ,φ⟩ ,

and also the properties for the successive transformations under T(⃗k; R) and
T(⃗k; A0) on the eigenvectors e⃗(⃗ksaλ) and ⃗̄e(⃗ksaλ). After a little algebra, it is
finally found that, adopting ββ∗ = ±1,

⟨⃗ē(⃗ksaλ′), e⃗(⃗ksaλ)⟩ = ±⟨⃗ē(⃗ksaλ′), e⃗(⃗ksaλ)⟩ , (8.100)

where the upper plus sign is corresponding to a case in Eq.(4) and the lower
minus sign to a case in Eq.(5), respectively. Clearly, if ββ∗ satisfies Eq.(5), then

⟨⃗ē(⃗ksaλ′), e⃗(⃗ksaλ)⟩ = 0 .

This means that two eigenvectors are linearly independent and the minimum
dimension of the subspace that is invariant under {T(⃗k; R)} is 2 fs. In the case,
the set of eigenvectors transforms according to an irreducible multiplier rep-
resentation of the second type under the symmetry operations. The other case
where ββ∗ satisfies Eq.(4) cannot say anything about the linear independence of
two eigenvectors. If they are linearly dependent, they can differ by at most an
arbitrary phase factor and there occurs no additional degeneracy. On the other
hand, if they are linearly independent, this can be referred to as an acciden-
tal degeneracy. This is a case under the irreducible multiplier representations
called the first type.

The above discusses the criteria for establishing the type of representation by
dealing with the relation between {τ̄(s)(⃗k; R)} and {τ(s) (⃗k; R)}. Before closing this
section, it may be heuristic to introduce the analogous criterion for irreducible
multiplier representations. Starting from the orthogonality theorem,∑

R

τ̄(s)
µµ′ (⃗k; R)∗τ(s)

νν′ (⃗k; R) = (h/ fs)β−1
µν
∗

β∗ν′µ′ , first or second type,

= 0 , third type,

where h is the order of the group G0. Using the relation between τ̄(s)
µµ′ (⃗k; R) and

τ(s)
µµ′ (⃗k; A−1

0 RA0) and Eqs.(4) and (5), we arrive at another interesting criterion∑
R

ϕ(⃗k; A0R,A0R)τ(s)
λλ′ (⃗k; A0RA0R) = +(h/ fs)δλλ′ , first type,

= −(h/ fs)δλλ′ , second type,
= 0 , third type.
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It is often customary to express the criterion in terms of the characters χs, i.e.
χs (⃗k; R) = Trτs(⃗k; R),∑

R

ϕ(⃗k; A0R,A0R)χ(s)(⃗k; A0RA0R) = +h , first type,

= −h , second type,
= 0 , third type.

The criterion can be also expressed as a sum over the elements A0 of the coset
S G0 instead of R of the point group G0∑

A0

ϕ(⃗k; A0,A0)χs (⃗k; A2
0) = +h , first type,

= −h , second type,
= 0 , third type.

8.5.4 Implementation in DANSE

Some results from group theory seem both useful and practical to implement
in software. Others are not such good value:

• The point group of the bond can be used to fill out the force constant
matrix, to check for inconsistencies of the force constants, and to help
in generating them. This should, in principle, be facilitated by the ma-
trix operations that are available as Pythonized routines in Computational
Crystallographic Toolbox from the Lawrence Berkeley National Lab [?].

• The group of the wavevector can be assesed. If the Brillouin zone has
been assessed previously by group theory, we can use the compatibility
relationships to determine which dispersions are degenerate in energy at
special points. This is important information when assessing the behavior
of fuzzy data. Knowing that a convergence of curves is expected puts
constraints on data, and allows a larger number of counts to be analyzed
simultaneously, improving reliability.

• Time reversal symmetry might be useful to consider in magnetic systems.
It seems plausible that one could assess the merging of magnon disper-
sions at special points, but we need to see how well this has been worked
out by theorists. It would probably be too much to actually calculate
character decompositions on the computer for individual cases.

• I think that actually reducing the dynamical matrix by symmetry is too
much to do. The procedure may be elegant to implement, but the net gain
does not seem large enough when compared to brute force diagonaliza-
tion, which works rather well so far.



Chapter 9

Spin Dynamics

9.1 Spin as a Source of Magnetism

Electrons are the source of magnetism in materials. Although the atomic nuclei
also have spins and magnetic moments, nuclear moments are smaller by a factor
of 1,000. The electron contributes to magnetism in two separate ways. One is
from orbital motion – the classical origin of magnetism. The Hamiltonian for
electron motion in an electromagnetic field is

H =
1

2m

[
p⃗ +

e
c

A⃗(⃗r)
]2
. (9.1)

Here we assume that the magnetic field H⃗ is uniform and take the Coulomb
gauge of ∇ · A⃗ = 0, consistent with A⃗(⃗r) = 1

2 (H⃗ × r⃗):
The first order term with respect to A⃗(⃗r) gives

H
(1) =

e
2mc

H⃗ · (⃗r × p⃗) (9.2)

= µBH⃗ · L⃗ , (9.3)

where L⃗ = r⃗× p⃗ (orbital angular momentum) and µB = eℏ/2mc (Bohr magneton).
Incidentally, the second order term in (9.1) is:

H
(2) =

e2

8mc2 (⃗r × H⃗)2 , (9.4)

which is simply the magnetic induction, i.e. Lenz’s law. The first order term
(9.3) gives the paramagnetism leading to the magnetization parallel to the mag-
netic field, while the second order term (9.4) gives the diamagnetism leading
to the magnetization antiparallel to the magnetic field. For atoms with closed
shells (i.e. L⃗ = 0) or superconducting metals, diamagnetism plays the dominant
role. Except for such cases, however, paramagnetism is usually more important
than diamagnetism.

213
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There is another important contribution to magnetism from the electron
besides its orbital motion. Electron spin angular momentum is the essential
ingredient of magnetism in most systems having interesting magnetic proper-
ties. In metallic systems where the electron wavefunction is well approximated
as a plane wave, it can be shown easily that L⃗ = 0. The angular momentum
also vanishes in insulators when the force the electron feels in a solid devi-
ates much from the spherical symmetry the electron would feel in an isolated
atom. In these cases, an orbital motion of the electron cannot contribute to the
magnetism.

Electron spins can be localized or itinerant, and these two cases provide
different types of magnetism. Usually, localized spins are found at ions in
magnetic insulators and itinerant spins are on conduction electrons in metal-
lic systems, although there are other important magnetic systems with both
itinerant and localized spins that show unusual properties. The following
sections describe the characteristic magnetic properties of localized spins, itin-
erant spins, localized spins immersed in itinerant spins, and strongly correlated
electrons.

9.1.1 Localized Spins

Consider a system of localized spins, where the spins are arranged periodically
on a crystal, and interact with each other through an exchange interaction. To
understand effects of the spin-spin exchange interaction in the system, several
kinds of spin models are available. These textbook models have a long his-
tory. Depending on the spin dimensionality, there are the Heisenberg model,
the XY model, and the Ising model or n-state Potts model. The commonly-
used Heisenberg model treats three-dimensional spins, the XY model treats
two-dimensional spins, and the Ising model or n-state Potts model treats one-
dimensional spins. This section discusses magnetic properties of localized
spins within the ferromagnetic Heisenberg model.

For an external magnetic field h ˆ⃗z, we have the spin interaction Hamiltonian
(J > 0) on the square lattice1

H = −J
∑
i, j

S⃗i · S⃗ j − gµB

∑
i

hSz
i , (9.5)

where the first term gives the spin-spin interaction intrinsic to the Heisenberg
model. Now introduce the “mean field” (or “molecular field”) approxima-
tion. Details of interactions between neighboring spins are ignored, and the
HamiltonianH is replaced by:

H = −J
∑
i, j

S⃗i · ⟨S⃗ j⟩ − gµBh
∑

i

Sz
i . (9.6)

1For geometrical reasons, on some lattices the spins cannot have long-range order.
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The magnetization ⟨Mz⟩ = −gµB
∑

i⟨Siz⟩ = −gµBN⟨Sz⟩ can then be obtained
through ⟨Sz⟩ =

∑
Sze−βH/Z, where Z =

∑
e−βH . The evaluation of ⟨Sz⟩ is simple

becauseH now includes only scalar quantities. Following the definition of the
susceptibility χ = limh→0⟨Mz⟩/h,

χ =
C

T − TC
, (9.7)

where TC and C are called the Curie temperature and the Curie constant, respec-
tively. The temperature-dependence of χ in (9.7) is characteristic of a localized
spin system.

For understanding dynamical properties of a magnetic system, a starting
point is its elementary excitations. For the case of three-dimensional spins in
the Heisenberg model, the elementary excitation is known as a spin wave (or
magnon). We consider the operator Oq⃗ that creates a specific excitation in the
system,

[H ,Oq⃗] = ωq⃗Oq⃗ , (9.8)

where ωq⃗ is the energy of the excitation. The operator Oq⃗ raises the spin wave
and provides the spin wave energy. Introducing the Fourier transformation of
spin operators, we reexpress the Heisenberg Hamiltonian as:

H = −

∑
q⃗

J(q⃗)S⃗(q⃗) · S⃗(−q⃗) (9.9)

= −
∑

q⃗

J(q⃗)
[
Sz(q⃗)Sz(−q⃗) +

1
2

(
S+(q⃗)S−(−q⃗) + S−(q⃗)S+(−q⃗)

)]
, (9.10)

where we introduce S⃗(q⃗) =
∑

i S⃗ieiq⃗·R⃗i and S±(q⃗) =
∑

i Si
±

eiq⃗·R⃗i (Si
±
= Si

x ± iSi
y).

Assuming the ground state is ferromagnetic, the low energy excited states
should correspond to states with spins slightly deviated from perfect alignment.
S−(q⃗) is an operator that performs this role – it creates the spin wave excitation
(magnon). The excitation energy of magnon is determined from (9.8):

[H ,S−(q⃗)] = ωq⃗S−(q⃗) , (9.11)

which is not, however, exactly solvable and requires an approximation. The
most immediate approach is the mean field approximation forH , which yields:

ωq⃗ = 2⟨Sz⟩[J(0) − J(q⃗)] (9.12)

≈ 2(J/N)⟨Sz⟩a2q⃗2 , (9.13)

where for the three-dimensional cubic lattice:

J(q⃗) = 2(J/N)[cos(qxa) + cos(qya) + cos(qza)] . (9.14)

At low temperatures, ⟨Sz⟩ ≈ NS and the magnon energy is

ωq⃗ = 2JSa2q⃗2. (9.15)
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The magnon energy spectrum is gapless, i.e., ωq⃗ → 0 as q⃗ → 0. The zero
temperature magnetization (M0) then decreases with increasing T as magnons
are created. At small T:

M(T) =M0 − gµB

∑
q⃗

nq⃗ , (9.16)

where nq⃗ is the Bose distribution function for magnons. A very famous result
is the decrease of magnetization at low T is:

M(T)
M0 − 1

∝ T3/2 , (9.17)

which is obtained by a simple integration of (9.16).

9.1.2 Itinerant Spins

Both itinerant electrons in metals and localized spins in insulators exhibit in-
teresting magnetism. The magnetization of the system, ⟨Mz⟩, in an external
magnetic field h is:

⟨Mz⟩ = −µB

∑
k⃗

[
⟨c†

k⃗↑
c⃗k↑⟩ − ⟨c

†

k⃗↓
c⃗k↓⟩

]
, (9.18)

where c†
k⃗↑

(c⃗k↑) is an electron creation (annihilation) operator with a momentum

k⃗ and spin up. In the noninteracting electron gas, the magnetic susceptibility
(called the Pauli susceptibility χP) is:

χP = 2µ2
BN(ϵF)[1 + O(T/ϵF)2] , (9.19)

where N(ϵF) is the electron density of states at the Fermi level and ϵF is the
Fermi energy. χP is almost constant at low temperatures and has a very weak
temperature dependence.

Now consider a ferromagnetic metal. In ferromagnetic metals, the exchange
interaction between electrons can raise the ferromagnetic order by overcoming
the competition between kinetic energy and exchange energy. The suscepti-
bility, χS, depends on the electron exchange interaction V̄, called the Stoner
susceptibility. It can be obtained by extension of χP as:

χS =
χP

1 − 1
2µ2

B
V̄χP

. (9.20)

Noting that χP ≈ 2µ2
BN(ϵF) at low temperatures, χS becomes:

χS = 2µ2
B

N(ϵF)
1 − V̄N(ϵF)

. (9.21)
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From (9.21), 1 − V̄N(ϵF) ≥ 0 is a ferromagnetic instability condition at T = 0,
called the “Stoner condition.” For transition metals, the d-band is narrow and
N(ϵF) can be large, so the Stoner condition is often satisfied (as for Fe, Co, Ni).

The temperature dependence of χS is very weak at room temperature, es-
pecially compared to the Curie–Weiss susceptibility. This can be easily under-
stood because only electrons near the Fermi level can participate in thermally-
driven magnetic excitations. Nevertheless, the temperature dependence of the
Stoner susceptibility provides context for a longstanding puzzle of the ferro-
magnetism observed in Fe (TC =1044 K), Ni (627 K), and Co (1388 K). Putting
χP = 2µ2

BN(ϵF)[1 − aT2], and χS(TC) = ∞ at the transition temperature TC, we
obtain for χS(T):

χS =
2µ2

B/V̄a

T2 − T2
C

=
2µ2

B/V̄a
(T + TC)(T − TC)

, (9.22)

and, in particular, near TC:

χS ≈
µ2

B/V̄aTC

T − TC
. (9.23)

The Stoner susceptibility therefore shows a Curie–Weiss behavior near TC.
However, it is well known that ferromagnetic metals like Fe, Ni, and Co show
Curie–Weiss behavior over much wider temperature ranges. The observed
Curie–Weiss behavior has been one of the most important sources of contro-
versy over whether spins in ferromagnetic transition metals are itinerant or
localized. Improving the Stoner spin susceptibility within a picture of itinerant
spins remains an open problem.

Dynamical responses of spins in metals are also very different from those
in localized spin systems. For conduction electrons, magnetic responses of
their spins are directly related to details of the electron band structure. In the
noninteracting electron gas, χ0(q⃗, ω) governing the magnetic responses of the
system is

χ0(q⃗, ω) = 2µ2
B

∑
k⃗

nk⃗ − nk⃗+q⃗

εk⃗+q⃗ − εk⃗ − ω
, (9.24)

where nk⃗ is the Fermi distribution function and εk⃗ is the band energy at k⃗. We
note that the Pauli susceptibilityχP corresponds toχ0(q⃗, ω) at q⃗ = 0 andω = 0. In
the same way as was found for non-interacting systems, for interacting electron
systems in the paramagnetic state, χ(q⃗, ω) is:

χ(q⃗, ω) = 2µ2
B

F(q⃗, ω)
1 − V̄(q⃗)F(q⃗, ω)

. (9.25)

The susceptibility χ(q⃗, ω) is directly related to the neutron scattering cross
section as:

S(q⃗, ω) =
2

1 − e−βω
Imχ(q⃗, ω) . (9.26)

It is curious that for temperatures well above TC, neutrons are still scattered
magnetically by metallic spins. A further consideration makes this even more
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curious. In thermal neutron scattering experiments, the neutron velocity vn
is typically smaller than the electron velocity vF by a factor of 10−3. This
means that a neutron interacts with approximately 103 electrons as it moves
across the magnetic moment of an atom. The average spin of 103 electrons
will be zero at T > TC. The answer to this puzzle is provided by further
analysis of (9.25). Neutrons are scattered by collective motions of electron spins
(called spin-fluctuations)2, not by individual electron spins. More precisely, the
paramagnetic scattering of neutrons is caused by fluctuations of the magnetic
force on neutrons exerted by spins of itinerant electrons. On the other hand,
in the ferromagnetic state (T < TC), we need to consider effects from the spin
polarization from the splitting of the electron band states into up and down spin
states. In this case of itinerant band electrons, the elementary excitations are
like the spin wave and Stoner excitation in the ferromagnetic states, obtained
from the condition:

1 = V̄(q⃗)
∑

k⃗

nk⃗↑ − nk⃗+q⃗↓

εk⃗+q⃗↓ − εk⃗↑ − ω
. (9.27)

Even though the spin wave is usually discussed in the context of systems
with localized spins, it is interesting that spin waves are also excited in the
ferromagnetic ordered state of itinerant spins. Like the insulating case, we find
M(T)/M0 − 1 ∝ T3/2, as in (9.17) for ferromagnetic metals. This experimental
finding strongly implies the existence of spin waves in metallic magnetism.

Returning to the problem of the ferromagnetic transition metals Fe, Co, and
Ni, we ask again, “Are these spins itinerant?” or “Can Stoner theory properly
explain their magnetism?” The answers are still extremely unclear. There have
been attempts to incorporate the electron-phonon interaction within the itiner-
ant picture. These have improved the Stoner suceptibility somewhat and have
led to a Curie–Weiss-like behavior with a smaller TC than obtained from band
theory, more consistent with experiment. Nevertheless, many features consis-
tent with local moments are observed experimentally. The observed change
in the specific heat of Fe at TC, for example, is associated with an entropy of
order kB ln 2, as expected for localized electrons. Spin-resolved photoemission
experiments show that the exchange splitting does not vanish at T > TC, strong
experimental indication of local moments in ferromagnetic transition metals.
These controversies demonstrate that a better theory is needed to properly
account for electron correlations.3

2The original discussion of spin-fluctuations is provided by T. Izuyama, D.J. Kim, and R. Kubo,
J. Phys. Soc. Jpn. 18, 1025 (1963).

3A compromise model that includes both itinerant and localized features with “correlated
delocalized electrons” is available, where the magnetic moments at different sites fluctuate in
magnitude and direction at finite temperatures.
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9.1.3 Localized Spins Embedded in Itinerant Spins

A mixed magnetic system with localized spins (or magnetic impurities) em-
bedded in itinerant spins provides many exotic magnetic properties that differ
from the properties of from systems having localized or itinerant spins, but
showing features of both. Consider two cases:

• Mn atoms in Cu metal, where Mn (3d)5 electrons play the role of a mag-
netic impurity of S = 5/2, and Cu gives a sea of conduction electrons,

• An f -electron system, for example Ce which has a localized f -level and a
5d conduction band.

The governing Hamiltonian4 for both cases can be written as

H = t
∑

i j

c†iσc jσ + J
∑

il

S⃗l · σi, (9.28)

where σ is the spin of conduction electrons and S⃗ is the localized spin. Although
both cases can be explained byH , they correspond to different limits ofH .

First, for Mn impurities in Cu, we set t ≫ J, so the Hamiltonian expresses
an effective indirect interaction of localized spins mediated by conduction elec-
trons. This interaction is called the RKKY (Ruderman-Kittel-Kasuya-Yosida)
interaction:

HRKKY = J(kF |⃗ri − r⃗ j|) S⃗i · S⃗ j , (9.29)

and J(x) has the functional form:

J(x) ∝ −
cos x

x3 +
sin x

x4 . (9.30)

The RKKY interaction is also observed in magnetic multilayer systems com-
posed of layers of Fe/Cu, for example, where Cu plays the role of a nonmagnetic
metallic spacer. Here it is found that the exchange coupling constant oscillates
and has both positive and negative values depending on the thickness of the
Cu layer, consistent with the kF for the conduction electron sea in Cu.

The second case is the opposite limit of t ≪ J, and approaches the Kondo
model for heavy fermion systems. In the past decades, very unusual low
temperature behaviors have been observed in rare earth metals (e.g., Ce) and
actinides (e.g., U). The linear specific heat at low temperatures shows an un-
usually high coefficient, γ, of order 1 J/mol K2, in contrast to a 1 mJ/mol K2

typical of ordinary metals. High values of γ are typical of “heavy fermion” sys-
tems.5 Furthermore, these heavy fermion systems have an electrical resistivity

4This is called the “Kondo lattice model” (KLM). Recently, the ferromagnetic KLM (J < 0) has
been frequently adopted to describe the colossal magnetoresistance in manganese oxides, where J
is the Hund coupling.

5Values of γ for UPt3, CeAl3, CeCu2Si2, UBe13 are 0.45 J/mol K2, 1.6 J/mol K2, 1.1 J/mol K2, and
1.1 J/mol K2, respectively.
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of ρ0 + AT2 at low T with huge values of A of order 10µΩcmK−2, whereas A
is of order 10−5µΩcmK−2 or less for ordinary metals. Heavy fermion systems
exhibit another basic and universal magnetic property. Below a characteris-
tic temperature T∗,6 heavy fermion systems show Fermi liquid behavior with
a huge effective mass, and then constant (but very high) Pauli susceptibility.
Above T∗, they show a Curie–Weiss susceptibility that originates from the local-
ized f electrons. At T∗, the quasi-particles are screened by conduction electrons
and a singlet (nonmagnetic) state is formed, owing to strong electron correla-
tions. Although heavy fermion systems show differences in their properties,
the disappearance of a magnetic moment is a common feature.

Another unusual property originating with magnetic scattering is the Kondo
effect. The Kondo effect is a logarithmic increase of the electrical resistivity of
the Kondo system when the temperature is reduced. It is caused by spin flip
scatterings of conduction electrons at magnetic impurities.

9.1.4 Strongly Correlated Electrons

Since the discovery of high Tc superconductors,7 enormous theoretical effort
has been made to understand the two-dimensional Hubbard model, which was
originally introduced to understand the metal-insulator transition in transition
metals. The Hubbard Hamiltonian is:

H = t
∑

i j

c†iσc jσ +U
∑

i

ni↑ni↓ . (9.31)

In high Tc superconductors, c†iσ(ciσ) is the creation (annihilation) operator of the
electron (or the hole) at the highest antibonding orbital (predominantly dx2−y2 )
of Cu2+ positioned at i in CuO2 plane. Approproximately, t ∼ 0.1 eV and U ∼ 1
eV. It is immediately clear that the energy scale of the Coulomb correlation
energy, U, is too high compared to the interesting energy scales, which are
around 10 meV for critical temperature of 100 K. The low energy excitation
relevant to superconductivity is therefore believed to originate with spins, not
with charge, and effort has been made to derive an effective spin Hamiltonian
that depends on the hole concentration (doping).

In the undoped case (half-filling), there is one electron at each site and the
hopping into the nearest neighbor costs the energy U. In the limit of t≪ U, the
electrons look localized at each site because of the high energy barrier U. The
Hubbard model can be transformed into the Heisenberg spin Hamiltonian:

H = J
∑

i j

S⃗i · S⃗ j , (9.32)

J = 4t2/U . (9.33)

6T∗ is not necessarily same as TK, which is the usual Kondo temperature for a single Kondo ion,
and in most cases we see T∗ < TK owing to the condensation of Kondo ions.

7Examples of some high Tc materials are La2−xSrxCuO4 (Tc ∼ 40 K), YBa2Cu3O7 (Tc = 92 K),
Bi2Sr2Ca2Cu3O10 (Tc = 110 K), and Tl2Sr2Ca2Cu3O10 (Tc ∼ 125 K).
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In this limit of t≪ U, the system acts as an antiferromagnetic insulator.
By introducing a small fraction, x, of holes, the superconducting phase

appears. Typical fractions for Bi2Sr2CaCu2O8+x (Bi2212) are x ∼ 0.1 (this may
be underdoped, but overdoping occurs for x ∼ 0.2). The effective Hamiltonian
for a small number of holes has also been reduced from the Hubbard model,
and is called the t − J model:

Ht−J = t
∑

i j

a†iσa jσ + J
∑

i j

S⃗i · S⃗ j , (9.34)

where a†iσ = c†iσ(1 − ni−σ) and aiσ = ciσ(1 − ni−σ). In the limit of half-filling, Ht−J
is the Hamiltonian of a Heisenberg antiferromagnet. Research interests are in
small deviations from half-filling, where holes move in the antiferromagnetic
lattice and counteract antiferromagnetic long-range order. This leads to anti-
ferromagnetic spin-fluctuations peaked at a momentum near Q⃗ = (π, π). In the
last decades, spin fluctuations have been found to play fundamental roles in
high Tc superconductors. In the antiferromagnetic Fermi liquid model, many
key properties of superconducting cuprates have been understood by a strong
interaction between quasi-particles and spin-fluctuations. For example, the
spin-fluctuation model has been successful in explaining transport properties
such as electrical resistivity (ρ ∝ T), the magnitude of Tc, results from nuclear
magnetic resonance (NMR) experiments, angle-resolved photoemission spec-
troscopy (ARPES) experiments, and other experimental results. The detailed
phenomenological propagator for spin-fluctuations is:

χsf(q⃗, ω) =
χQ

1 + ξ2(q⃗ − Q⃗)2 − iω/ωsf

, (9.35)

which has proved applicable for interpreting NMR measurements and neutron
scattering experiments. Here ωsf is the spin-fluctuation energy and ξ is the an-
tiferromagnetic correlation length. Through the value of ξ, the spin-fluctuation
depends on the hole concentration. In the limit of ξ→∞, the system in the pure
magnon region, i.e. the undoped antiferromagnetic insulator with long-range
order. An interaction between quasi-particles and spin-fluctuations is espe-
cially strong in underdoped materials. It has been shown recently that strong
anisotropies in ARPES data for underdoped Bi2212 originate with a strong
coupling between quasi-particles and spin-fluctuations. Incidentally, for other
superconducting materials, i.e., La2−xSrxCuO4 and YBa2Cu3O7−x, data from in-
elastic neutron scattering and measurements of the spin-lattice relaxation rate
by NMR indicate that the spin-fluctuations induce an opening of the gap in the
spin excitation8 in the CuO2 plane, with an energy comparable to the BCS gap.
The apparent gap develops well above Tc.

8The spin gap corresponds to the pseudogap of a small energy scale.
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9.2 Simulations of Spin Dynamics

9.2.1 Monte Carlo Method

Section 9 introduced different spin systems and their excitations. Several ap-
proaches are available for calculating the states and state evolution of these
spin systems. Perhaps the most conventional approach, although not a sim-
ulation per se, is the diagrammatic expansion of the Green’s function. This
formal approach is not practical for many complex systems, however. Instead,
one may use the local density approximation (LDA), or LDA+U to study band
magnetism, or the small-size exact diagonalization for more localized spin sys-
tems. However, for more complete descriptions of the dynamics of spins, the
most suitable and reliable method is often a Monte Carlo simulation. There
are many variants of Monte Carlo simulations developed and optimized for
specific problems. This section explains the Monte Carlo approach for calcu-
lating the states and dynamics of classical lattice spin systems. Monte Carlo
simulations of classical systems are easier to understand than quantum Monte
Carlo simulations, which are mentioned at the end of this section.

A Monte Carlo simulation is a Markovian process. Such processes will
reach a steady state of a system that is independent of the initial configuration.
Unfortunately, especially at low temperatures, this final state of equilibrium
may require a very long time to achieve. If one knows the ground state a
priori, at low temperatures it may be appropriate to start with the system in a
ground state configuration, and allow temperature to produce disorder in this
configuration. The ground state is often unknown, however, and this is typical
of more complicated systems. It may be possible to start with several candidate
ground state configurations, and identify the true ground state structure as the
one that does not evolve with time.

An alternative approach is sometimes called “simulated annealing,” where
the simulation begins with the system in a fully random state characteristic
of infinite temperature. Equilibrium at lower temperatures is achieved by
gradually reducing the temperature, and allowing the system to relax under
the spin-spin interactions. Some delicacy is required for balancing the slowness
of cooling with the need to minimize the time of the simulation.

Finally, systems that undergo spontaneous symmetry breaking may pose
special problems. Starting from the random spin configuration at T = ∞ in
the isotropic ferromagnet, one may find that the ordering direction would ro-
tate without any preferred direction even below TC. In such a case, therefore,
one may include an infinitesimal anisotropy in the Hamiltonian to induce the
symmetry breaking, or one may start with a symmetry-broken ground state
configuration9 at T = 0 and raising the temperature. Without an appled bias,
the formation of local domains, each with its own direction of spin alignment,
is a common feature. Elimination of the domain boundaries is favorable ener-

9For example, by initially aligning all the spins along a certain direction.
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getically, but may take a long time in practice.

9.2.2 Spin Updates in Monte Carlo Simulations

Metropolis Algorithm

In the Metropolis algorithm, a new configuration is generated from an existing
one by using a transition probability that depends on the energy difference
between the two configurations. The state of thermodynamic equilibrium
satisfies the detailed balance between two states n and m,

PnWn→m = PmWm→n , (9.36)

where Pn is the probability of the system being in the state n and Wn→m is
the transition rate from n → m. The Metropolis algorithm selects the simplest
choice of the transition rate that is consistent with detailed balance

Wn→m =

{
exp(−∆E/kBT) ∆E > 0
1 ∆E < 0 , (9.37)

where ∆E = En − Em. The Metropolis algorithm updates one spin at a time in a
given configuration at temperature T:

1. select the spin at site i,

2. evaluate ∆E by updating the spin at i,

3. generate a random number η, where 0 < η < 1,

4. accept the updated configuration if η < e−∆E/kBT, or reject otherwise,

5. return to step 1 for a different spin at site i + 1.

For the model of continuous spins of |Si| = 1, oriented in three dimensions,
one may update the spin at site i by generating two random numbers η1 and
η2, such that ζ2 = ζ2

1 + ζ
2
2 < 1 such that ζ1 = 1 − η1 and ζ2 = 1 − η2 (where

0 < η1, η2 < 1)

Sx = 2ζ1

√
1 − ζ2 , (9.38)

Sy = 2ζ2

√
1 − ζ2 , (9.39)

Sz = 1 − 2ζ2 . (9.40)

The Metropolis algorithm ensures that the steady state of the system is the
actual state of thermodynamic equilibrium. This is proved by assuming that the
system is in thermodynamic equilibrium, and then showing that the Metropolis
algorithm has the transition rates needed to keep it there. In thermodynamic
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equilibrium, the probability Pn is the Boltzmann factor normalized by the parti-
tion function, e−En/kBT/Z, a central result of statistical physics. Substituting into
(9.36)

e−En/kBT Wn→m = e−Em/kBT Wm→n , (9.41)

e−(En−Em)/kBT =
Wm→n

Wn→m
(9.42)

Note that Wn→m = 1 (since the transition n→ m is downhill energetically, it will
always occur according to (9.37)). Equation (9.42) becomes:

Wm→n = e−(∆E)/kBT , (9.43)

which is the rate used by the Metropolis algorithm in step 4 or (9.37).
All Markovian processes converge to a steady state10, and the Metropolis

algorithm assures us that thermodynamic equilibrium will be achieved between
all pairs of spins in the system. It does not ensure that equilibration will occur
in a reasonable time, however.

9.2.3 Low Temperatures

At low temperatures, a more sophisticated update algorithm is necessary. Most
random updates cause a large energy exponent ∆E/kBT, so the Metropolis
algorithm will reject most changes to the spin configuration. The equilibration
procedure can then become far too slow to be practical. To speed things up, the
randomly-selected changes in spin can be made smaller, for example. This can
be done by attenuating the random changes of spin by a factor δ (0 ≤ δ ≤ 1),
i.e. ∆S should be replaced by δ∆S. The factor δ can be adjusted so that the
acceptance rate is around 50% on the average.

An actual implementation could be based on a parameterized temperature-
dependent solid angle, Ω(T), of spin i with respect to its original orientation
Si. This is begun by defining α = tan−1 Sy

i /S
x
i and β = cos−1 Sz

i , from which we
define the rotation matrices Rz(α) and Ry(β):

Rz(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (9.44)

Ry(β) =

 cos β 0 − sin β
0 1 0

sin β 0 cos β

 . (9.45)

The updated orientation of spin i, S′i is

S′i = R−1
z (α) R−1

y (β) S′′i , (9.46)

10Or a cyclic state in anomalous cases.
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where

S′′i = (sinθcosϕ, sinθ sinϕ, cosθ) , (9.47)
θ = Ω(T) η1 , (9.48)
ϕ = 2π η2 . (9.49)

A useful form11 of Ω(T) may be

Ω(T) = π tanh(ξT) . (9.50)

With this form of Ω(T), we can adjust ξ so that the acceptance rate is around
50%. Note the two extreme limits: Ω(T)→ 0 as T→ 0 andΩ(T)→ π as T→∞.

Overrelaxation Technique

The overrelaxation technique is used in combination with the Metropolis al-
gorithm for improving the rate of relaxation to the equilibrium configuration,
especially at low temperatures. Let us assume that we are treating a system
of isotropic continuous spins in the Heisenberg model, with the Hamiltonian
H = J

∑
i j Si · S j. In the overrelaxation method, a spin is precessed about the

full interaction field, which it can do without any change of energy. When the
angle of precession, θ, is as large as π, this alteration of the spin structure can
promote quicker changes in the orientation of other spins during subsequent
Monte Carlo steps.

At the site i, the full interaction field for Si is Snn ≡ J
∑

j,i S j. The overrelaxed
spin, S′i , is evaluated by successive rotations using rotations by Euler angles.
One needs two angles of α and β to define the direction of Snn:

α = tan−1 Sy
nn/S

x
nn , (9.51)

β = cos−1 Sz
nn/|Snn| , (9.52)

S′i = R−1
z (α) R−1

y (β) Rz(π) Ry(β) Rz(α) Si. (9.53)

In an actual simulation, a single “hybrid” Monte Carlo update of the spin con-
figuration could include a Metropolis sweep and two overrelaxation sweeps.

Equilibration (Thermalization)

Repeating the hybrid Monte Carlo steps, spins are updated by sweeping the
whole spin lattice, eventually reaching the equilibrium configuration at a given
T. It is an important problem to minimize the number of Monte Carlo steps
needed to obtain the fully relaxed equilibrium state. The optimization differs,
however, depending on the specific problem or the simulation conditions such
as temperature and lattice size, for example. It is essential to perform calcu-
lations of simple quantities like susceptibilities or magnetization, and test if

11The form of Ω(T) given here is just the simplest example. One may introduce a more compli-
cated form to give a more desirable performance.
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the system is in the equilibrium state. In more advanced validations, one may
check the autocorrelation time. Substantial gains in efficiency are often found
for hybrid Monte Carlo simulations. For the square lattice Heisenberg model,
the nonhybrid Monte Carlo method typically requires at least O(104) steps at
the temperature range of O(0.1J), whereas the hybrid method requires O(103)
steps.

9.2.4 Time Evolution of Spins

For a system of spins in the Heisenberg model, the equation of motion for the
spin degrees of freedom is

∂Si

∂τ
= −Si ×

∂H
∂Si
= −JSi ×

∑
j,i

S j . (9.54)

The N spins are coupled to each other, and the time-evolution of the spins
is obtained by solving the coupled differential equations. There are many
integration algorithms to solve the differential equations. Here we introduce
the Suzuki-Trotter decomposition, which is especially suitable for the lattice
problem. Taking the example of the simple square lattice with the nearest-
neighbor spin coupling, one can divide the lattice into two sublatticesA andB
by checkerboard decomposition. Employing the Suzuki-Trotter decomposition
up to O(dτ5),

{Si(τ + dτ)} = e(A+B)dτ
{Si(τ)} , (9.55)

and e(A+B)dτ is decomposed using

e(A+B)dτ =

5∏
i=1

epiAdτ/2 epiBτ epiAdτ/2 + O(dτ5) , (9.56)

with

p1 = p2 = p4 = p5 = p = 1/(4 − 41/3) (9.57)

and

p3 = 1 − 4p . (9.58)

Here A and B are the rotation generators of the sublatticesA and B, with fixed
{SiB} and {SiA}, respectively.

The following algorithmic explanation may be more clear.

eAδτ
{Si} : time evolution of sublatticeA

for i = 1 to N
when i ∈ A

Snn = J
∑

j,i( j∈B) S j
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eAδτ
{Si} =

[
(Snn · Si)Snn/|Snn|

2
]

(1 − cos(|Snn|δτ))
+ Si cos(|Snn|δτ) + [(Snn × Si)/|Snn|] sin(|Snn|δτ)

eBδτ
{Si} : time evolution of sublattice B

for i = 1 to N
when i ∈ B

Snn = J
∑

j,i( j∈A) S j

eBδτ
{Si} =

[
(Snn · Si)Snn/|Snn|

2
]

(1 − cos(|Snn|δτ))
+ Si cos(|Snn|δτ) + [(Snn × Si)/|Snn|] sin(|Snn|δτ)

In this algorithm, the time evolution of spins is performed by combinations of
e−Aδτ and e−Bδτ, just as given by the Suzuki-Trotter decomposition.

9.2.5 Observables

Inelastic neutron scattering, especially experiments on single crystal samples,
can probe directly the spin-spin correlation function S(q, ω) that describes the
dynamics of spins

S(q, ω) =
1

2π
1

N2

∑
i j

eiq·(ri−r j)

τmax∫
0

eiωτ
⟨Si(τ) · S j(0)⟩ dτ . (9.59)

This S(q, ω) can be calculated by Monte Carlo simulation. S(q, ω) is obtained
by a simple Fourier transformation of the time-dependent correlation function

Ci j(τ) = ⟨Si(τ) · S j(0)⟩ , (9.60)

which is readily evaluated in a Monte Carlo simulation. Pole structures of
S(q, ω), ω(q), can provide information on magnetic excitations and relaxations,
which are fundamental to understanding the spin systems. Incidentally, the
quasi-elastic response S(q, 0) tells us the kinds of magnetic fluctuations (cor-
relations) that dominate at a given T. For instance, if S(Q, 0) ≫ S(0, 0) with
say Q = (π, π), we conclude that antiferromagnetic exchange interactions are
dominant over ferromagnetic ones at the given T.

For powder or polycrystal samples, the measured spectra are in the angle-
integrated form

S(|q|, ω) =
2

N2

∑
i j

sin(|q||ri − r j|)
|q||ri − r j|

τmax∫
0

eiωτ
⟨Si(τ) · S j(0)⟩ dτ . (9.61)

In some experiments, or in some stages of data analysis, scattered neutrons
with a rather wide distribution of momenta are collected into a single energy
bin. For such data, the resulting spectra S(ω) probes the local responses of spins
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as

S(ω) =
∫

S(q, ω) dq =
1

2π
1
N

∑
i

τmax∫
0

eiωτ
⟨Si(τ) · Si(0)⟩ dτ . (9.62)

The quasi-elastic local response, S(0), is also an interesting quantity. It is di-
rectly related to the spin-lattice relaxation rate T1 of a local probe as in nuclear
magnetic resonance (NMR) or Mössbauer spectrometry.

9.2.6 Comments on Quantum Monte Carlo Simulations

An essential difference between classical and quantum Monte Carlo simula-
tions is in how the spin configuration is updated, that is, how the Metropolis
algorithm is implemented. The classical Monte Carlo method is easier in that
the equilibrium probability has the proportionality

P({Si}) ∝ e−βH({Si}) (9.63)

for the particular configuration {Si}, that is: H({Si}) = E({Si}). On the other
hand, for the quantum Heisenberg model, for which

H = H0 +V (9.64)

with

H0 = J
∑

i j

Sz
i Sz

j , (9.65)

V = J
∑

i j

(Sx
i Sx

j + Sy
i Sy

j ) , (9.66)[
H0,V

]
, 0 , (9.67)

we apply the Trotter formula12

e−βH ≈ [e−βH0/me−βV/m]m , (9.68)

Z =
∑
α

⟨α|e−βH |α⟩ , (9.69)

Z =
∑
{αk}

m∏
k=1

⟨αk|e−βH0/m|α′k⟩⟨α
′

k|e
−βV/m

|αk+1⟩ , (9.70)

where |{α}⟩ can be the eigenstate of H0 and |α1⟩ = |αm+1⟩. Then the ma-
trix element ⟨α|e−βV/m|α′⟩ is evaluated classically, leading to e−βV(α,α′)/m. A

12cf. Suzuki-Trotter decomposition for the time evolution integrator
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d-dimensional quantum spin problem therefore always corresponds to an ef-
fective (d + 1)-dimensional problem.13

Besides the quantum (localized) spin model, another important problem is
that of electrons with itineracy. One may introduce the Hubbard model as the
simplest example,

H = t
∑

i j

∑
σ

c†iσc jσ +U
∑

i

ni↑ni↓ . (9.71)

For this problem, we need to apply another kind of quantum Monte Carlo
method that incorporates the path integral formalism. In this method, the
itinerant degrees of freedom of electrons are completely integrated out by the
path integral formalism14 and the remaining problem is then cast as an Ising
spin problem in (d + 1)-dimensions.

9.3 Interactions between Thermal Excitations of Elec-
trons and Phonons

9.3.1 Formalism of Phonon-Phonon Interactions

The full Hamiltonian of the crystal, H, is

H = Hn +He +Hep (9.72)

where He and Hep are the contributions from the electron energy (including
electron-electron interactions and thermal electronic excitations), and from
electron-phonon interactions (EPI). To understand phonon-phonon interac-
tions, we consider in detail the Hamiltonian for nuclear motions Hn, extending
the Taylor series of Eq. 8.49

Hn = Φ0 +
∑
κ

p⃗2
κ

2m
+

1
2!

∑
κα

∑
κ′α′
Φαα′κκ′ uακ uα′κ′

+
1
3!

∑
κα

∑
κ′α′

∑
κ′′α′′
Φαα′α′′κκ′κ′′ uακ uα′κ′ uα′′κ′′

+
1
4!

∑
κα

∑
κ′α′

∑
κ′′α′′

∑
κ′′′α′′′

Φαα′α′′α′′′κκ′κ′′κ′′′ uακ uα′κ′ uα′′κ′′ uα′′′κ′′′ + ... ,(9.73)

where we have simplified the development to one atom per unit cell, so uακ is
the displacement of atom κ along Cartesian direction α.

13One additional dimension comes from the Trotter decomposition.
14The basic idea is to transform the Hubbard model into a quadratic form by introducing

the additional Ising-type bosonic field through the Trotter decomposition and the Hubbard-
Stratonovich transformation. Fields of the quadratic action can be always integrated out, that

is, Tr
[
e−

∑
i j c†i Ai jc j

]
= det(1 + e−A), where A carries the Ising-type auxiliary field.
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The transformation to normal coordinates for an infinite periodic crystal is

U⃗k⃗i
=

1
√

N m

∑
r⃗κ

u⃗r⃗κe
−i⃗ki ·⃗rκ , (9.74)

and by Fourier inversion

u⃗r⃗κ =
1
√

N m

∑
k⃗i

U⃗k⃗i
e+i⃗ki ·⃗rκ . (9.75)

Substituting Eq. 9.75 into Eq. 9.73, we identify the Fourier transform ofΦαα′κκ′ ,
and use it to define the dynamical matrix of Eqs. 8.58 and 8.59. Our interest
now is in the higher-order terms of Eq. 9.73, which cause anharmonic behavior
when the atoms are vibrating with substantial amplitude. Using Eqs. 9.73 - 9.75
we can assess phonon-phonon interactions with a classical approach, which is
valid at high temperatures.

There is, however, a clarity to be gained in working with the quantized
phonon field (a displacement field in the crystal), especially when considering
excitations of nonlocal electron states simultaneously with phonon excitations.
The phonon field operator is Ak⃗i

Ak⃗i
= ak⃗i

+ a†
−k⃗i
= A†

−k⃗i
. (9.76)

The raising and lowering operators a†
k⃗i

and ak⃗i
create and annihilate the phonon

k⃗i. They are constructed from the momentum and position operators of the
Hamiltonian when a plane wave solution is considered for one k⃗i. The reader
should have references showing the properties of a† and a for a simple harmonic
oscillator (40), and the a†

k⃗i
and ak⃗i

work the same way for a single normal

mode of a harmonic crystal. The formalism is now in the “occupation number
representation,” where n phonons of wavevector k⃗i are created with n raising

operations as
(
a†

k⃗

)n
|0⟩⃗k = (n!)−1/2

|n⟩⃗k. The phonon field operators are related to

the displacements (now operators) as Fourier coefficients

u⃗(⃗rκ) =
∑

k⃗i

√
ℏ

2N mωk⃗i

e⃗(⃗ki) ei⃗ki ·⃗rκ Ak⃗i
. (9.77)

Note the similar roles of the phonon field operator Ak⃗i
in Eq. 9.77 and the vector

U⃗k⃗i
in Eq. 9.75.
By substituting Eq. 9.77 into Eq. 9.73, the dynamical matrix is recovered

from the quadratic term, with prefactors such as ℏ/(4ωk⃗i
ωk⃗ j

). We define simi-
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larly the transformed higher-order terms, so Eq. 9.73 becomes

Ĥn = Φ0 +
∑

k⃗i

ℏωk⃗i

(
a†

k⃗i
ak⃗i
+

1
2

)
+

∑
k⃗i

∑
k⃗ j

∑
k⃗k

V(⃗ki, k⃗ j, k⃗k) Ak⃗i
Ak⃗ j

Ak⃗k

+
∑

k⃗i

∑
k⃗ j

∑
k⃗k

∑
k⃗l

V(⃗ki, k⃗ j, k⃗k, k⃗l) Ak⃗i
Ak⃗ j

Ak⃗k
Ak⃗l
+ ... , (9.78)

where the first sum on the right-hand side includes both the kinetic energy and
the harmonic part of the potential energy (following standard development
(41)), and the phonon number operator is a†

k⃗i
ak⃗i

. The V are related to the Φ as

Fourier transforms. For example,

V(⃗ki, k⃗ j, k⃗k) =
1
3!

√√
1

N m3

(
ℏ

2

)3 1
ωk⃗i
ωk⃗ j
ωk⃗k

δ(⃗ki + k⃗ j + k⃗k − g⃗)

×

∑
r⃗κ

e⃗(⃗ki )⃗e(⃗k j )⃗e(⃗kk)e+i(⃗ki+k⃗ j+k⃗k)·⃗rκ Φα,α′,α′′κ,κ′,κ′′ , (9.79)

where the factor δ signifies that the sum k⃗i + k⃗ j + k⃗k equals a reciprocal lattice
vector, g⃗. For terminology, the terms with V(⃗ki, k⃗ j, k⃗k) and V(⃗ki, k⃗ j, k⃗k, k⃗l) in
Eq. 9.78 give the energies of “phonon-phonon interactions” because they alter
the phonon energies when larger vibrational displacements are present in the
crystal.

Details of the phonon dispersions are immediately relevant when attempt-
ing to calculate anharmonic behavior, and several concepts have been devel-
oped in detail. For example, if the phonon dispersion relation ε(⃗k) were linear, it
would be easy to add two wavevectors k⃗+ k⃗′ = k⃗′′, and simultaneously conserve
energy ε + ε′ = ε′′. The number of three-phonon processes increases as k2, at
least for small k. Many phonon dispersions ε(⃗k) are concave downwards, how-
ever, so simultaneous energy and momentum conservation is often impossible
unless at least one phonon lies on a different branch. Phonon processes that
satisfy momentum and energy conservation depend on the symmetry of the
dispersion relations, and on the crystal structure. For larger phonon wavevec-
tors k⃗, momentum conservation is possible by adding a reciprocal lattice vector.
The idea is that the momentum transferred to the entire crystal occurs with
zero energy because of the large mass of the crystal. Such “umklapp” processes
allow many more three-phonon interactions, but the phonon wavevectors must
be of length comparable to the reciprocal lattice vector if the vector additions
are possible.

An important question is how many terms are needed in Eq. 9.78 to account
accurately for anharmonic behavior. We expect the higher-order terms in Eq.
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9.73 to be progressively smaller, but the requirement of energy conservation
and the factor δ for momentum conservation in Eq. 9.79 restricts the allowable
three-phonon processes, owing to restrictions imposed by the phonon disper-
sions ε(⃗k). Fourth-order anharmonicity can therefore play a role as significant
as the third. Another complexity is that four-phonon processes can be gener-
ated from three-phonon processes. The idea is that two three-phonon process
such as k⃗ + k⃗′ → k⃗′′ and k⃗′′ → k⃗′′′ + k⃗′′′′ can be combined through intermediate
states {⃗k′′} to become a four-phonon process in second-order perturbation the-
ory, which involves matrix elements as

∑
k⃗′′ ⟨⃗k

′′′, k⃗′′′′|H′′′ |⃗k′′⟩⟨⃗k′′|H′′′ |⃗k, k⃗′⟩. With
effort, this field theoretic approach has been used for some physical predic-
tions as described below. Approximate summations of the perturbation series
have been performed, and some results for anharmonic heat capacity were re-
ported for solids with Lennard-Jones potentials (42). This approach also has
conceptual value for understanding the meaning of anharmonicity.

9.3.2 Formalism of Electron-Phonon Interactions

The large difference in energy scales of phonons and electrons can motivate the
separation of the Hamiltonian of the solid into a term with nuclear coordinates
for the phonons Hn, and a term with electron coordinates He (Eq. 9.72). The
energy of the crystal deformation caused by a phonon originates with the elec-
trons, of course, but although this potential energy of deformation is electronic
in origin, it transfers to kinetic energy in the motion of the nuclei.15 If the elec-
trons were always in their ground states, all this energy of deformation would
be associated with Hn alone (i.e., the phonons). Treating the electron system
and the phonon system as two independent thermodynamic systems becomes
inconsistent at finite temperature, however, because the presence of phonons
alters the thermal excitations of electrons.

Very generally, the electron-phonon interaction (EPI) requires the coordi-
nates of the electrons {⃗rel

λ }, and coordinates of the nuclei {⃗rn
j }

Hep =
∑
λ, j

v(⃗rel
λ , r⃗

n
j ) . (9.80)

First assume the nuclear motions are slow enough so the electron levels adapt
continuously to the evolving structure, i.e., the Born–Oppenheimer approxima-
tion. This “adiabatic approximation” does not allow the nuclear kinetic energy
to alter the electron states.16 The adiabatic EPI increases with the number of
phonons, but it also scales with the thermal excitations of electrons. (Effects

15For a harmonic phonon, the electron-phonon interaction affects equally the energies of the
electrons and the phonons.

16The “non-adiabatic” electron-phonon interaction accounts for how the electronic states are
altered by the nuclear kinetic energy, not the potential energy of displaced nuclei as for the adi-
abatic case. The non-adiabatic EPI does require thermal activation, and can be responsible for
superconductivity.
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from how the interatomic potential depends on phonon populations alone are
already counted as phonon-phonon interactions.)

In this adiabatic picture, unique electron eigenstates exist for a snapshot
of the nuclear thermal displacements, but these evolve continuously as the
nuclei move. Taking for reference a ground state with the nuclear positions of a
perfectly periodic crystal and the electronic structure at 0 K, we seek to account
for how the displaced nuclear positions alter the thermally-excited electronic
energy levels (changing the electronic excitations induced by temperature).
For a given electronic structure, the adiabatic electron-phonon interaction is
proportional to the number of phonons, n(ε,T) + 1/2, times the difference of
electron occupancy with respect to the ground state, f (T)− f (0), where f (T) is the
Fermi-Dirac distribution. When there are sharp features in the electronic DOS
near the Fermi level, there will be other temperature-dependences associated
with the thermal sampling of the excited electron states.

How the electron eigenstates change with nuclear displacements is a prob-
lem that generally requires considerable detail about the states of electrons
and phonons. A simple approach is to consider an electronic band formed
from isotropic s-electrons, and a uniform dilation as may be associated with
longitudinal phonons of long wavelength,

HD
ep = −

∑
λ

D∆(⃗rel
λ ) . (9.81)

where ∆(⃗rel
λ ) is the fractional change in volume at r⃗el

λ , and D is a “deformation
potential,” typically a few eV.17 This simple approach is convenient because the
∆(⃗rel

λ ) is related to the displacement u⃗ as through its divergence: ∆(⃗rel
λ ) = ∇⃗ · u⃗,

so

HD
ep = −D

∑
λ

∇⃗ · u⃗(⃗rel
λ ) . (9.82)

For longitudinal phonons

e⃗(⃗ki) =
k⃗i

ki
, (9.83)

and by taking the divergence of Eq. 9.77 we have, now in the occupation
number representation

ĤD
ep = −iD

∑
r⃗el
λ

∑
k⃗i

√
ℏ

2N mωk⃗i

|⃗ki| ei⃗ki ·⃗rel
λ Ak⃗i

(9.84)

17It is not typical to have electron energies shifted by several eV under high compressions, so the
D typically pertain to small elastic distortions over a finite volume of crystal.
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Consistent with the second quantization formalism for phonons, fermion
field operators are used for the electrons

Ψ† (⃗rel
λ ) =

∑
k⃗λ

C†
k⃗λ

e−i⃗kλ ·⃗rel
λ , (9.85)

which when applied to a multi-electron state, places an electron in the state
k⃗λ (the operator Ck⃗λ

removes an electron from this state). When small, ĤD
ep

in Eq. 9.84 is a perturbation that mixes electronic states as ⟨Ψ f |ĤD
ep|Ψi⟩. This

integral can be evaluated by using the fermion field operators C and C† (Eq.
9.85), where the exponential phase factors cancel the k-space integration unless
there is a conservation of wavevector. This forces the same total k⃗λ + k⃗i for the
creation operators as for the annihilation operators

ĤD
ep = −iD

√
ℏ

2N m

electron∑
k⃗λ

phonon∑
k⃗i

√
ki

cL
Ak⃗i

C†
k⃗λ+k⃗i

Ck⃗λ
, (9.86)

plus an analogous term with A†
k⃗i

Ck⃗λ+k⃗i
C†

k⃗λ
for phonon creation. For Eq. 9.86

we also used a linear dispersion relationship ωL(ki) = cLki, appropriate for
long-wavelength, longitudinal acoustic phonons. In accounting for the effects
of phonons on the electron states, it is usually necessary to consider a more
general case than the isotropic deformation potential of Eq. 9.81 as

I ∝
〈⃗
kλ + k⃗λ

∣∣∣∣⃗e j(⃗k j) · ∇r⃗n
j
v(⃗rel

λ , r⃗n
j )
∣∣∣∣⃗kλ〉 , (9.87)

where the gradient is with respect to the nuclear coordinates.18

In general, there are two lower order terms that are used to describe the
electron-phonon interaction. The first is a generalization of the previous result
Eq. 9.86

Ĥ1
ep =

∑
k⃗i

∑
k⃗λ

Vep (⃗ki, k⃗λ) Ak⃗i
C†

k⃗λ+k⃗i
Ck⃗λ

. (9.88)

It accounts for the processes where an electron is excited from state k⃗λ to k⃗λ + k⃗i,
simultaneously with the annihilation of a phonon in state k⃗i, or creation of
a phonon in state −k⃗i. Momentum conservation restricts significantly these
three-phonon processes. The second low-order term for electron-phonon cou-
pling is Ĥ2

ep, and it includes a factor from second-order perturbation theory,

18“Frölich coupling” is another example of an EPI, where longitudinal optical phonons create
an electric field in an ionic solid. In this case, the Fourier transform of a Coulomb potential gives
a factor of 4πk−2

i , and with two ions involved, ĤFr
ep goes as k−1

i (instead of the k+1/2
i for ĤD

ep in Eq.
9.86). Transition rates, or scattering rates, go as the square of these quantities.
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∑
k⃗′ ⟨⃗k|Ω|⃗k

′
⟩⟨⃗k′|Ω|⃗k⟩. Note that the initial and final states of the electron have the

same k⃗, so there is no change of electron state by this process. Nevertheless, the
scattering into the virtual states {⃗k′} serve to alter the self-energy of the electron.

For calculating the thermodynamic effects of electron-phonon coupling, it
is more useful to know how the electron-phonon coupling depends on energy,
rather than momentum as in Eq. 9.88 for Ĥ1

ep. This requires averaging over all

electron states near the Fermi surface separated by k⃗ j and differing in energy
by a selected ℏω. Most work on electron-phonon coupling has focused on
superconductivity, where ℏω is rather small, and the electron states are close
enough to the Fermi surface that it is reasonable to use ground state Fermi
surface properties. The Éliashberg coupling function α2g(ω), where g(ω) is the
phonon DOS, accounts for all scattering between electron states on the Fermi
surface. The function α2g(ω) often looks similar g(ω), although some parts of
the spectrum are given different weights. An important moment is calculated
by weighting by ω−1, and can be shown to be

2
∫ ωmax

0

α2g(ω)
ω

dω =
N(EF)⟨I2

⟩

M⟨ω2⟩
= λ (9.89)

where ⟨I2
⟩ is an average of I∗I of Eq. 9.87 over all directions, ⟨ω2

⟩ is a second
moment of the phonon DOS, N(EF) is the electron DOS at the Fermi surface, and
λ is the “electron-phonon coupling parameter.” The strength of the electron-
phonon coupling scales with λ.
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Chapter 10

Chopper Spectrometers

10.1 Concept of a Chopper Spectrometer

Enrico Fermi was unusual. It is a remarkable and profound honor that the
name “fermion,” with a lower case f , is standard terminology. The field of ex-
perimental neutron scattering offers him a smaller honor with the term “Fermi
chopper” (Fig. 10.1). A generic Fermi chopper is depicted in Figure 10.2.
The ARCS instrument is in fact a Wide Angular Range Direct Geometry Fermi
Chopper Spectrometer.1

The Fermi chopper is discussed at length in Section 10.4. For now we note
that it works as a fast shutter. By aligning its slot at the right instant after a
neutron burst leaves the moderator, it selects a bunch of neutrons that have a
particular velocity. We know the time of the neutron burst and the distance
between the neutron source and the Fermi chopper, so we therefore know the
neutron velocity and its energy, E = 1

2 mv2. The idea is best illustrated with the
time and distance diagram in Figure 10.3.

The slopes of the lines in Figure 10.3 are velocities of neutrons. Neutrons
of many velocities are emitted from the moderator. The figure depicts two
neutron pulses from the moderator, separated in time by perhaps 1/60 sec. The
Fermi chopper selects a narrow range of velocities, corresponding to a time
window of tens of microseconds. Of course the narrower this window, the
more neutrons are blocked by the chopper, and the lower the flux of neutrons
on the sample. On the other hand, the narrower this window, the more precisely
selected are the velocities, and hence better energy resolution is achieved. The
Fermi chopper therefore controls the incident energy, the intensity, and the
energy resolution of the neutrons incident on the sample.

The sample usually transmits most of the incident neutrons without scat-
tering, and most of the scattered neutrons are scattered elastically. There is a
strong tendency for the lines in Figure 10.3 to have unchanged slopes through

1Unfortunately for Enrico Fermi, the acronym ARFCS is less euphonious than ARCS.

237



238 CHAPTER 10. CHOPPER SPECTROMETERS

Figure 10.1: Enrico Fermi works
with an electronic control for a
neutron chopper during his Ar-
gonne days.

Figure 10.2: Fermi chopper,
comprising a spinning cylinder
with a slot in it. Neutrons are
transmitted only when the slot is
aligned properly along the path
of the beam. The chopper works
by scattering neutrons out of the
forward beam, or by absorbing
them by the inner surfaces of the
slot. The ARCS choppers work
primarily by absorption.
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Figure 10.3: Distance–time diagram for inelastic scattering by a direct geom-
etry chopper spectrometer. Positions of the moderator, chopper, sample, and
detectors are marked on the vertical axis. Two moderator pulses occur at points
on the x-axis. (Real pulses are not instantaneous, and this issue is discussed
below.) When neutrons reach the position of the chopper, they are transmitted,
absorbed, or scattered.
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the sample.2 It is straightforward to know the total distance from the neutron
source to the sample, and from the sample to the detector tube. Given the
velocity selected by the Fermi chopper, we can figure out the time of arrival
of the elastic neutrons at the detectors. Experimentally, we observe an intense
elastic peak in the time spectrum at any of the detectors. This is typically quite
close to the predicted arrival time, but the experimental time is used to identify
the elastic scattering. Those neutrons that are scattered inelastically, however,
have lines with kinks at the sample, and after the sample their slopes in Fig.
10.3 are either steeper or shallower than for the incident beam. The neutrons
that arrive earlier have gained energy from the sample, and those that arrive
later have lost energy to the sample. The inelastic spectrum is obtained from
the histogram of neutron arrival times. A Fermi chopper spectrometer works
entirely by timing.

10.2 Neutron Sources

10.2.1 Spallation

It is a challenge to produce “free neutrons,” meaning neutrons that are “free of
the nucleus.” “Spallation” is one way to make them. The “spallation” process
got its name by analogy to using a hammer to “chip” pieces off a heavy stone.
Here the the hammer is the particle beam, the chips are neutrons, and the
stone is the nucleus. Other things come out of the nucleus besides neutrons,
especially γ radiation. High-energy protons (of order 1 GeV) are preferred
for the particle beam because protons produce more neutrons, and less heat
and photons than are produced by electron beams. The major component
of a spallation neutron source is therefore a high-energy, high-current proton
accelerator. It often includes a linear accelerator followed by a buncher ring to
compress the proton pulse into a short burst in time. Neutron yields are largest
for nuclei of high atomic number, since these are neutron-rich.3 Tungsten and
mercury are good choices in practice. Uranium is even better, but it tends to
give problems at higher power levels.

10.2.2 Moderation and Moderator Spectrum

The neutrons fresh from a spallation reaction have energies of order MeV,
but the neutrons used in inelastic scattering have energies of order 100 meV.
The excessive energies of the spalled neutrons need to be “moderated.” The

2Elastic scattering will change the direction of the neutron, but this cannot be depicted on Fig.
10.3.

3An excess of neutron over protons is required for stability. Too many protons means too
much Coulombic repulsion, but neutrons can help overcome this instability and keep the nucleus
together. Nevertheless, too many neutrons will “drip” out of the nucleus, and neutron-rich isotopes
near the neutron “drip line” are good candidates for the target material.
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“moderator” makes the transition between the neutron target and the neutron
instrument by delivering a useful spectrum of neutrons to the instrument.

How does the moderator reduce the neutron energy by a huge factor of 107?
By inelastic collisions with nuclei in the moderator. In an inelastic collision
between a neutron and a nucleus of the same mass, hydrogen of course, up to
half of the kinetic energy of the collision can be transferred to the hydrogen
nuclei. The hydrogen in the moderator can be in various chemical forms
such as liquid hydrogen, water, or solid methane, depending on the desired
temperature and density, for example. The number of collisions required for
moderation, n, is

2n
≃ 107 , (10.1)

n ≃ 23 . (10.2)

For the moderator of the ARCS spectrometer, the process of moderation there-
fore involves a relatively small number of collisions, and is therefore a statistical
process. As an approximation it is often assumed that the neutrons leaving the
moderator consist of two components. The first is a fully moderated spectrum
of thermal neutrons. These neutrons have the Maxwell-Boltzmann spectrum,
with probabilities based on Boltzmann factors of exp[(−mnv2)/(kT)], where T is
the temperature of the moderator. The second subspectrum is called the “ep-
ithermal” neutron spectrum. It is a broad spectrum with a tail that goes to very
high energies. Epithermal neutrons have not undergone enough interactions
with the moderator to acquire a thermal distribution. This approximation of
two subspectra has some semblance of the truth.

A better moderator spectrum can be calculated by Monte Carlo neutron
transport codes, such as the one that produced the spectra of Figure 10.4a. The
peak intensity for the “decoupled, poisoned moderator” is around 40 meV, but
there is useful intensity over a broad range of energies beyond 1 eV. Figure
10.4 shows similar calculations for a moderator that uses liquid hydrogen. Its
spectrum is peaked at a much lower energy, perhaps 3 meV. The total number
of neutrons is somewhat better, but by bunching up their energy into a narrow
range, the usable intensity is much higher. “Cold neutrons”’ are a new frontier
in neutron scattering research.

10.2.3 Decoupled, Poisoned Moderator

An important consideration for moderator design is “coupling,” meaning the
connection between the target that is hit by the proton beam, and the material
of the moderator. After slowing down in the moderator, the slower neutrons
can be absorbed by materials such as Cd and Gd. Putting a layer of Cd or
Gd between the moderator and the target can suppress the transmission of
the slower neutrons back into the target. This is a “decoupled” moderator.
(On the other hand, the fast neutrons from the target are not absorbed as they
enter the moderator.) In contrast, a “coupled” moderator allows transmission
of all neutrons between the target and the moderator, and less absorption.
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Figure 10.4: Monte Carlo simulations of intensity spectra and time spectra for
two SNS moderators. ARCS is on the decoupled, poisoned water moderator.
For comparison a cryogenic hydrogen moderator is also shown. (a) Total
intensity. (b) Mean emission time.
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A coupled moderator produces more neutrons, but it has a disadvantage in
the time structure of its neutron pulse. The slow neutrons traveling around the
coupled moderator take some time before entering the neutron instrument. This
time delay degrades the energy resolution of the Fermi chopper spectrometer,
which works by timing.

Another trick to producing short neutron bursts from the moderator is to
put a neutron absorber such as Cd or Gd at some depth inside the moderator
itself. Again, the idea is to absorb the slow neutrons that do not follow an
efficient path out of the moderator. This is called “poisoning” the moderator.
A “poisoned, decoupled moderator” generates neutron bursts that are short in
time, and this is the moderator of choice for the ARCS instrument, for example.
For neutrons having energies below 100 meV, the moderator for ARCS emits
neutron bursts of approximately 20 microseconds. In contrast, an “unpoisoned,
coupled moderator” generates more neutrons in each burst, although these
neutrons are emitted over a longer time.

An additional complexity is that the neutrons of different energies are emit-
ted from the moderator at different times. Of course the neutrons with highest
energies, which do not undergo enough collisions with the nuclei in the mod-
erator, are emitted in the shortest times after the proton pulse hits the target.
In general, the lower-energy neutrons leave the moderator at later times, with
a broader spread in their emission times. The details of this time-energy cor-
relation are not simple, however, and are best understood by Monte Carlo
simulations and experimental measurements. Nevertheless, the neutron emis-
sion times affect the energy resolution of the spectrometer, as discussed in
Section 10.4. Figure 10.4b shows this energy dependence of the pulse emission
times for two SNS moderators. It also shows clearly that the emission time is
shorter for the decoupled and poisoned ARCS moderator than for the coupled,
unpoisoned hydrogen moderator.

10.3 Neutron Guides

10.3.1 Geometrical Optics

Here we develop the scattering of neutrons at interfaces between two homoge-
neous media. In a homogeneous potential, a neutron wavefunction propagates
forward without deflection, but it has a wavelength that depends on the poten-
tial. This is much like the propagation of light through glass, for example. The
only deflections occur at interfaces, or at changes in the “density.” With geo-
metrical optics we can readily utilize the familiar constructions of light optics,
scaled appropriately for neutrons. In the present analysis we justify the “ge-
ometrical optics” approach to analyzing neutron scattering from macroscopic
objects, especially mirrors.

Recall from (1.74) and (1.75), or (6.39) the integral form of the Schrödinger
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equation in the Born approximation:

Ψsc(Q⃗) = −
m

2πℏ2

∫
V(⃗r′) eiQ⃗·⃗r′d3r⃗′ , (10.3)

where we have ignored the standard form of the outgoing spherical wave
that properly multiplies (10.3) (and sets the relationship between f (Q⃗) and
Ψsc(Q⃗, r⃗)). For nuclear scattering we use the “Fermi pseudopotential” of (6.40),
which places all the scattering potential at a point nucleus at r⃗:

Vnuc(⃗r) = 4π
ℏ2

2m
b δ(⃗r) , (10.4)

where b is a simple constant (perhaps a complex number). The next step is to
place numerous Fermi pseudopotentials at the positions of all N nuclei in the
material, {⃗ri}:

V(⃗r) = 4π
ℏ2

2m
b̄

N∑
r⃗i

δ(⃗r − r⃗i) , (10.5)

where b̄ is the average scattering length per nucleus (assuming a mix of isotopes
or elements). Substituting (10.5) into (10.3), we notice the handy cancellation
of many constant prefactors:

Ψsc(Q⃗) = −b̄
∫ N∑

r⃗i

δ(⃗r′ − r⃗i) eiQ⃗·⃗r′d3r⃗′ . (10.6)

In a homogeneous medium we can consider wave motion only in the forward
direction, for which Q⃗ = 0, In the forward direction, eiQ⃗·⃗r′ = 1, simplifying
(10.6):

Ψsc(Q⃗) = −b̄
∫ N∑

r⃗i

δ(⃗r′ − r⃗i) d3r⃗′ , (10.7)

Ψsc(Q⃗) = −Nb̄ . (10.8)

Note how the details of the positions {⃗ri} are lost for forward scattering.
We can obtain the same equation (10.8) if, instead of placing δ-functions at all
nuclei, we we use a homogeneous potential throughout the entire material.
Instead of using (10.5), equation (10.8) can be obtained by using the following
homogeneous potential for V(⃗r′) in (10.3):

v0 (⃗r) = 4π
ℏ2

2m
b̄ρ , (10.9)

where ρ is the number of nuclei per unit volume.
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Figure 10.5:
Snapshots of
neutron wave-
functions near an
interface, which
has a step in its
potential at the
transition between
the vacuum (left)
and the material
(right). The total
energies of the
wavefunctions
are either larger
or smaller than
the homogeneous
potential inside
the material.

This is an important observation. Using (10.9) instead of (10.5), we make the
transition from individual scatterings by atomistic Fermi pseudopotentials to
geometrical optics. The neutron wave is now considered to travel through a ho-
mogeneous potential. The neutron is treated as propagating without scattering,
although with a different wavevector depending on the “density,” b̄ρ.

10.3.2 Total Reflection

When a neutron of energy E enters a region where the potential energy v0 (⃗r) is
positive, its kinetic energy is reduced and its wavelength is increased (see Fig.
10.5). The kinetic energy cannot go below zero, of course, and a consequence
is that some neutrons may not have enough energy to enter a material having
a positive v0 (⃗r) (except for some surface penetration). Substituting typical
numbers into (10.9), we find that v0 (⃗r) = 3× 10−4 meV, corresponding to a
neutron wavelength of 500 Å. Reflection will be total, since the neutron cannot
penetrate into the solid, but the neutron is conserved. This result of 500 Å
pertains to neutrons arriving normal to a surface. Neutrons of wavelength
longer than this critical wavelength will be reflected by the surface. A critical
wavevector is shown in Fig. 10.6.

It is possible to get total reflection of more energetic neutrons if they arrive
at shallow angles to the surface. The effect is analogous to the case of total
internal reflection of light, where a light ray moving in a medium of high index
of refraction can be totally reflected at an interface with a medium of low index
of refraction, if it reaches this interface at an angle below a critical angle. Such a
case is shown in Fig. 10.6. The neutron travels a bit slower in the Ni than in the
vacuum. In the Ni, the neutron has a higher potential energy, a lower kinetic
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Figure 10.6: Wavevectors and wave
crests at a Ni/vacuum interface. The
critical condition has the wavevector in
the Ni layer parallel to the interface as
shown.

energy, and a longer wavelength. Notice the matching of the wave crests across
the interface. This continuity of the neutron wavefunction forces a change in
direction of the wavevector across the interface – this allows for differences in
wavelengths in the vacuum and in the Ni.

The relationship between the neutron wavelength and the critical angle for
a homogeneous potential v0 (⃗r) can be derived from the Schrödinger equation
(10.14) by separation of variables. Start with the neutron wavefunction for a
neutron moving as a plane wave in the x-z plane, where ˆ⃗z is normal to the
interface between, say vacuum and nickel metal. (For neutrons, the nickel
metal has the lower index of refraction than the vacuum.)

Ψsc(⃗k, r⃗) = ei⃗k·⃗r , (10.10)

Ψsc (⃗k, x, z) = ei(kx
ˆ⃗x+kz

ˆ⃗z)·(x ˆ⃗x+z ˆ⃗z) , (10.11)

Ψsc(⃗k, x, z) = eikxx eikzz , (10.12)

Ψsc(⃗k, x, z) ≡ ψx(x) ψz(z) . (10.13)

Substitute (10.13) into the Schrödinger equation (1.53):

−
ℏ2

2m

(∂2ψx

∂x2 +
∂2ψz

∂z2

)
+ V(z)ψx(x)ψz(z) = Eψx(x)ψz(z) , (10.14)

where we have assumed the potential varies only along z⃗, changing only at the
interface. Dividing through by ψx(x)ψz(z) and rearranging:

−
ℏ2

2m

∂2ψz

∂z2

ψz
+ V(z) − E = +

ℏ2

2m

∂2ψx

∂x2

ψx
, (10.15)

= −ε . (10.16)

We have separated the z-dependence from the x-dependence. The left-
hand side of (10.15) depends only on z, the right only on x, but both z and x
can change independently. This means that both sides can only be equal to
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a constant, which we denoted −ε in (10.16). The two equations for ψx(x) and
ψz(z) become:

ℏ2

2m
∂2ψz

∂z2 =
[
ε − E + V(z)

]
ψz , (10.17)

ℏ2

2m
∂2ψx

∂x2 = −εψx . (10.18)

To obtain the required a plane wave solution for a propagating neutron,
ψx = e±i(

√
2mε)x/ℏ, we see that ε must be positive. Our neutron is moving mostly

along the x-direction at a glancing angle to the surface, with kinetic energy E
when it is in the vacuum. We therefore know that ε−E, although negative, must
be rather small. It is therefore possible for a small positive V(z) to switch the sign
of the right-hand side of (10.17) from negative to positive. The consequence
is interesting. The solution for ψz(z) changes from a propagating wave to a
damped exponential function. When V(z) is sufficiently positive, the neutron
wavefunction therefore does not propagate into the nickel. It is instead reflected
from the interface. Of course the V(z) for nickel is fixed, but we can alter the
incident angle to get the same effect as shown in Fig. 10.5. By reference to
(10.12) and (10.13), for example, we can see that the change in sign of (10.17)
occurs when we select kz so that:

kz crit =

√
2mv0

ℏ
=

√
4π b̄ρ . (10.19)

10.3.3 Critical Angle

The critical angle for total reflection, ϕcrit, is the ratio of kz crit to the wavevector
along x, kx, (the magnitude of kx is essentially the same as the magnitude of the
incident wavevector k):

ϕcrit =

√
4π b̄ρ

k
=
λ

2π

√
4π b̄ρ , (10.20)

ϕcrit = λ

√
b̄ρ
π
. (10.21)

The critical angle increases in proportion to the wavelength of the neutron.
Lower-energy neutrons can be reflected from a surface at higher angles than
higher-energy neutrons. For natural Ni metal, the evaluation of (10.21) gives the
wavelength-dependence of the critical angle, ϕcrit, here converted from radians
to degrees:

ϕNi
crit [◦] = 0.0991 λ [Å] . (10.22)

Finally, neutron reflectivity can be used for making spin-polarized neutron
beams. The coherent scattering lengths are different when neutrons of up spin
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Figure 10.7: End view and
overview of the second section of
the main neutron guide for the
ARCS spectrometer. Rigid mount-
ing and mechanical adjustment
screws are required for ensuring
that the long glass mirrors are
aligned precisely.

or down spin are scattered by a magnetic moment having a component along
ˆ⃗z. For Co, in fact, the scattering lengths, b↑Co ad b↓Co, are of opposite sign. A
polarizer can be built by choosing incident angles where one of the neutron
polarizations is transmitted into the magnetic material, and the other reflected.

10.3.4 Guide Design

For neutrons incident on a surface below the critical angle, simple ray diagrams
can be used to develop conceptual designs of neutron guides. Their charac-
teristics are analogous to cylindrical optical fibers for light, but neutron guides
are usually made of four long mirrors with a rectangular cross section of order
0.1×0.1 m2. A section of the ARCS guide is shown in Fig. 10.7. The four mirrors
are seen end-on in the drawing at the top left.

The critical angle for Ni metal is a reference standard, but today a “super-
mirror” can be prepared from multiple layers of metals, giving higher critical
angles by a factor m, whereϕcrit = mϕNi

crit. Today the upper limit to m has reached
7. Since these angles are quite small for neutrons of meV energy, guides tend to
be quite long. Nevertheless, focusing guides can be designed with parabolic or
elliptical surfaces, for example, and these are efficient for transporting neutrons
over long distances.

Efficient neutron transport is usually the main function of a guide. With a
guide in its incident flight path, the instrument can be placed a good distance
away from the moderator. This allows more space around the instrument,
which can be important when instruments are crowded around a small neutron
target. The separation from the moderator also allows the instrument to be
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placed in a location with lower levels of background radiation. Two other
issues are useful for understanding the use of guides for neutron transport.

• By giving the mirrors of the guide a slight curvature along the beam
direction, the direction of the neutron beam can be bent away from its
original straight-line path out of the moderator. This makes it possible
for the specimen to be out of a line-of-sight path from the moderator, and
therefore less subject to background from fast neutrons.

• Most importantly, the guide reduces the usual attenuation of neutron
flux with distance. Instead of the r−2 fall-off of intensity, a good guide
should cause minimal loss of neutrons that enter the guide below the
critical angle. (Note that those entering at higher angles would often be
blocked by collimators before the specimen anyhow.) A simple straight
mirror guide essentially takes the numbers and divergences of neutrons
entering the guide, and translates this distribution to the exit of the guide.

10.3.5 Brightness

Inelastic scattering measurements require beams on samples that have:

• High neutron current [neutrons/sec]

• Small size [cm2]

• High flux [neutrons cm−2 s−1]

• Low divergence [α, radians] (This requirement is unimportant if the Q-
dependence is not of interest.)

Even if the neutron guide optics were perfect, and did not absorb neutrons
or cause unnecessary spread in divergence, for example, compromises will
always be required for meeting all these criteria of a good incident beam. These
compromises are quantified in the present section.

A fundamental problem with neutron optics is the size of the moderator.
With a cross section of order 0.1 × 0.1 m2, the moderator is far from being a
point source of neutron emission. This gives a fundamental limitation to the
“brightness,” β, which is depicted with the three sources shown at the top of
Fig. 10.8. All three moderators in Fig. 10.8 emit the same neutron current,
and they send the same flux (current density) into the guides, which focus the
rays on the sample below. The sources to the left have the higher brightness,
and sources with higher brightness are better for making the smallest neutron
beams on the sample. The focused spot on the specimen is, in fact, an image of
the source itself, so it should be easiest to form a small spot when the source is
small.

The source of Fig. 10.8c has the lowest brightness. Nevertheless, the focused
beams in Figs. 10.8b and 10.8c have the same size. To make a small spot on the
specimen with the low brightness source of Fig. 10.8c, however, the guide in Fig.
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Figure 10.8: a–c. Formation of
focused beams with sources of
differing brightness. For all 3
moderators (at top) the neutron
currents (number of lines) are
the same, and the fluxes at the
guide entrances are the same.
The brightness of the sources de-
creases from left to right, owing
to a larger area of the source.

10.8c must provide stronger focusing, i.e., a larger angle of convergence. (Good
focusing with a large angle of convergence requires higher quality optics.)

More quantitatively, the brightness of the source, β, is defined as the flux
per solid angle

[
neutrons/

(
s cm2 sr

)]
, measured at the source of the neutrons.

Brightness is a valuable concept because brightness is a conserved quantity
when the subsequent optics are ideal. For example, after a guide focuses the
beam as in Fig. 10.8c, the width of the focused neutron beam is reduced by a
factor of two compared to the source, but the angle of convergence is increased
by a factor of 2. In other words, the flux has increased by a factor of 4, and the
solid angle has increased by a factor of 4, leaving unchanged the flux per solid
angle (the brightness is conserved). Where the focused beam hits the specimen:

β =
j0

αxαy
. (10.23)

Here j0 is the flux (neutrons/cm2) in the beam on the specimen, αx and αy are
the the angles of beam convergence in the x- and y-planes. We can relate the
beam size to the brightness of the source and the convergence angles of the
guide, assuming perfect guide optics. The beam width, d0, is related to the total
neutron current, Ip, by the relationship between current and flux:

Ip = dxdy j0 . (10.24)

For simplicity, assume square cross-sections for the guide and moderator, so
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dx = dy = d and αx = αy = α. Substituting (10.23) into (10.24) and solving for d0:

d0 =

√
Ip

β

α
. (10.25)

Equation 10.25 shows that the beam width d0 improves (becomes smaller)
in proportion to the product α

√
β, as suggested by the previous discussion of

Fig. 10.8.
The compromises needed in guide design and experimental setups are there-

fore clear. We have to balance beam width against divergence. A high diver-
gence impairs the Q-resolution of the instrument, but for a moderator of fixed
brightness, a high divergence is required for a high neutron flux on a small
sample. The trade-off is one of inverse proportionality. If Q-resolution is not
an issue, however, small samples become more appropriate.

- To Do: plots of I(E) for ARCS

10.4 Fermi Choppers

A first glance at Figure 10.1 shows electronic equipment that looks a bit compli-
cated, and in fact it is. The electromechanical control of a Fermi chopper is not
simple, and requires specialized technology. The energy resolution of a Fermi
chopper neutron spectrometer depends on timing, and much timing precision
is demanded from the Fermi chopper. It must be open at a precise time after
the proton pulse hits the neutron target. Microsecond precisions are needed for
Fermi chopper timings, as we now show from an elementary calculation.

A neutron of 200.0 meV energy has a velocity of 6,185 m/s. It travels down a
11.6 m flight path in 1,876µsec, where it encounters the ARCS Fermi chopper.
If the energy resolution is to be 1 %, the velocity resolution needs to be 2 %.
The Fermi chopper should therefore be open to the beam for 37µsec. To ensure
that all neutrons passing through the Fermi chopper have energies of 200 meV,
this opening must occur at a reproducible time delay after each proton pulse
hits the neutron target. Variations in this time delay correspond directly to an
energy broadening (with no gain in intensity). The electromechanical control
system for the Fermi chopper should ensure that the chopper is at the same
angle of rotation after the required time delay, here 1,876µsec. This “phasing
accuracy” needs to be 2 to 4 µsec to be negligibly smaller than opening window
of 37µsec in our example.

This is a stringent demand – the slot in a rotating cylinder must be at
the same orientation after each neutron pulse, with only a 2µsec margin for
error. For the ARCS spectrometer, the SNS proton pulse on target has a pulse
frequency of 60 Hz, but has some drift over time associated with drift in the
Tennessee power grid. An electromechanical feedback control system ensures
synchronization of the Fermi chopper rotor with the proton pulse. Today these
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electronic units are somewhat smaller than the one being caressed by Enrico
Fermi in Figure 10.1, but they are far more precise and reliable than his.

Another stringent demand can be understood from the opening of the slot
in the rotor. The slot has an effective width that corresponds to perhaps 5◦ of the
rotor circumference. How fast does the rotor need to spin for the opening time
of 37 µsec in our example? This rotational frequency is (5/360)/(48 µsec) =
375 Hz. Such fast rotations present mechanical challenges for bearings and
heat dissipation.4 In practice, Fermi choppers have magnetic bearings, and
their rotors spin in a partial vacuum with some helium gas for heat transport.
An obvious issue with our calculation of a 375 Hz rotational frequency is that it
is not an integral multiple of the 60 Hz proton pulse frequency of the Spallation
Neutron Source. In practice, we might select a 360 Hz rotational frequency so
that the chopper can be open at a fixed time delay for every proton pulse. Note
that the chopper will be open six times for each neutron pulse.5

There are different opinions on what to do with the other five pulses that
could pass through the Fermi chopper for each proton pulse on target. The
relationship between neutron energy and neutron velocity is:

En = 5.2276×10−6 v2
n . (10.26)

For our hypothetical rotor spinning at 360 Hz (six rotations per proton pulse at
60 Hz), with a phase delay of 1,876µsec to select a 200.0 meV energy, chopper
openings will occur at time delays, τ, of:

τ = 1, 876 + n×2,778 [µsec] , (10.27)

where n = {0, 1, 2, 3, 4, 5}, and 2,778µsec is one-sixth of 1/60 sec. For these
opening times and a 11.6 m flight path, the five incident energies are 200.0, 25.9,
9.6, 5.0, 3.0 and 2.0 meV. It might be possible to acquire additional inelastic
scattering spectra from these five additional incident energies. This practice is
called “repetition rate multiplication.” It should be noted that in the simple
Fermi chopper configuration proposed here, the energy resolution becomes
impractically narrow for the lower incident energies, however.

The ARCS spectrometer includes a second chopper, a “T0-chopper,” located
closer to the moderator than the Fermi chopper. This T0-chopper is much like a
Fermi chopper, and is phased to block the incident neutrons that would arrive
at the Fermi chopper during our five other openings of the Fermi chopper. The
T0-chopper also serves to block the flash of γ-radiation and fast neutrons that
are emitted by the moderator when the proton pulse hits the target.

The slot through a Fermi chopper has a gradual curvature to accommodate
the time for neutron passage through the chopper rotor. This idea is shown in

4Disk choppers are an alternative to cylindrical Fermi choppers. For a neutron beam of moderate
width, the disk needs to be large, and centrifugal stresses become excessive at 375 Hz.

5There are actually twelve openings per proton pulse if you count the half-rotations where the
back side of the rotor is facing the incident beam. For these cases, however, the rotor is upside-down
in the figures below, and the curvature of the slats impedes the neutron transmission.
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Figure 10.9: Fermi chopper rotor
with two slats. The structure at
left is an exploded view of the
layered slits and slats that fill the
curved slot through the rotor.

Figure ?? for a neutron depicted as moving from left to right. The positions
of the neutron and the chopper are shown for three snapshots in time, with
t1 < t2 < t3.

The slot through the rotor of a Fermi chopper contains a stack of slits and
slats, which allow the Fermi chopper to have good energy resolution while
passing a wide neutron beam. The structure is shown in Figure 10.9 for a simple
case with two “slats.” The slats typically contain boron, a strong absorber of
neutrons. The neutrons traversing the Fermi chopper must travel through
the narrow gaps called “slits.” In practice these slits are plates of aluminum
with many holes in them. The aluminum serves to maintain a precise spacing
between the slats, a challenge at high rotational frequencies. In practice, a Fermi
chopper may contain 10 to 40 slats. With many slats, it is possible for the Fermi
chopper to pass a beam of 5 to 6 cm in width while maintaining good energy
resolution. Not surprisingly, with narrower slits there is a loss of intensity that
accompanies the improvement in energy resolution.

A drawing of the Fermi chopper used in the ARCS instrument is shown
in Fig. 10.10. The neutron beam passes through the circular opening at the
center of the housing. The electric motor, sensors, and magnetic bearings are
above and below the rotor assembly. A corresponding pair of photographs is
shown in Fig. 10.11. In the ARCS instrument, two identical chopper systems
are mounted on a translation table so either can be moved into the neutron
beam. The choppers can be moved while they are spinning, allowing quick
changes to the energy of the incident beam of the ARCS instrument.

Rotor assemblies with curved slots, especially those with many slits and
slats, are optimized to work at particular combinations of rotational frequencies,
neutron velocities, and energy resolutions. These need to be selected in the
planning stage of an inelastic neutron scattering experiment.

Finally, it is important to remember that Fermi choppers scatter neutrons out
of the incident beam, generating a high intensity of scattered neutrons around a
Fermi chopper. Good shielding is required, both for radiation protection for the
experimenters, and for minimizing background in the instrument itself. The
ARCS T0 chopper helps alleviate this problem by minimizing the number of
neutrons that are scattered out of the beam by the Fermi chopper.

10.5 Detectors

Neutron detectors usually rely on a nuclear transmutation reaction with a large
cross-section. Widely used is 3He, which absorbs a neutron and undergoes
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Figure 10.10: Exploded view of
ARCS Fermi chopper, showing
housing and rotor at left. The
slit packages are held into the
rotor with two pins, as shown
at right.

Figure 10.11: Left: photograph
of ARCS Fermi chopper, show-
ing housing, windows, and wa-
ter cooling. Right: photograph
of the slit package, with alu-
minum slits seen end-on.
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Figure 10.12: Input
circuit for a simple
charge sensitive pream-
plifier with a gas-filled
proportional counter.
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after detection of an
x-ray at times tx1, tx2,
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fission

n + 3He→ 1H + 3H + 0.76 MeV . (10.28)

The 3He is often used to fill a gas-filled proportional counter, a device that is old
and simple, but is still often the best choice for a neutron detector. The hydrogen
(protium) and tritium on the right-hand side of (10.28) form as energetic positive
ions, and the free electrons are attracted to the anode wire in the center of the
detector tube, which is biased at a high positive voltage. In the strong electric
field near the anode wire, these electrons build up enough kinetic energy in
a mean free path so they ionize additional gas atoms, and more electrons are
created in this process of “gas gain.” The gas-filled proportional counter was
traditionally considered inexpensive, but more recently the high cost of 3He fill
gas has become a concern.

The electronics for the counter tube are configured as shown in Fig. 10.12
with a charge-sensitive preamplifier. The capacitor, C, integrates the negative
charge collected on the anode wire, causing a quick rise in resistance across
the field effect transistor. A small value of C allows for a large rise in voltage
and good sensitivity. On the other hand, small stray capacitances between
the detector and the preamplifier can have a detrimental effect on the detector
signal, so interconnections between detector and preamplifier are kept as short
as possible. The resistor, R, bleeds away the voltage across C with a much
longer time constant. Typically, RC = (107Ω)(10−11F) = 10−4 sec.

The 3He gas-filled detector depicted in Fig. 10.12 can be modified to locate
the position of the neutron arrival along the length of the detector. The mod-
ifications include the use of a resistive wire as the anode, and preamplifiers
at both ends of the anode wire. By comparing the electron charges collected
on the capacitors at the two ends of the detector, the position of the event can
be determined. A neutron that ionizes the gas at one end of the detector tube
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Figure 10.13: Installation of de-
tector bank on the ARCS spec-
trometer, showing 16 tubes in
the middle bank. Each tube
is 1 m in height and approxi-
mately 2.5 cm in diameter.

produces a larger pulse in the preamplifier connected to that end. Such lin-
ear position-sensitive detectors require that the resistivity of the anode wire be
steady with time, and not affected by contamination from the detector gas, for
example. A two-dimensional array of side-by-side 3He linear position sensitive
detector tubes is often used as a 2-dimensional area detector. Modules of linear
position-sensitive detector tubes are shown in Fig. 10.13, and the detector array
of the spectrometer was completed by adding more detectors to the right of
those shown.

10.6 Energy Resolution

Energy resolution is an important figure-of-merit for the design of direct geom-
etry chopper spectrometers, and can be the most important figure-of-merit for
incoherent scattering. The primary flight paths at the SNS are quite long, and
the moderator pulses are short on flight paths 17 and 18, promoting good en-
ergy resolution. In evaluating instrument configurations, the secondary flight
path is the parameter for adjusting energy resolution. When selecting a distri-
bution of detector positions around the specimen, a spherical locus of detector
positions provides energy resolution that is uniform at all angles around the
sample.

Basic considerations for energy resolution were presented in the discussion
of Fig. 10.3. Here we consider the issue further, starting with the moderator.
The moderator does not produce an instantaneous pulse of neutrons, but the
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Figure 10.14: Distance–time diagram for a direct geometry chopper spectrom-
eter. The figure is much the same as Fig. 10.3, but there is a spread in times
when the neutrons leave the moderator. Positions of the moderator, chopper,
sample, and detectors are marked on the vertical axis. Here the Fermi Chopper
is open for only a minimal time.

pulse has a time spread of several microseconds. This time spread of neutron
emission, shown in Fig. 10.4b, is a gradual function of energy. The important
consequence is a lower bound on the energy resolution. Even by reducing the
opening time for the Fermi chopper to nearly zero seconds, a minimum energy
resolution is caused by the spread of moderator emission times. Figure 10.14
presents a graphical explanation of the issue. In comparison to Fig. 10.3, note
the spread in emission times at the position of the moderator in Fig. 10.14.
Even though the Fermi chopper has a minimal open time, the neutrons passing
through the chopper have a spread in slopes in Fig. 10.3, a spread in velocities,
and hence a spread in energy.6

The energy resolution of a Fermi chopper spectrometer is often analyzed
in terms of the moderator performance and the chopper performance. For
analytical calculations, it is typical to assume that both the moderator and
the chopper cause time smearing that has a Gaussian shape about an average
time. The advantage to this approach is that one can convolute the different
effects of time smearing to get another Gaussian function, whose width is
obtained by adding in quadrature the widths from independent broadenings.
The resolution is then obtained in terms of the following variables for time,
energy, and distance:

6The paths from moderator to detectors in Fig. 10.14 are often compared to the ray diagram of
a pinhole camera, where the pinhole is at the position of the chopper.
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• L0...distance from the moderator to the Fermi chopper

• L1...distance from the sample to detector

• L2...distance from the Fermi chopper to the sample

• tr...time spread of neutrons passing through the Fermi chopper

• tm...time spread of neutrons from the moderator

• δm...distance the neutrons travel in time tm

• E0...incident energy selected by Fermi chopper

• E1...energy of the neutron leaving the sample

It is typical to express the energy resolution as a fraction of the incident
energy, ∆E/E. The Gaussian analysis performed by Windsor [C.G. Windsor]
gives:

∆E
E

=
2δm

L0

[ (
1 +

(E1

E0

)3/2 L2

L1

)2

+
( tr

tm

)2
(
1 +

(E1

E0

)3/2 L0

L1

(
1 +

L2

L0

))2 ]
, (10.29)

Energy resolution can be presented in various ways, and it is important
to be careful when comparing plots for different instruments. Perhaps the
most important criterion is the neutron flux on the sample for a given energy
resolution, calculated for conditions that optimize the intensity. Figures 10.15
and 10.16 show such plots for the ARCS instrument. The first figure shows
the performance for incident neutrons of 63 meV energy, approximately at
the peak of the moderator brightness. These neutrons have a longer time
spread for emission from the moderator, however, and this limits the ultimate
energy resolution to about 2.5% of the incident energy. Figure 10.16 shows the
same plot for neutrons of 250 meV incident energy. The ultimate resolution
is better, perhaps 2% of the incident energy, in large part owing to moderator
performance. The intensity is lower at 250 meV for the modest resolution of 4%,
however. The neutron guide is not so effective at 250 meV, and the moderator
spectrum is weaker at this energy.

10.7 Q Resolution

Optimization is quite different for Q resolution, however. This has been less of
a focus of the ARCS instrument design, however, because historical trends have
emphasized the design of instruments for work with polycrystalline samples.
Measuring dispersive excitations in single crystals forces the consideration of
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Figure 10.15: Flux on sample
for various energy resolutions
of the ARCS spectrometer for 63
meV incident neutrons.

Figure 10.16: Flux on sample
for various energy resolutions
of the ARCS spectrometer for
250 meV incident neutrons.

Q resolution. Specifically, it is suggested that the instrument be optimized for
fractional Q resolution. The figure-of-merit, RQ ≡ ∆Q/Q, is analogous to the
figure-of-merit, ∆E/E for E resolution.

The parameter space for optimization is broad, and optimization depends
on the type of measurement to be performed. Various types of excitations must
be considered. The extreme cases are treated below as: 1) elastic scattering, 2)
highly dispersive inelastic scattering and 3) dispersionless inelastic scattering.

10.7.1 Summary of Q Broadening

Four sources of Q broadening are considered:

• The finite size of the moderator, even over a long primary flight path, pro-
vides a significant angular divergence of neutrons on the specimen. This
divergence is about 0.4◦ without a guide, and will be larger for thermal
neutrons that have been reflected along the guide. If the excitations in
the specimen do not select among these incident k⃗i, the resolution of the
experiment will be dominated by incident divergence.

• A 0.2◦ mosaic spread of a good crystal will cause an angular spread of 3.5
cm at 10 m. This is comparable to detector pixelation along a diagonal
direction, which is approximately 2.5

√
2 = 3.5 cm.

• The energy resolution leads to a coupled smearing in Q. Since the energy
resolution is quite good for all flight paths, this source of Q smearing is
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not the biggest problem for single crystal work, especially in the forward
direction.

• The sinθ-dependence of Q conspires with finite detector pixel size to give
a divergent l3 in the the forward direction. A RQ of 1.0 % is not possible
for scattering angles, 2θ, smaller than 14◦ if a 10 m secondary flight path
is used with 2.54 cm detectors. The problem is proportionately worse for
shorter flight paths.

10.8 Optimization for ∆Q/Q in Elastic Scattering

It is easiest to first analyze the Q resolution for elastic scattering, and some of
the issues for elastic scattering pertain directly to inelastic scattering.

10.8.1 Incident Divergence

The finite size of the moderator provides an angular divergence of incident
neutrons on the sample. This is approximately 10 cm over 1350 cm, or about
0.4◦. This incident divergence may or may not contribute to the divergence
in scattered beams, depending on the process involved. For elastic Bragg
scattering, for example, the incident divergence will allow intense Bragg peaks
from all parts of a sample misoriented to within about 0.4◦. Although incident
divergence is a potentially serious problem, a perfect crystal will still provide
sharp Bragg diffractions. This incident divergence can be the dominant effect
on Q-resolution for polycrystalline samples, however.

10.8.2 Mosaic Spread

It is important to consider the limit to Q resolution caused by the sample itself
– the instrument need not be much better than the intrinsic resolution of the
sample. One issue is that a finite sample subtends a non-zero angle over the
secondary flight path, l3. This can be ignored for a typical 1 cm sample, which
is much smaller than the expected size of detector pixels.

The “mosaic spread,” denoting the mean mutual misorientations of differ-
ent subvolumes in a crystal, is an important figure-of-merit for single crystal
samples. A good single crystal sample may have a mosaic spread of 0.2 ◦, for
which the angular blurring of an elastic beam at a detector located 10 m away
from the sample is 3.4 cm. This is only slightly larger than typical detector pixel
resolutions. Better instrument resolution would be a reasonable request, except
for the fact that a 10 m sphere of detectors around the sample is prohibited by
constraints of cost and space. Nevertheless, we note that a long secondary
flight path, L1 = 10 m, could be justified for single crystals of high quality in
cases where the incident divergence does not dominate the Q resolution.
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10.8.3 Locus of Constant ∆Q/Q

We seek the locus of detectors that provides a constant ∆Q/Q, defined as the
resolution, RQ:

RQ ≡
∆Q
Q

. (10.30)

By definition

Q ≡ 4π
sin(θ)
λ

, so (10.31)

∆Q = 4π
cos(θ)
λ
∆θ , (10.32)

giving
RQ = cot(θ)∆θ . (10.33)

When RQ is plotted in polar coordinates, the detector locus is defined. This
is shown in Fig. 10.17. This shape is quite incompatible with the spherical
solution for constant ∆E/E. At low angles, the detector placements required
for constant ∆E/E and constant ∆Q/Q are exactly orthogonal.

The resolution RQ diverges at small angles, because at small angles Q→ 0, so
very small ∆Q is needed to maintain a constant ∆Q/Q. A small angular spread
for ∆Q is achieved only when the detector pixels are very small or are placed
at very large L1. At the other extreme, the detector distance for constant ∆Q/Q
is infinitesimal when the scattering angle, 2θ, is 180 ◦, since small variations in
angle have no effect on Q for direct backscattering.

10.8.4 Coupling of Q Resolution to E Resolution

One obvious incompatibility of the∆Q/Q optimization and the∆E/E optimiza-
tion is that the secondary flight path, L1, becomes vanishingly small at θ = 90◦.
(This is strictly true only for the elastic scattering. For a fixed energy transfer,
however, there will be a particular angle of inelastic scattering for which∆Q = 0
in Eq. (10.33).)

Poor energy resolution will cause a smearing in Q, increasing RQ. For elastic
scattering:

Q = k f − ki =

√
2mE
ℏ

2 sinθ , (10.34)

dQ
dE

=

√
2m

ℏ
√

E
sinθ , (10.35)

dQ
dE

=
Q
2E

sinθ , (10.36)

dQ
Q

=
dE
E

sinθ
2

, (10.37)

so ∆Q/Q and ∆E/E are comparable for modest angles.
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Figure 10.17: Detector locus for constant ∆Q/Q. Crosses are spaced at 2 ◦

increments of 2θ . Labels indicate specific 2θ angles. Sample would be located
at (0,0). Distance units are arbitrary, but they are equal for the two axes.

The obvious solution is to use a spherical detector locus for high scattering
angles. The 3.0 m flight path of ARCS gives energy resolutions as small as
∆E/E = 1 %. At 2θ = 40◦ this contribution to ∆Q/Q is less than 0.2 %, and this
is even smaller at lower angles.

10.9 Optimization of ∆Q/Q for Inelastic Scattering

10.9.1 Ewald Spheres and Incident Divergence

Three important cases are depicted in Fig. 10.2. Case 1, elastic scattering, was
the topic of the previous Sect. 10.8. Case 2, dispersive inelastic scattering, is
considered first. This problem is presented in two parts, the case for the first
Brillouin zone, and the case for higher Brillouin zones. Case 3 of Fig. 10.2 is
presented last, and it is more straightforward.

For a fixed energy loss, the value of
∣∣∣⃗k f

∣∣∣ is constant, although k⃗ f may take
different orientations. The kinematics of this scattering are understood most
conveniently by use of the Ewald sphere construction, which is shown for
elastic scattering in Fig. 10.3a. The Ewald sphere construction is useful for
analysis of diffraction conditions because it identifies the relationship between
the wavevector transfer, Q⃗, and the reciprocal lattice vector, τ⃗, showing when
the Laue condition, Q⃗ = τ⃗, is satisfied for diffraction. In inelastic scattering the
momentum of the excitation, q⃗, plays a similar role to τ⃗, especially in the first
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Figure 10.2: Three types of scattering processes (1) elastic scattering, (2) disper-
sive inelastic scattering, and (3) non-dispersive inelastic scattering.

Figure 10.3: (a) Ewald sphere construction for elastic scattering, showing al-
lowed Q⃗ for Bragg diffraction. (b) Ewald sphere construction for inelastic
scattering, showing allowed {Q⃗}.

Brillouin zone where τ is zero.
For the inelastic scattering process shown in Fig. 10.3b, all {⃗k f } have the

same length (as for the elastic case of Fig. 10.3a), since the energy E f is identical
for all orientations of k⃗ f . In both Figs. 10.3a and 10.3b, the allowed k⃗ f make a
sphere, which when placed at the tail of k⃗i, defines the allowed {Q⃗} as shown in
the figure (where as usual Q⃗ ≡ k⃗ f − k⃗i).

The advantage of the Ewald sphere constructions of Fig. 10.3 is in analyzing
tilts of the incident beam, as occurs for incident divergence, for example. The
cases of Fig. 10.4 show conditions for elastic scattering before and after tilt. It
is evident that the condition for momentum conservation (the Laue condition)

Q⃗ − τ⃗ = 0 (10.38)

is generally violated by tilting, because tilts of k⃗i by the angle ϕ cause Q⃗ to
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Figure 10.4: Ewald sphere construction for elastic scattering (a) before, and (b)
after tilt of k⃗i. Notice that Q⃗ no longer touches the reciprocal lattice vector τ⃗
after tilt.

tilt by this same angle ϕ. The consequence of this violation of momentum
conservation is that coherent elastic scattering is altered, and Bragg diffractions
may be eliminated, for example. Those neutron trajectories with improper k⃗i
will not contribute to the Bragg diffraction.

10.9.2 First Brillouin Zone – Soft Dispersions

One case for inelastic scattering is shown in Fig. 10.5a. This case is a scattering
from the first Brillouin zone, where the reciprocal lattice vector, τ⃗ = 0. The
diameters of the two circles are set by the energy and momentum transfer to
the excitation. In Fig. 10.5a,

∣∣∣⃗k f

∣∣∣ ≃ √2
∣∣∣⃗ki

∣∣∣, indicating that the neutron has lost
half its energy to the solid. For the present case where the excitation is of energy
Ei/2, we further assume a relatively soft dispersion where the momentum of the
excitation q is assumed the same as the momentum of the neutron, k f . A circle
is used for the locus of acceptable q⃗ (a circle is not expected for anisotropic
crystals, of course). This circle has a large radius, as may be expected if a
dispersive excitation has a soft dispersion relation.

The effect of tilt on the scattering condition is shown in Fig. 10.5b. It is
evident by geometry that the tilt of k⃗i and q⃗ are by the same angle for this
case of q⃗ lying in the first Brillouin zone. This could affect the ability of the
neutron to excite the dispersive mode, at least if the dispersive mode is sharp
in q⃗. Conditions where highly anisotropic dispersions have a delicate contact
with the locus of Q⃗ can also be envisioned.

10.9.3 Higher Brillouin Zones – Stiff Dispersions

The case of a high energy excitation is shown in Fig. 10.6. In this case the dis-
persion is very steep, and the energy is so high that the energy of the excitation
is large, even when q is small. In this particular case, there are no excitations in
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Figure 10.5: Ewald sphere construction for inelastic scattering (a) before, and
(b) after tilt of k⃗i. Notice that although Q⃗ has the same magnitude, it changes
orientation by the same tilt angle, ϕ, as the incident beam.
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Figure 10.6: Ewald sphere construction for inelastic scattering (a) before, and
(b) after tilt of k⃗i. In this case the excitation has a large E for a small q. Notice
that although Q⃗ has the same magnitude, it changes orientation strongly after
tilt of the incident beam.

the first Brillouin zone because q < Qmin.7 The excitation can occur in a higher
Brillouin zone with the help of a reciprocal lattice vector, τ⃗ so that

Q⃗ − q⃗ − τ⃗ = 0 . (10.39)

This case of a high-energy excitation is a higher Brillouin zone is interesting
because a tilt of k⃗i does not induce a tilt of Q⃗ by the same angle. Figure 10.6
shows that small tilts have big effects on the orientation of q⃗. In essence, the
reciprocal lattice vector can amplify the tilt of the incident beam on the rotation
of q⃗. In this case it seems plausible that for sharp, stiff excitations, only a k⃗i of
the correct orientation can generate the excitation. The mosaic spread of the
sample will be able to pick these acceptable k⃗i from the incident beam, and
the Q resolution of the experiment will originate with the mosaic spread of the
sample and not the incident divergence.

7Experimentally, it might be prudent to use a larger Ei and k f so that excitations in the first zone

are allowed. In this case the result of Sect. 10.9.2 is recovered, that is the tilt angle of k⃗i equals the
tilt angle of q⃗. The present results from higher Brillouin zones remain valid, however.
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10.9.4 Non-Dispersive Excitations

The case of non-dispersive excitations in Fig. 10.2 is straightforward to analyze
with Figs. 10.5 and 10.6. The point is that the circle of q can be of arbitrary radius,
since the energy of the excitation does not depend on q. For this reason, at a fixed
energy transfer equal to that of the excitation, there will always be an excitation
with an appropriate q to satisfy momentum conservation. All orientations of
k⃗i will be useful for generating the excitation, and the incident divergence will
dominate over the crystal mosaic spread in setting the Q resolution. A similar
result pertains to inelastic incoherent scattering.

10.10 Background

Much of the work in commissioning a new inelastic neutron spectrometer is
eliminating sources of background in the measurements. Finding and exor-
cising the different types of background contributions is a dark art, but some
general guidance is possible.

The usual sources of background originate with neutrons that 1) were once
good neutrons in the incident beam, or 2) are bad neutrons that entered the
instrument uninvited. Unwanted neutrons can enter the instrument from the
experiment hall around the instrument. A heavy shielding of borated hydrocar-
bons around the detector chamber can help protect humans in the experiment
hall, but it is at least as important for keeping neutrons out of the instrument.

Perhaps a bigger problem comes from fast neutrons generated in the proton
target region. Not all of these are moderated to reasonable velocities, and some
of these fast neutrons enter the instrument and cause trouble. Concerning Fast
Neutrons:

• Even with a heavy T0 chopper made from iron and nickel, some 0.1%
to 1% of the fast neutrons typically pass through. They then scatter in
a number of ways from materials in the sample chamber and detector
chamber, and can lose enough energy to be detected efficiently by 3He
detectors.

• On the way towards the detector chamber, either before or after the T0
chopper, fast neutrons can interact with materials in the primary flight
path, such as concrete shielding, and lose energy. Background problems
from these “moderated” neutrons are tricky to diagnose because they
can have a time structure similar to the wanted neutrons in the incident
beam. They may, however, scatter from parts of the instrument that are
nominally protected from the incident beam and cause unexpected effects.

Neutrons wanted in the incident beam can scatter in unwanted ways. Con-
cerning Neutrons in the Incident Beam:

• The first concern in designing a neutron scattering experiment is to keep
all materials out of the incident beam except for the sample itself. Ob-
viously anything exposed to the incident beam (sample support, heating
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elements, pressure cell) will scatter neutrons in much the same way as
the sample.

• Peculiar effects can occur when neutrons scattered from the sample find
their way into another material in the sample chamber or detector cham-
ber, and scatter a second time. Multiple scattering is a problem inside
thick samples themselves, but it is even trickier to sort out if a neutron
scattered by the sample is again scattered by a pressure cell and then goes
into the detectors of the instrument. Calculating multiple scattering is the
topic of Section 12.2, but avoiding multiple scattering should be a goal of
experiment design.

• There is often a “small-angle elastic scattering” from small-scale density
variations in the sample or in the sample environment equipment. The
forward beam is broadened as it leaves the sample, and the albedo of the
beam may not all enter the “get lost” pipe and beam stop. These neu-
trons may scatter from the forward-mounted detectors, giving a source
of neutrons that shines back into the spectrometer. Radial baffles can
help hide detectors from scattering from other detectors across the instru-
ment. A radial collimator around the sample itself also proves effective
in suppressing scattering diametrically across the detector array.

Evidently there are numerous risks of background from neutrons that enter
the instrument either invited or uninvited. An older viewpoint is that since
the energies and directions of these neutrons are hard to understand, they
can be modeled as a gas with a wide spectrum of energies. In other words,
these unwanted neutrons go everywhere. Covering everything with absorbing
material is good practice.

A more refined practice is to use a radial collimator around the sample so
that the scattered neutron beams from the sample must take a straight line to
the detector array. Neutrons that are scattered by other materials away from the
sample position are absorbed by the walls of the collimator and do not reach the
detector. (Usually this collimator oscillates by a small angle so it does not cast
a shadow, and its absorption characteristics are averaged across the detectors.)
Very large improvements in background are possible with an oscillating radial
collimator, as shown in Sect. 12.3.4.

Last but definitely not least, another important practice to reduce back-
ground is to eliminate parts of the incident neutron beam that cannot illuminate
the sample. If the sample is small and intercepts only a fraction of the area of the
incident beam, it is often a good idea to eliminate the rest of the incident beam
by upstream collimation before the beam reaches the sample. This is less of a
concern when the sample is isolated by being hung on a thin wire or mounted
at the end of a thin stick, for example. In the case of an isolated sample, the
outer neutrons that miss the sample will go straight into the get lost pipe and
beam stop. However, if there is anything around the sample that could be
hit by the incident beam, the best practice is to remove this extra material, or
collimate the incident beam so incident neutrons do not hit it.
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10.11 Sample Design

Inelastic neutron scattering experiments require careful attention to the sample
itself. Of course the sample must be in the correct state, satisfying basic criteria
such as magnetic polarization, chemical composition, crystal structure, crys-
tallographic quality or texture, temperature and pressure. Criteria for these
sample states must not be compromised to the detriment of the science. The
in-situ control of temperature, pressure, and magnetic field often leads to some
compromises in experiment design, and expertise with the available “sample
environment equipment” is essential in planning an experiment.

A common problem for inelastic scattering experiments is a sample that is
too small. There is always a background in the spectrum from stray neutrons
in the instrument, and inelastic neutron scattering experiments may be ruined
by poor signal-to-noise ratios whenever this background has an intensity com-
parable to the scattering from the sample itself. Robust scattering from the
sample usually means having a large quantity of sample. Experimenters are
often dismayed that inelastic scattering measurements typically two orders-of-
magnitude more sample than is typical for neutron diffraction measurements.
The ideal sample for inelastic scattering will be as wide as possible so that it
fills the cross section of the incident beam. With a wide sample, all neutrons in
the beam will be candidates for scattering, and no parts of the beam will pass
directly into the beamstop or generate unnecessary background.

The thickness of the sample in the direction of the beam needs to be chosen
with care. It is possible to have a sample that is too thick. There are two limits
that set upper bounds on the thickness of samples, and we consider each in
turn below. The sample should be as thick as possible, provided it does not
exceed limits imposed by:

• Multiple scattering. If the scattering cross-section is large and the sample
is thick, too many neutrons will be scattered multiple times inside the
specimen. Each scattering has its own energy spectrum, and the convo-
lution of these spectra is difficult to sort out in the measured data.

• Absorption. Some nuclei are strong absorbers of neutrons. For thick
samples of strong absorbers, few neutrons can leave the samples and
enter the detectors.

10.11.1 Scattering and Attenuation

As a neutron beam passes through a material, there is a reduction in the number
of neutrons in the forward beam. At the depth x, the increment of thickness
of a material, dx, scatters a number of neutrons, dI, removing them from the
beam. The number of scattered neutrons, −dI(x), equals the product of 1) the
increment of thickness, dx, 2) the number of neutrons present at x, I(x), and 3)
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a material coefficient, s:

−dI(x) = s I(x) dx , (10.40)
dI(x)

dx
= −s I(x) , (10.41)

I(x) = I0 e−sx . (10.42)

If scattering is the only process that removes neutrons from the incident beam as
it traverses a sample of thickness t, the loss from the beam equals the intensity
of the scattering:

Iscat(t) = I0

(
1 − e−st

)
. (10.43)

The product in the exponent, sx or st, must be dimensionless, so s has
dimensions of [cm−1]. When sx is small, it equals the fraction of neutrons
removed from the incident beam. From Fig. 1.4 we know that this fraction also
equals Nσ/A, so:

s =
Nσ
Ax
=

N
V
σ , (10.44)

where N/V has units [atoms cm−3] and σ is the scattering cross-section with
units [cm2].8

It is straightforward to calculate the composite mass attenuation coefficient
for a compound or an alloy. The point to remember is that the total neutron
scattering depends on the number and types of atoms in the path of the beam.
The composite attenuation coefficient is obtained from the attenuation coeffi-
cients, si, for the different elements, i, weighted by their atomic fractions in the
material, fi:

⟨s⟩ =
∑

i

fi si . (10.45)

10.11.2 Multiple Scattering Criterion

It may seem curious that in a well-planned experiment, most of the neutrons
are transmitted through the sample without scattering.9 Using a very thick
specimen can cause the data to be uninterpretable, as we now show.

Consider the probability of inelastic scattering, pi, and elastic scattering,
pe, through a thin layer of material. We set pe + pi = p, where p is the total

8Since density varies with the type of material, “mass attenuation coefficients” are often nor-
malized as ratios s/ρ. Here the density, ρ, has units [g cm−3], so the coefficients s/ρ have units
[cm−1]/[g cm−3]=[cm2 g−1]. Exponents in (10.42) are products (s/ρ) × ρ × x, and are, of course,
dimensionless.

9Often the next largest fraction of neutrons are scattered elastically, and the smallest fraction are
scattered inelastically.
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probability of scattering in the layer. For thin samples of n layers, each of
thickness x, we have the relationship between numbers of layers and the bulk
scattering coefficient, s:

⟨s⟩x = n p . (10.46)

For consideration of multiple scattering, it is most convenient to work with the
numbers of layers and scattering probabilities.

A challenge for multiple scattering calculations is the three-dimensionality
of the sample. Neutrons can be scattered initially upwards, followed by a
second scattering to the side, and a third scattering out to the detectors. A
computer program such as MSCATT or MCViNE is required for accounting for
such possibilities. Here we provide an approximate analysis in one dimension.

We assume that all neutrons entering the layered sample eventually leave
the back of the specimen and are observed. The probability, p′ for a neutron
being scattered j times is the product of j of the layers doing a scattering, and
n − j of the layers doing no scattering:

p′ = p j(1 − p)n− j . (10.47)

We are not keeping track of which particular layer has done the scattering.
We keep track of the fractions of neutrons that are scattered j times in our n
layers when the scattering probability in each layer is p. The number of ways of
arranging the j scatterings over the n layers is therefore the binomial coefficient.
The total fraction of neutrons that are observed in our example is 1, and should
equal the sum of all scatterings, including j = 0 for no scattering:

1 =
n∑

j=0

n!
(n − j)! j!

p j(1 − p)n− j . (10.48)

We have implicitly assumed p ≪ 1, so the number of scatterings j ≪ n, and
each layer scatters at most once. (This also ensures that the terms for which
j ∼ n are negligible in (10.48).) We can always satisfy this assumption p≪ 1 by
dividing our sample into finer and finer layers, because (10.46) shows us that
for a fixed sample, np is a constant. Write out the first few terms of (10.48) in
the binomial expansion:

1 = (1 − p)n + np(1 − p)n−1 +
n(n − 1)

2
p2(1 − p)n−2 +

+
n(n − 1)(n − 2)

6
p3(1 − p)n−3 + ... (10.49)

We simplify by using our condition of large n and small p,

1 = (1 − p)n + (np)1(1 − p)n−1 +
1
2

(np)2(1 − p)n−2 +

+
1
6

(np)3(1 − p)n−3 + ... (10.50)
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The first term in (10.50) is the the probability of zero scattering, the second
is the probability of one scattering, the third – two scatterings, etc. We are
interested in knowing the ratios of the different terms in this series. Since
1 − p ≃ 1, and using (10.46), the ratios are:

1 : sx :
1
2

(sx)2 :
1
6

(sx)3 ... (10.51)

The parameter sx is dimensionless, and for experiment design we seek
sx ≃ 0.10. In other words, we seek a sample that scatters 10% of the incident
neutrons. For this particular case, (10.51) gives the ratio of double scattering to
single scattering of 1/2sx = 0.05. Consider the effect of this double scattering
on the inelastic spectrum. The scattering probability is the sum of an inelastic
and elastic probability:

p = pe + pi , (10.52)
np = npe + npi , (10.53)
⟨s⟩x = ⟨se⟩x + ⟨si⟩x . (10.54)

For this sample that scatters 10% of the incident neutrons, the ratio of the
amount of inelastic single scattering to the amount of inelastic double scattering
will be 5% – the same ratio as for the total scattering.

The effect of multiple scattering is to smear out the measured inelastic energy
spectrum, and spread it out over twice the energy range of the single-scattering
spectrum. Suppose the first scattering has the double-differential cross section
of (6.52). Suppose a particular inelastic scattering causes an energy loss ϵ = ℏω.
If this scattered neutron with altered energy and wavevector now undergoes a
second inelastic scattering, the process may involve another double-differential
cross section of (6.52), but with somewhat different parameters. An energy
spectrum associated with this second scattering will be associated with every
energy loss from the first scattering. Approximately, the energy spectrum for
double scattering is the convolution of the single-scattering energy spectrum
with itself. A similar type of argument applies to momentum distribution, but
this is complicated by the vectorial aspects of the momentum transfer. Today
the accepted practice is to ignore multiple scattering by assuming it is a weak
background underneath the measured data, and does not contain significant
structure. So long as it represents only 5% of the spectral area, this shouldn’t
be a problem, should it?

A more insidious problem occurs when the sample is near other material that
can scatter neutrons, such as a heater or a cold finger for sample temperature
control. Depending on geometry, neutrons can be scattered from the sample,
to this support material, to the detector. The result may be a new feature
in the inelastic spectrum, such as a spurious peak from an excitation in the
support material. What is so insidious is that by removing the sample, this
spurious peak will disappear. It is therefore tempting to assign this peak to
an excitation in the sample, not in the support material. This problem was
discussed qualitatively in Sects. 10.10, and a specific example is calculated
quantitatively in Sect. 12.3.4.
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10.11.3 Absorption Criterion

When the sample contains a strong absorber of neutrons, the analysis is a bit
more complicated than for (10.42). The loss of neutrons from the incident beam
is now

−dI(x) = (s + a) I(x) dx , (10.55)
I(x) = I0 e−(s+a)x . (10.56)

where the parameter a is the absorption coefficient, causing neutrons to “dis-
appear,” rather than scatter. The I(x) in (10.56) is the number of neutrons at
depth x into the specimen, but Eq. 10.43 does not give the number of scattered
neutrons. Furthermore, the scattered neutrons can be absorbed on their way
out of the sample. With a one-dimensional model, for a sample of thickness t,
the path out has a length t − x, so an exponential function with this argument
attenuates the outgoing beam. For the scattered neutron intensity, Iscat from the
increment dx is

dIscat = I(x) e−a(t−x) s dx . (10.57)

Substituting (10.56) into (10.57), rearranging, and integrating dIscat:

Iscat = I0 s e−at
∫ t

0
e−sx dx , (10.58)

Iscat = I0 e−at (1 − e−st) . (10.59)

We can use (10.59) to calculate the scattering for any combination of ab-
sorption coefficient (a) and scattering coefficient (s). Suppose that a = 0, and
there is no absorption. For a sample that scatters 10% of the incident neutrons,
we obtain (10.43). Incidentally, for such a thin scatterer we can expand the
exponential in (10.43) to obtain Iscat = I0 s t, which is perhaps more intuitive.
Now consider the other limit where absorption is strong. A sample that is too
thick will have no scattered intensity, since all neutrons are absorbed. There is
an optimal thickness t′ for maximum scattering that we find by the analysis:

dIscat

dt

∣∣∣∣
t′
= 0 (10.60)

t′ =
1
s

ln
(s
a
+ 1

)
. (10.61)

For strong absorbers, a≫ s, and we obtain from (10.61):

t′ =
1
a

optimal thickness for strong absorbers. (10.62)

10.11.4 Hydrogen Criterion

Finally, we consider the inelastic scattering from hydrogen, a unique element.
Phonon scattering cross sections are proportional to σ/m. Hydrogen has a
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Table 10.1: Neutronics of LiFePO4

units Li Fe P O O4

σscat 10−24 cm2 1.37 11.62 3.312 4.232 19.93

σabs 10−24 cm2 70.5 2.56 0.172 0.0 0.0

σscat/m 10−24 cm2/A 0.196 0.208 0.107 0.265 1.06

uniquely large σ and an uniquely low m, making it a stronger inelastic scatterer
than Zr, by a factor of 1100. A trace of hydrogen in Zr would contribute a large
amount of the inelastic scattering, and Zr has a tendency to absorb hydrogen
and retain it in a modest vacuum. In many cases the spectral contributions
from hydrogen are at high frequencies, and can perhaps be separated from
the modes from Zr, for example. Nevertheless, it is important to know the
hydrogen concentration in a sample for inelastic scattering experiments, and
the best practice is to eliminate hydrogen from the sample.

10.12 Sample Design: Worked Example of LiFePO4

Here are some sample calculations that were used for obtaining a thickness and
mass of a typical sample for inelastic scattering. The neutronic properties of
the elements of lithium iron phosphate are listed in Table 10.1.

The first step is to calculate the mass, M, of a sample that is a 10% scatterer.
We do the calculation for 1 cm2 of sample area, so the total cross section should
be 0.1 cm2

σtot = 0.1 cm2 = [1.37 + 11.62 + 3.31 + 16.93]

×[10−24 cm2]
[

1 mole
158 g

6.02 × 1023 atoms
mole

]
M . (10.63)

M = 0.79 g . (10.64)

To fill the 5×5cm beam of the ARCS instrument, the sample mass should be
19 g.

The second check is for absorption. The total absorption for a 1 cm2 sample
is:

σabs tot = [70.5 + 2.56 + 0.176]

×[10−24 cm2]
[

1 mole
158 g

6.02 × 1023 atoms
mole

]
0.79 g . (10.65)

σabs tot = 0.219 . (10.66)

This is small enough to be ignored, but if it were much larger we would have
to resize the sample to be consistent with (10.62), for example.
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Finally, we consider the risk from some residual water in the sample. One
H2O molecule has a ratio of σscat/m = 170 for its hydrogen atoms. The σscat/m
in Table 10.1 are nearly 1000 times smaller. We should seek a mole fraction of
water that is 10−4 or less. Perhaps some water could be removed by heating the
sample slightly in the vacuum of the ARCS spectrometer.

Through data analysis procedures described in Chapter 6, it is possible to
convert a measured inelastic spectrum to a representation of the phonon DOS.
The problem of “neutron weighting” in LiFePO4 can be seen from the last
line in Table 10.1 in the values of σscat/m. For this material, the vibrational
modes involving large amplitudes of motion for Li atoms will be much more
prominent in the extracted DOS than the modes involving large amplitudes for
O atoms. This neutron weight problem is one that can be addressed by lattice
dynamics calculations, for example.

10.13 Sample Design: Sachets for Powders

Powder samples can be challenging to mount and accommodate in furnaces
and cryostats. Here is an illustrated example of a successful design for a sachet
(a small bag with a French name) filled with powdered SrO. It was designed to
be heated to 1100◦C in a vacuum furnace. Prime concerns were:

• The sample must not spill from the container. Spills of powder inside neu-
tron instruments are serious issues, and require professional decontami-
nation. After exposure to neutrons, many materials become “activated,”
meaning that they are radioactive. If the powder is also chemically toxic,
the spilled powder is called “mixed waste,” which is one of the highest
categories of hazardous materials. Do not spill powders of samples used
for neutron scattering research.

• The sachet should be made of thin sheet material so it does not contribute
significantly to the inelastic scattering background. Neutron facilities
often supply vanadium sample containers because these are well suited
for neutron diffraction. Although vanadium has no coherent scattering
(suppressing diffraction peaks), vanadium still has considerable inelastic
scattering. For inelastic scattering, niobium can be a good choice for high
temperatures, and aluminum is good for low temperatures.

• For experiments in furnaces, the sample should not react with the sachet
at high temperatures. In some cases it is possible to examine a phase
diagram to see if any compound made from elements in the container
and elements in the sample has a low melting temperature. If so, the
highest temperature of the experiment should be set with caution. It is
usually a good idea to test the combination of the sachet and the sample
in a furnace well before going to the neutron experiment.

• The sample thickness should be approximately uniform, and remain sta-
ble with handling and mounting. Shaping loose powders into flat plates
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Figure 10.7: A partially-complete sachet. A sheet of thin niobium was folded in
half, and the edges were folded multiple times in ever sharper triangle shapes.
A pair of pliers will be used to crimp the edges.

is challenging, and a technique is shown below.

Figure 10.7 shows a sachet constructed of thin (50 micron) niobium sheet.
The edges comprise many thicknesses of material, but they will be shielded
from the incident beam. It is useful to draw the shape of the sample sachet in
the lab notebook. An important trick shown in Fig. 10.7 is that the opening
for the sample is formed around a plate of appropriate thickness. In this case a
ruler proved the right thickness, and was used to shape the sachet.

Figure 10.8 shows that it usually takes two pairs of hands to fill the sachet
with powder. It takes a bit of skill to ensure that the sachet does not bulge
excessively in the middle, or to ensure that the powder does not settle to the
bottom with further handling. Figure 10.9 is a reminder to weigh every sachet
both before and after loading with powder.

Figure 10.10 shows a boron nitride frame around the sample sachet, which
serves to block the incident beam from hitting the edges of the sachet. The
frame should face the incident beam, looking upstream from the sample. For
this experiment, the sample plane normal was tilted +45◦ with respect to the
beam, so the normal to the sample pointed to detectors at +45◦, and the plane
of the sample intersected detectors at +135◦, giving a low scattered intensity at
this angle. It is also appropriate to adjust collimation slits in the incident beam
to confine the height and width of the beam to the central region of the sample.

Further Reading

The contents of the following are described in the Bibliography.
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Figure 10.8: Loading powder into the sachet. For valuable powders it is appro-
priate to do the loading over clean aluminum foil so that any spilled powder
can be recovered and reused.

Figure 10.9: Remember to write the mass of the empty and filled sachet in the
lab notebook.
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Figure 10.10: Completed sample assembly, ready to mount in the neutron beam.
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Chapter 11

Essential Data Processing

This chapter explains procedures for the reduction of data from a time-of-flight
inelastic neutron spectrometer. To date the practice of reducing inelastic scat-
tering data from time-of-flight instruments has been poorly-documented, dull,
tedious, and error-prone. We hope this chapter transcends these traditional
shortcomings.

The present chapter explains the rationale behind the data reduction mod-
ules of DANSE (Chapter 7 better explains their use). After an overview of
a typical data reduction process, the individual steps are explained in detail.
Approximately, analysis steps that are further from the raw data are more
closely-related to the dynamic processes in the sample, and tend to be more
computationally-intensive. These steps (such as corrections for absorption,
multiple scattering, and multiphonon scattering) are described later in this
chapter. Although the data analysis steps described first are somewhat inde-
pendent of the previous chapters, understanding some of the later steps (such
as corrections for multiphonon scattering) may be easier after reading Chapters
2 and 3.

The treatment in this chapter presupposes a “direct geometry” configura-
tion (monochromation before the sample) and a two-dimensional, pixellated
detector system, composed of an array of linear, position-sensitive detectors.
This configuration is used in the Pharos and ARCS spectrometers, for example.

The first task is to take a raw set of data from an inelastic neutron scattering
experiment (with a powder sample), and convert it into physical units such as
meV and Å−1 for energy and momentum transfer. Such basic steps are needed
before the data can be compared to predictions from theory, or even compared
to results from other inelastic spectrometers. Although the specific steps may
depend in part on the scientific issues being studied, some data processing
steps are common for nearly all experimental work, and are required to make
an inelastic neutron scattering data set useful. There may be others steps as
well, but most experiments follow most of the steps presented here.

Some notation is listed in Table 11.1. Fig. 11.1 shows the position of the
detector tubes with respect to the sample, S, in the plane of the spectrometer,

281
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Table 11.1: Notation
ki (kf) modulus of the initial (final) neutron wavevector

Q⃗ = k⃗i − k⃗f momentum transferred from the neutron to the sample

ϕ scattering angle (Q =
√

k2
i + k2

f − 2kikf cosϕ)

Ei (Ef) incident (final) neutron energy

ℏω = ∆E = Ei − Ef Energy transferred from neutron to sample

l2 distance from the sample to the center of a detector

d labels a specific detector

h the height of a pixel in a detector

Fig. 11.2 the position perpendicular to the plane.
Typically one wants to know the dynamic structure factor, or scattering

law, S(Q, ω). The coherent nuclear scattering of (7.94) can be summarized in
simplified form: ( d2σ

dΩdE

)
coh
=
σcoh

4π
kf

ki
NScoh(Q⃗, ω) , (11.1)

with similar expressions for incoherent scattering or magnetic scattering. Ow-
ing to several complications originating with how the measurement is made,
the measured data are actually:( d2σ

dΩdt

)
coh

= Φ
[σcoh

4π
kf

ki
NScoh(d, h, t) × T(d, h, t) × ϵ(d, t)

+ Snuis(d, h, t) + b(d, h, t)
]
. (11.2)

Here Φ is the incident flux, and often must be known by an independent
measurement with a beam monitor, for example. The data are initially his-
togrammed as a function of neutron time-of-flight (TOF) rather than neutron
energy,1 where the two are related by E = 1/2mnv2 = 5.227(l/t)2 (the second
equality holds for speeds in mm/µs or equivalent). Background b and nuisance
scattering from the sample, Snuis, pollute the interesting signal.2

Other factors modify the interesting term involving Scoh. The sample may
absorb neutrons, so only a fraction T of neutrons are transmitted through the

1The introduction of new data acquisition hardware and software might alleviate this by his-
togramming directly into energy and momentum. That may simplify some tasks, for example
eliminating the conversions from TOF to energy and from TOF and angle to momentum. How-
ever, this may complicate other tasks such as background subtraction.

2This list includes anything that does not interest the experimenter. For example, in a phonon
measurement this may include all magnetic scattering, multiphonon and multiple scattering effects.
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Figure 11.1: Layout of the
secondary flight path of
a direct geometry time-of-
flight spectrometer. The
detectors are arrayed in a
circle of radius l2 around
the sample (at S). The
beam is incident on the
sample from the left. The
x and z axes show the co-
ordinate system used in
the discussion of binning
into rings (Sect. 11.1.2),
the y-axis of that system
points out of the page. ψ
is the angle from the z-axis
to the center of a given de-
tector (in the x-z plane).

Figure 11.2: Labeling some
of the distances in the sec-
ondary flight path of a direct
geometry time-of-flight spec-
trometer. The center of the
detector is l2 from the sample
(at S), and a given pixel is at
height h from the center. The
total distance from the sam-
ple to a pixel is l2 + b(h) =
(l22 + h2)1/2.
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sample, and this varies with scattering angle and neutron energy. The efficiency
ϵ of the detectors varies with energy and from one detector to another. The jobs
ahead are:

• Account for incident flux.

• Remove background.

• Compute incident energy.

• Convert from time to energy.

• Correct for detector efficiency.

• Correct for absorption.

• Subtract similarly treated empty can data.

• Bin into rings of constant scattering angle ϕ.

• Subtract additional nuisance scattering (multiple scattering and so on).

• Convert from angle to momentum.

Errors must be propagated. This is usually done according to a few sim-
ple rules, such as when data sets are added or subtracted, the errors add in
quadrature; the error for the raw histogram is the square root of the counts in
any given bin (156).

While many experiments could be treated by a similar process, not all of
them can. In the later case, we have to know when departures from the routine
require intervention in the reduction process. The sequence in which these
tasks are presented here is that in which they are usually performed. As a
rule, these operations do not commute, and we have to figure out what needs
to be adjusted when re-ordering things. For instance, if the background is
known as a function of time, either it should be subtracted before the data are
transformed into energy, or the background must be transformed into energy as
well. The sequence for other tasks, such as conversion to momentum units, is
motivated by efficiency (one needs to think about energy when thinking about
momentum, but not vice versa, so one might as well do the energy conversion
first, followed by the momentum conversion).

11.1 Steps to Transforming Data into a Function of
Energy and Momentum

11.1.1 Operations and Data Structures

The basic data structure is a histogram. This implies sets of arrays: the array
to store the histogram values per se, a similar array for errors, and associated
arrays to store the axis values for each dimension.
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Operations can be divided into those that change the structure of some of the
arrays, and those that change only the contents of the arrays. Those that change
the structure include energy rebin (§ 11.1.2), sum into rings (§ 11.1.2), and
momentum rebin (§ 11.1.2); those that don’t change the array structures include
subtracting various artifacts (§ 11.1.2, 11.1.2) and multiplicative corrections
(§ 11.1.2, 11.1.2). The structure-changing operations require the creation of one
or more new arrays; the rest can be done in place (assuming one is confident of
the correction or if the correction can be easily undone). In the sections ahead,
changes to the structure of the data will be noted.

11.1.2 A Closer Look at Each Task

Initial Data

The starting point is an array representing I0(d, h, t), the raw counts in each
detector, at each detector position, for each TOF bin. The error is assumed to be
the square root of the intensity: σ0 =

√
I0(d, h, t). The TOF bins in this histogram

usually have a constant time width, so all the bins are specified by some initial
time t0, the bin-width ∆t, and the number N of bins.

Initially there are five major arrays representing:

• The actual data. Three dimensional array; if there are T time bins, D
detectors, and H positions per tube, the array dimensions are D ×H × T.

• The error. Same dimensions as the data.

• The time of flight. A one dimensional array of length T.

• The detector angles. A one dimensional array of length D.

• The pixel heights. A one dimensional array,3 length H.

Those arrays are stored in a histogram.
Some additional parameters are needed. These include the incident neutron

energy, Ei, and the geometry of the instrument, especially the length l2 from
the sample to each detector, and the angle of each detector. We assume these
additional parameters are known.

Normalize by Incident Flux

Typically one divides by the total counts m in a peak in a beam monitor, which
gives a proportional measure of the incident flux. Other measures may also be
considered in unusual circumstances, for example, microamp-hours of proton

3One might allow for the possibility that the pixel heights vary from one tube to another. The
pixel position array becomes a two dimensional array, with size D ×H.
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beam delivered to the target. Regardless of the source, one still divides each
element of the input array by some scalar:

I1(d j, hk, ti) = I0(d j, hk, ti)/m , (11.3)

for all {i, j, k}, and similarly for the error.

Subtract Background

Physically, the background is another complex subject; computationally, it is
not. It can have different origins, from cosmic rays hitting the detectors (proba-
bly a small contribution) and neutrons from other experiments, to more serious
causes, such as fast neutrons thermalizing in the instrument shielding, or slow
neutrons scattering from poorly-masked beamline components. At times it can
be difficult to determine what is background and what isn’t, especially when
looking for diffuse scattering.

A common way to estimate the background is to subtract a constant (in
time) background determined from the data. This may have some justification
for removing the background that originates with radiations from neighboring
instruments, or neutrons from far enough away that any time structure is lost.
Another approach subtracts the scattering measured with an empty can. This
is better done at a later stage, and is described below.

Because the background could vary with time and detector position, we
denote it as b(d, h, t). Thus, we have

I2(d j, hk, ti) = I1(d j, hk, ti) − b(d j, hk, ti) . (11.4)

For each element of I2 one must know about one element of I1 and one element
of b, and the same for the error.

Convert from Time to Energy

This step changes the structure of the data arrays. Prior to this step, the struc-
tures are the same as the initial arrays. There are still some more corrections
to be made, but those corrections can be done more easily in terms of energy.
This is computationally more intricate than the previous steps. In fact, it may
be done in two steps.

First, one creates a new set of histogram bins whose boundaries are deter-
mined by t2, the sample-to-detector TOF, and l2, the distance from sample to
detector, via the classical relation

ℏω = Ei − Ef = 5.227
[
v2

i −
( l2
t2

)2]
. (11.5)

Note that pixels at different positions along the length of the detector tube are
at different distances from the sample.4 The effect is to coarsen the energy

4For a nominal l2 of 4 m (Pharos), this discrepancy gets as large as about 0.03 m (generally, the
extra path length is b = l2[(1 + h2/l22)1/2

− 1] ≈ h2/2l22).
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resolution. An extra 3 cm is a little more than the diameter of the detector tube,
so this makes a contribution to the resolution similar to the size of the detector,
or the sample size. For 35 meV neutrons and l2 = 4 m the difference in energy is
about 1.5%. One way to account for this is to write a separate set of histogram
energy bin boundaries for each height in the detector tube:

ℏω = Ei − Ef = 5.227
[
v2

i −
( l22 + h2

t2
2

)]
. (11.6)

In making this transition, we need to multiply by the time bin-width and divide
by the energy bin-width:5

I3( ˜d, h, ω(h)) = I2(d, h, t)
∣∣∣∣ dt
dω

∣∣∣∣ . (11.7)

At this step, the array describing the time bins has been replaced by a two-
dimensional array describing the energy bins. Here is a list of the arrays at this
stage of data reduction:

• Data array. Still D ×H × T.

• Error array. Still D ×H × T.

• Intermediate energy bin boundaries array. Two dimensional, H×T or so.

• Detector angles array, one-dimensional, length H. Same as before.

• Pixel position array. Same as before.

The energy binwidth is changing from bin to bin, which makes it hard to
think about in plotting, fitting, etc. Also, the energy of any given bin is a function
of the position of the pixel height. This is why we usually take the second step,
rebinning into constant energy bins. Rebinning will also remove the artifact of
each detector position having a unique set of energy bin boundaries.

For the second step one creates another set of histogram bin boundaries,
spaced uniformly in energy. One then assigns counts from the old bins to the
new bins by prorating them. The rules are simple: if an old bin lies entirely
within a new bin, one puts all of the old counts into the new bin; in doing
so, multiply by the old bin width and divide by the new bin width. If an old
bin overlaps two new bins, assign counts to the first new bin based on the
fraction of old bin overlapped by the first, and assign counts to the second new
bin according to the fraction of the old bin overlapped by the second bin (and
multiply by the old bin width while dividing by the new). The same holds true
if the old bin overlaps many new bins. One can of course think of this the other
way around: each new bin asks “what does each old bin owe me”.

5This is because the histogram reflects counts per some unit (µs or meV); we have the constraint
that the integral of the cross section be independent of the unit. If the histogram contains counts
instead of counter-per-some-unit, then this factor is not necessary.
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One could write:

I3(d, h, ω) =
∑

i

M(ω, ω̃i(h)) × I3(d, h, ω̃i(h)) ×
∣∣∣∣dω̃i

dω

∣∣∣∣ , (11.8)

where M(ω, ω̃(h)) is a matrix with the overlaps between old bins and the bins.
One could get clever and drop the |dt/dω̃| in Eq. 11.7 if one remembers to use
|dt/dω| instead of |dω̃/dω| in Eq. 11.8. One typically needs to know something
about several (but not all) elements of the old array before he can learn some-
thing about one element of the new array.

At the end of this step, three arrays have changed:6

• Data array. Now D ×H ×NE.

• Error array. Now D ×H ×NE.

• Energy bin values array. One dimensional, NE.

• Detector angles array, one-dimensional, length H. Same as before.

• Pixel position array. Same as before.

Detector Efficiency

Detector efficiency varies with energy. These data are provided by the manu-
facturer. One simply divides by a pre-existing array of numbers:

I4(d j, hk, ω) =
I3(d j, hk, ω)
ϵ(d j, ω)

. (11.9)

The efficiencies are typically known as a function of final neutron energy, so an
additional step is required to convert ϵ(Ef) into ϵ(ω).

Absorption correction

The absorption by the sample varies with both neutron energy and mean path
length through the sample. For a single energy, the transmission through a
material with unit cell volume V and absorption cross section per unit cell σabs,
the transmission probability is T = e−lσabs/V. For a wise choice of units for V and
σabs, the path length l will be in cm. The mean path length through the sample
varies with angle, so one needs to compute T(ϕ,ω).

In a real experiment, the length through the sample depends on where in
the sample the neutron scatters, to which direction it scatters, and the change in
the neutron energy (recall that the absorption cross section per unit cell varies
as inversely with neutron speed, so when the speed changes, the probability of
absorption per unit length changes). It does not depend on momentum transfer.

6NE is the number of new energy bins
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One must calculate this dependence; let us assume this has been done. Then
one divides each element of the old array by one element the array representing
T(ϕ,ω)

I7(ϕi, ω j) = I6(ϕi, ω j)/T(ϕi, ω j) . (11.10)

Section 11.3 of this chapter takes a more detailed look at the absorption
correction.

Subtract empty can data

Having accounted for absorption by the sample, it now makes sense to subtract
the scattering measured from the empty can, if the data from the empty can be
brought through a similar treatment chain to this stage7.

Bin into Rings

For a powder sample, the useful spatial information is the scattering angle ϕ.
That is to say, for a given Q, Ei, and ω, a powder scatters into a cone of angle ϕ
. So the two labels d and h can be condensed into the scattering angle ϕ.

The first step is to identify the ϕ for each pixel. A conventional instrument
coordinate system has the sample at the origin and the transmitted beam form-
ing the z-axis. The x-axis runs horizontally from the sample (for Pharos, that’s
toward FP-15) and perpendicular to the beam, and the y-axis, determined by
right-handedness, points upward. (See Fig. 11.1.) It is natural to think of the
detector as lying on a cylinder, with the axis of the cylinder coincident with the
y-axis just described. So consider two vectors: p⃗, which runs from the sample
to the pixel, and a⃗, with length l2 running from the sample in the direction
of the transmitted beam. In the instrument coordinate system, a⃗ = l2ẑ, and
p⃗ = −l2 sin(ψ)x̂ + hŷ + l2 cos(ψ)ẑ. ψ is the angle between the tranmitted beam
and the center of the detector; it lies in the x-z plane. The angle between a⃗ and
p⃗ is given by p⃗ · a⃗ = |a||p| cosϕ = azpz:

ϕ = cos−1
( azpz

|a||p|

)
= cos−1

( pz

|p|

)
= cos−1

( l2 cos(ψ)√
l22 + h2

)
= cos−1

( cos(ψ)√
1 + h2/l22

)
. (11.11)

Having found the angle ϕ for each pixel, an efficient method to combine pixels
with similar angles is desirable. The simplest method uses three nested for

7Not an identical chain: hopefully your empty can didn’t need an absorption correction. (If it
was made out of vanadium, it might need that!)



290 CHAPTER 11. ESSENTIAL DATA PROCESSING

loops: one over the new angles, and two over the old detector indices. More
abstractly:

I5(ϕk, ω) =
∑

i, j

N(ϕk, di, h j) × I4(di, h j, ω) , (11.12)

where N is a matrix whose elements are 1 or 0 depending on whether ϕ for the
ith, jth pixel is within the bounds defined for the kth element of the new array. It
may not be necessary to know all of the points of the old array in order to find
one element of the new array.

This operation depends on the instrument configuration (where the detec-
tors are) and the set of angular rings which can be defined by users. After this
step, all but one of the arrays have changed. Here is a list of the arrays after
this step of data reduction:

• Data array: Nϕ ×NE.

• Error array: Nϕ ×NE.

• Energy bin values array: NE.

• Phi-bin values array, Nϕ

Subtract Nuisance Scattering

Other nuisance scattering includes all scattering from the sample that is ei-
ther non-interesting or confusing. This usually includes higher-order scatter-
ing processes, and is generally difficult to compute (especially since one has
now applied a number of multiplicative factors which must be accounted for).
Computationally, this is simply a matter of subtracting two arrays, element-by-
element, which brings us to:

I6(ϕ,ω) = I5(ϕ,ω) − Snuis(Q, ω) (11.13)

Convert to Momentum Transfer

Ideally, there would be a prorating scheme like that used in going between time
and energy. Another approach frequently used is interpolation. Essentially
one recognizes that the regularly-spaced angles at which one has measured
are an irregularly-spaced array of momentum transfers, Q. This momentum
rebinning is typically performed with a convenient interpolation algorithm in,
for example, IDL. Like the energy rebinning, one could write this process as a
matrix operator acting on a vector:

S(Q, ω j) =
∑

i

M(Q, ϕi, ω j)I7(ϕi, ω j) . (11.14)

The arrays have changed again. After this step in data reduction, the arrays
are:
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• Data array: 2D, NE ×Nq.

• Error array: 2D, NE ×Nq.

• Energy bin values array: 1D, NE.

• Q-bin values array: 1D, Nq.

At this point we have isolated the scattering of interest, and converted it
into real physical units. This was considered a real achievement in the 1990’s.
For some experimental work the data analysis can be declared complete, and
graphs of the results prepared for publication.

11.2 Transformations and Information

Information is lost in the course of data reduction – the word “reduction” itself
implies a loss. Some loss of information is both inevitable and necessary with
data from a direct geometry chopper spectrometer – with 105 detector pixels
of 104 time bins each, a data set of 109 elements defies human comprehension.
As described in the previous sections, the full experimental information on
the arrival of each neutron at a specific detector pixel at a specific time is put
through a number of transformations to improve comprehension, but also to
improve counting statistics by summing events that are expected to be physi-
cally equivalent. It should also be noted that many data elements are usually
uninteresting, or hold minimal counts, but even this information can be useful
for removing extraneous scattering in the “good” data elements.

This section discusses the different physical scattering processes that can be
measured experimentally, the possible transformations that can be performed
on them, and whether these transformations are warranted, given the informa-
tion required to do the transformation properly. For example, if the Q-resolution
is lost by doing experiments on an incoherent scatterer like hydrogen, by per-
forming measurements on a filter-difference spectrometer, or by rebinning all
the Q-dependent data into energy, there is no path back to Q information by
direct analysis of data alone. Fortunately, there may be a route back to the Q
information through the use of a theoretical model or a simulation, and this is
an opportunity provided by DANSE software.

Theory and computation play a bigger role when the experimental data
require more supplementary information to enable the transformation. For data
containing minimal information, it is possible to obtain detailed elementary
excitations with theory alone – this is of course what has been done for many
years by computational condensed-matter physicists. This dominance of theory
over experiment was not the original intent of DANSE, but since DANSE provides
such tools it will be interesting to see the path taken by future users of the
DANSE system. Some community standards will have to be considered, but it is
already clear that some transformations are better described as computational
science rather than experimental science, even if experimental data is part of
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the effort. For example, consider data on elastic incoherent scattering from a
polycrystalline sample. Very little information is contained in such data on
excitations in solids, but these data could be augmented by ab-initio theory to
make predictions of the inelastic coherent scattering from a monocrystal. In this
example most of the work would be done by theory, and the experimental data
would add little value. For this reason, the DANSE software does not support
this transformation.8 The present section lists all possible data transformations,
and explains why approximately half of them are supported by DANSE.

11.2.1 Categorization of Transformations and Information

Table 11.2 lists the fundamental possibilities for a neutron scattering measure-
ment. A real experiment may include combinations of coherent and inelastic
scattering processes, but we consider these independently in what follows,
because this is the approach used in data analysis. The categories of energy,
momentum, and sample are orthogonal, and make the natural diagram of Fig.
11.3. Figure 11.3 is structured so that it the data of maximum detail is near
the origin in the box labeled “inelastic coherent mono.” (Note: with the word
“inelastic,” elastic scattering is also assumed included.) This inner cube con-
tains enough information so that reprocessing allows one to move in any of
the other three directions using experimental data alone (assuming the data are
complete, of course).

As examples, consider the reprocessing of data from the inner box labeled
“inelastic coherent mono”:

1. Averaging the scattering over all crystal orientations (from Q⃗ to Q) allows
reprocessing into the box above it, “inelastic coherent poly,”

2. Averaging over Q allows transformation to incoherent scattering, to the
box in back, “inelastic incoherent mono,”

3. Discarding the inelastic contribution moves to the box at right “elastic
coherent mono,” which is useful for single-crystal diffraction patterns.

These three statements are discussed further below, as are other transformation
paths. Some are less obvious than others – statement 2 above is less obvious
than 1 and 3, and it has been discussed in the literature. Nevertheless, it
should be almost intuitive that considerable information is lost in going to the
remote cube, “elastic incoherent poly.” Returning from such data to the origin
is impossible.

8Such analysis is possible by the ab-initio tools in DANSE, but DANSE does not offer this as a
transformation of experimental data.
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Table 11.2: Scattering Processes

Energy Momentum Sample

inelastic coherent monocrystal

elastic incoherent polycrystal

Figure 11.3: Eight possibilities for scattering processes in a neutron experiment.
Each of the eight can be calculated independently in a simulation or modeling
process. Some can be obtained from another by transformation. In general,
information is lost as one moves away from the origin, as explained in the text.
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11.2.2 Coherent – Incoherent

Forward

An energy spectrum can be obtained by integrating over the Q coordinate of
S(Q,E). With some care to account for thermal factors, multiple scattering, and
multiphonon scattering, often before integrating over Q, this can be converted
to a phonon energy spectrum or a density of states. This approach is rigorous
if all values of Q are accounted for, even if the sample is a coherent scatterer
with sharp dispersion information. An integration over all Q accounts for all
phonons, at least in principle. Some of the issues concerning the incoherent
averaging over coherent scattering have been discussed in the literature:

• V.S. Oskotskii, “Measurement of the Phonon Distribution Function in
Polycrystalline Mateirals using Coherent Scattering of Slow Neutrons
into a Solid Angle” Sov. Phys. Solid State 9, 420 (1967).

• F. de Wette and A. Rahman, “Inelastic Scattering of Neutrons by Poly-
crystals” Phys. Rev. 176, 784 (1968).

• M.M. Bredov, B.A. Kotov, N.M. Okuneva, V.S. Oskotskii and A. L. Shakh-
Budagov, “Possibility of Measuring the Thermal Vibration Spectrum g(ω)
using Coherent Inelastic Neutron Scattering from a Polycrystalline Sam-
ple,” Sov. Phys. Solid State 9, 214 (1967).

Nevertheless, the forward transformation from “inelastic coherent” to “inelas-
tic incoherent” can be done reliably, especially for data from direct geometry
chopper spectrometers that provide a wide range of Q. This transformation is
offered by the DANSE software.

It should be mentioned that for many years, phonon DOS information has
been obtained from phonon dispersion curves measured in special crystallo-
graphic directions on a triple-axis spectrometer. These dispersions are not good
averages over Q, and energies are not measured for all phonons in the solid.
Nevertheless, after fitting the dispersion curves to a lattice dynamics model,
the energies of all other phonons can be calculated. This approach has never
been challenged for measurements on pure elements – it seems to work well
because the high amount of information in the dispersion curves cause the
interatomic force constants to be well determined. This method is not appro-
priate for disordered alloys, at least when the virtual crystal approximation is
employed.

Reverse

In the same sense that it takes a lattice dynamics model to go from coherent
inelastic scattering data from a triple-axis instrument to a good sampling of the
incoherent inelastic scattering over all phonons, a model is always required for
the reverse transformation. The positions of the Van Hove singularities in the
phonon DOS are effective in constraining the dispersion curves, but there are
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only three of them in a phonon DOS of a pure element. It is not yet clear how
reliably the reverse transformation can be performed, but it is certainly a useful
capability that is offered in the DANSE software.

11.2.3 Monocrystal – Polycrystal

Forward

Transforming a complete data set from a monocrystalline sample to a polycrys-
talline average is simple in principle, and has the most physical interpretation
of all the transformations in this section. In essence, the single crystal data
need to be averaged over all crystallographic orientations by “rotating” the
monocrystalline data to produce a polycrystalline average. This amounts to
transforming Q⃗ to Q. The results can be similar to the transformation of coher-
ent to incoherent scattering, and in fact proves identical when the crystals have
isotropic scattering. DANSE supports these transformations.

Reverse

Except in special cases, the reverse transformation from polycrystal data to
monocrystal data requires a model. The question of importance is how reli-
ably can the polycrystalline average of, for example phonon dispersions, be
used to define the single crystal phonon dispersions along specific crystallo-
graphic directions. The answer is not fully known today, but in the case of
crystals such as tungsten, which are elastically isotropic, it is expected that the
amount of information is essentially the same for data from polycrystalline
and monocrystalline scattering experiments. In the case of anisotropic crys-
tals it is expected that the dispersive information in S(Q,E) will have intensity
variations from anisotropic effects, and perhaps important information can be
obtained from the intensity variations within the dispersion curves if the data
are of good statistical quality. DANSE supports these transformations, using both
phenomenological and ab-initio models. It is hoped that the neutron scattering
community will eagerly assess these capabilities of DANSE, because they free the
experimenter from acquiring single crystals.

11.2.4 Inelastic – Elastic

Forward

A good diffraction pattern should be possible to acquire using white-beam
mode on a direct-geometry chopper spectrometer, and the interpretation of the
data would be the same as for a total scattering diffractometer. Here, however,
we consider operation with a monochromatic beam as in the normal operation
of a direct-geometry chopper spectrometer such as ARCS. The coherent elastic
scattering is measured as part of the spectrum, so ignoring the scattering with
energy transfers greater than the elastic peak width is essentially the same as
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performing a diffraction experiment. There are some defects in this approach –
the spread of incident wavelengths broadens the diffraction peaks in Q. Nev-
ertheless, useful information about the sample can often be obtained by simply
ignoring the inelastic part of the data. Transformations to do this are provided
by DANSE.

Reverse

Taking elastic data and transforming it to inelastic data is not impossible. Un-
fortunately, direct transformations are not robust. Robust approaches require
substantial additional information. Phonon effects are evident in pair distri-
bution functions, but care must be taken to separate these from atomic size
effect diffuse scattering, which can be of the same order. There have been some
efforts to obtain phonon dispersions from diffraction patterns, and the reader
is welcome to explore these:

• D.A. Dimitrov, D. Louca, H. Roder, “Phonons from neutron powder
diffraction,” Phys. Rev. B 60, 6204 (1999).

• W. Reichardt, L. Pintschovius, “Influence of phonons on the pair distri-
bution function deduced from neutron powder diffraction,” Phys. Rev. B
63, 174302 (2001).

• A.L. Goodwin, M.G. Tucker, M.T. Dove, D.A. Keen, “Phonons from pow-
der diffraction: A quantitative model-independent evaluation,” Phys.
Rev Lett. 93 075502 (2004), Ibid. 95, 119901 (2005).

At the inception of the DANSEproject, the methods in these reference were placed
outside the scope of the effort.

Nevertheless, DANSE does offer methods for reverse transformation. These
are robust in that they give stable answers, but they require substantial compu-
tational effort. The approach is to obtain the lattice dynamics for the structure.
From the lattice dynamics the inelastic scattering can be obtained. If the crystal
structure or molecular structure is obtained from a diffraction measurement,
for example, phonon dynamics can be calculated in one of two ways.

• A model of the lattice dynamics for the structure can be used to calculate
the phonons. This requires input on interatomic force constants. They
may be guessed, or obtained from other sources. From the dynamics, the
inelastic scattering can then be calculated.

• Using the unit cell obtained from a diffraction pattern, or a molecular
structure obtained by other means, an ab-initio electronic structure cal-
culation can be performed to optimize the positions of the atoms in the
structure. These may not be the real atom positions, but relaxed positions
are needed for the following computational step. Next, the atom posi-
tions are displaced by a controlling software package such as PHON, and
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the ab-initio code is run again for the distorted unit cell. This permits cal-
culation of tensorial force constants that are used in the lattice dynamics.
From the dynamics, the inelastic scattering can be calculated.

Without such theoretical input, however, attempting a reverse transformation
from elastic to inelastic would not be robust, and with the DANSE software it is
an error to do so. Note that the transformation of structural information into in-
elastic inelastic scattering information requires perhaps the most sophisticated
tools offered by DANSE. An increasing loss of experimental information requires
an compensating sophistication in the theoretical tools to reverse the situation.

11.2.5 All Specific Cases

The previous subsections discussed general issues when transforming data
forward or backwards between elastic and inelastic, coherent and incoherent,
and monocrystal and polycrystal. For each of these three cases, and six general
transformations, there are four specific cases. For example, Fig. 11.3 shows that
between the monocrystal and polycrystal samples (up in the graph), there are
a total of eight forward and reverse transformations:

• inelastic coherent (mono⇆poly),

• inelastic incoherent (mono⇆poly),

• elastic coherent (mono⇆poly),

• elastic incoherent (mono⇆poly).

Similar forward and reverse transformations between adjacent cubes are
also possible along the elastic⇆inelastic and coherent⇆incoherent directions
of Fig. 11.3, giving a total of 24 such transformations between adjacent cubes
in the figure (along the ⟨100⟩ directions). In addition, a total of 12 transfor-
mations are possible between scattering data in cubes in Fig. 11.3 that are not
immediately adjacent (along the ⟨110⟩ directions), and a total of 8 possibilities
for transformations between cubes located diagonally in the figure (along ⟨111⟩
directions). Tables ?? – ?? list all 44 possible transformations, and identify the
specific transformations supported by the DANSE software. As of early 2007, the
plan for DANSE supports 24 of these possible transformations.

Sections 11.2.2 - 11.2.4 provided general reasons for the why transformations
along the main axes of Fig. 11.3 are not provided by DANSE. Eight transforma-
tions are possible along each of these axes, however. Nearly all cases in Table
?? can be understood with the rules of Sects. 11.2.2 - 11.2.4, with the following
exceptions:

• Transformations from elastic coherent polycrystal data (powder diffrac-
tion patterns) to elastic coherent monocrystal data (single crystal diffrac-
tion data) are not supported in the rebinning operation in the first re-
lease of DANSE. These capabilities are possible with Rietveld refinement
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methods (or PDF modeling), which are available as methods outside the
scattering kernel.

• Elastic incoherent scattering pertains to the isotopic incoherence of neu-
tron scattering, for example, and not to incoherence from atomic disorder
(which is treated in methods for elastic coherent scattering). DANSE there-
fore does not support well transformations involving elastic incoherent
scattering from either monocrystals or polycrystals.

The more complex transformations of two or three data characteristics,
listed in Tables ?? and ??, are generally consistent with the previous rules and
individual transformations. More transformations are possible by chaining
individual transformations from Table ?? than are listed in these Tables ??
and ??. These latter tables list algorithms that do both transformations in an
integrated way. The emphasis is on data from inelastic scattering, since this
field was first to exploit this method of direct experiment simulation.

11.3 Absorption

With an absorbing sample, one observes d2σ/dΩdω × T(Ω, ω) rather than just
d2σ/dΩdω, where T(Ω, ω) is the probability of a neutron being transmitted
through the sample in a given direction (described by the solid angle Ω) and
with a given final energy (final energy = incident energy − energy transfer, or
E f = Ei − ℏω). All that needs to be done is to calculate the transmission for
each final energy and for each detector, and then divide the observed scattering
by the transmission probability. For an experiment in which all the observed
neutrons scatter once, the calculation is straightforward, though somewhat
computationally demanding.

We suppose that the sample is divided into a number of cells of equal
volume; then a neutron observed in any given detector with a given final energy
was scattered in any cell with equal probability. We compute the transmission
probability for each scattering cell, then average over probabilities for all cells.
The reason we have to be so careful is that the transmission probability depends
on the distance the neutron travelled through the sample, and this depends on
where in the sample the scattering occurred, and the outgoing direction of the
neutron9.

For a neutron travelling across an absorbing medium, the probability of
transmission is 10

T =
N
N0
= exp(−lσabsρ). (11.15)

Here, l is the length of the path through the sample, σa is the absorption cross
section, and ρ is the number density of absorbers. If the neutron changes direc-

9We assume the incoming neutrons are perfectly monochromatic and collimated.
10Think dN/dx = −σρ...
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tion (scatters) while travelling through the sample, the probability becomes

T = exp(−lincσabsρ − l fσabsρ) (11.16)

where linc is the path length from where the neutron enters the sample to the
scattering spot, and l f is the path length from the scattering spot to where
the neutron exits the sample. There’s one more difficulty: the absorption
cross section depends on the neutron energy, so if the scattering is inelastic,
there will be two absorption cross sections, σ(ωinc) and σ(ω f ), and we have the
transmission probability as

T = exp(−lincσabs(ωinc)ρ − l fσabs(ω f )ρ). (11.17)

In what follows, we assume that the scattering is purely horizontal. This is
an approximation that greatly reduces complexity of the computation. This is
justifiable for several existing instruments including LRMECS and PHAROS.
In fact, any horizontal scattering lies within about ±5◦ of the horizontal on
an instrument like Pharos,11 and is therefore negligible.12 This means each
scattering cell needs two labels.

In considering a number of cells, the incoming path length depends on
where the cell is located. The outgoing path length depends on where the
cell is, and in what direction the neutron is heading. This direction can be
determined if we know the detector d that the neutron is hitting. So we need
four labels for the transmission from a given scattering cell to a given detector
with a given final energy:

T(d, ω f , i, j) = exp(−linc(i, j)σabs(ωinc)ρ − l f (i, j)σabs(ω f )ρ). (11.18)

In the last step, we’re going to average over all N cells for each detector and
energy:

T(d, ω f , i, j) =
1
N

∑
i, j

exp
(
− linc(i, j)σabs(ωinc)ρ − l f (i, j)σabs(ω f )ρ

)
. (11.19)

It does not get much easier than that. Now all we need is a program that
computes Eq. 11.19 for a number of interesting geometries.

11.4 Neutron Weighting

The phonon DOS obtained by the data reduction methods of this chapter is
not the true phonon DOS, except in the case of pure elements. It is instead

11the detectors are at most 0.5 m above the scattering plane, while the middle of the detector is 4
m from the sample, so the maximum angle is about ±7◦. However, the top and bottom 10 cm or so
of the tubes are thrown out...

12This assumption has not been sufficiently examined. Unless the effect is very small (≪ 1%), it
should be included in the calculation when that becomes computationally affordable. On Pharos,
the extra path length is about 0.5%. Is this important? For instruments with larger vertical
divergence (ARCS), this will be necessary anyway, so might as well get used to it.
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the “neutron-weighted DOS.” The neutron-weighted DOS accounts for the
different efficiencies of phonon scattering from different chemical elements
or isotopes. (If the sample is chemically homogeneous, this is usually not
a problem.) The neutron-weighted phonon DOS is rigorously defined (Sect.
6.3.3)as:

gNW(E) ∝
∑

d

gd(E) exp(−2Wd) exp(2W)
σd

md
(11.20)

where exp(−2Wd), σd and md are the Debye-Waller factor, total scattering
cross-section and mass of atom d. The Debye-Waller factor is an explicit
function of gd(E). The term exp(2W) is the average Debye-Waller correction;
this is calculated from the self-consistent neutron-weighted DOS. The factor
exp[2(W −Wd)] is approximately unity. For the case where σd/md is the same
for all species d, gNW(E) ≈ g(E).

Obtaining the true phonon DOS from the neutron-weighted phonon DOS
requires a full analysis of the lattice dynamics. This can be performed by simu-
lational procedures described in a later chapter. The neutron-weight correction
as well as other approximations involved in the data analysis can be overcome
by fitting a dynamics model to the neutron-scattering data directly. Although
this approach is both scientifically and computationally demanding, we foresee
no better method for extracting the vibrational dynamics from inelastic neutron
scattering measurements.

11.5 Calculation of Multiphonon Scattering

The multiphonon expansion was developed with some rigor in Section 7.3.2.
Here we explain how it works in practice. The total measured spectrum, S(E), is
the sum of components,

∑
∞

n=0 Sn(E), from neutrons scattered after creating dif-
ferent numbers, n, of phonons in the sample.13 Only the 1-phonon scattering is
useful for obtaining a phonon DOS, so it is important to have an understanding
of the higher-order terms for planning an experiment, or if one seeks quantita-
tive corrections of experimental data. Performing a multiphonon expansion is
done in two steps.

• First, the weights of the different n-components are calculated indepen-
dently with input information on Q and atom displacements u at the
temperature T.

• Second, the spectral shape of each component Sn(E) is obtained by se-
quentially convoluting the 1-phonon profile with itself a total of n − 1
times.

Finally, for a chopper spectrometer, detectors at different scattering angles ϕ
provide energy spectra Sϕ(E) where Q varies with E across the spectrum. The

13Phonon annihilation is handled by extending the range of E to negative numbers for each Sn(E).
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multiphonon corrections must take into account the kinematical relation of
Q vs. E at each scattering angle ϕ if data are analyzed from each detector
bank. The constant-Q multiphonon analysis is simpler to understand, and is
applicable for data from triple-axis spectrometers, or for data from chopper
instruments that have been reduced to S(Q,E).

Intensities of n-Phonon Spectral Components

Start with the Debye–Waller factor, which attenuates the elastic scattering S0,
to a fraction of the total scattering S:

S0 = S exp(−2W) , (11.21)

which we rearrange and expand:

S = S0 exp(+2W) , (11.22)

S = S0

∞∑
n=0

(2W)n

n!
. (11.23)

We now have a series of terms in an expansion, but the next step of substituting
(11.21) into (11.23) amounts to nothing more than writing exp(−2W) exp(+2W) =
1:

S = S exp(−2W)
∞∑

n=0

(2W)n

n!
, (11.24)

1 =

∞∑
n=0

(2W)n

n!
exp(−2W) . (11.25)

The terms in (11.25) are associated as 0 for elastic scattering, 1 for 1-phonon
scattering, 2 for 2-phonon scattering, etc. What is special about (11.25) is that the
nth term in the series is exactly the fraction of the n-phonon spectral component
in the total scattering (elastic plus inelastic).

To calculate the fraction of any multiple phonon term (e.g., the amount of
2-phonon scattering), all we need is 2W. Recall the physical origin of 2W:

2W = ⟨Q2u2
⟩ , (11.26)

where ⟨u2
⟩ is the mean-squared atom displacement. Equation (11.26) shows

that exp(−2W) becomes much less than 1 when the atom displacement becomes
comparable to 1/Q ∼ λ/2π, the number of wavelengths associated with the
scattering angle. This is consistent with 2W originating from the destructive
interference of scattered wavelets. The Q2 and u2 are related to the energy of
recoil, and the thermal energy, respectively. The recoil energy, ER is

ER =
ℏ2Q2

2M
, (11.27)
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where M is the mass of the atom that is scattering, in units of the neutron mass.
(The units of M are very similar to the atomic weight.) The thermal energy is:

kBT =
1
2

Mω2
⟨u2
⟩ (11.28)

for one mode of frequency ω, and is a quantity that depends on the phonon
DOS for a real material. Sadly, an exact evaluation of (11.28) is not simple, in
part because the phonon states are not fully occupied at modest temperatures,
but also because of the commutation relationships discussed in Section 7.2. The
result is summarized as γ0, where:

γ0 =

∞∫
0

coth(E/2kBT)
g(E)

E
dE . (11.29)

In the limit of high temperatures, where coth(E/2kBT) → 1, it is clear from
(11.29) thatγ0 increases as 1/E (because the amplitudes of atom motions become
larger in low-energy modes as predicted by (11.28)). The low-energy modes are
even more important at low temperatures, where they have a larger phonon
occupancy. The Debye–Waller factor of (11.26) is, rigorously:

2W = γ0ER , (11.30)

In performing a multiphonon expansion for one T and one phonon DOS g(E),
the value of γ0 is computed once with (11.29). The 2W from (11.30) for appro-
priate Q is used in (11.38) to get the fractions of all n-phonon scatterings. We
therefore rewrite (11.25 ) as

S(Q) =

∞∑
n=0

Sn(Q) , where : (11.31)

Sn(Q) =

(
2W(Q)

)n

n!
exp

(
− 2W(Q)

)
. (11.32)

Shapes of n-Phonon Spectral Components

It remains to get the spectral shape of each order of the multiphonon scatter-
ing. The energy spectrum for 1-phonon scattering was discussed in Sections
6.3 and 7.3.2. The spectrum for one-phonon scattering weights more heavily
the low-energy modes because they have larger amplitudes of motion, pro-
viding a factor of g(E)/E. The number of phonons is the Planck distribution
1/[exp(E/kBT)−1], so the two factors provide the shape of the 1-phonon profile,
A1(E):

A1(E) =
g(E)
Eγ0

1
eE/kBT − 1

. (11.33)
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Each phonon created has the profile A1(E) of (11.33). When two phonons are
created simultaneously, the total spectrum of energies is the convolution of the
1-phonon profile with the 1-phonon profile.14 The 2-phonon spectrum is:

A2(E) = A1 ∗ A1 =

∞∫
−∞

A1(E − E′) A1(E′) dE′ , (11.34)

and the n-phonon profile is the convolution of another 1-phonon profile with
the (n − 1)-phonon profile:

An(E) = A1 ∗ An−1 =

∞∫
−∞

A1(E − E′) An−1(E′) dE′ . (11.35)

Starting with A1, we can generate the spectral shapes of all the orders of multi-
phonon scattering by the systematic application of (11.35). The total scattering
is the sum of these spectral profiles, weighted by the corresponding terms of
(11.31):

S(Q,E) =

∞∑
n=0

Sn(Q) An(E) , (11.36)

S(Q,E) =

∞∑
n=0

(2W)n

n!
exp(−2W) An(E) . (11.37)

If we define each term in the sum as Sn(E):

S(E) =
∞∑

n=0

Sn(E) . (11.38)

Examples of Multiphonon Scattering from a Chopper Spectrometer

The analysis presented here is for inelastic energy spectra obtained from a
group of detectors centered about the scattering angle, ϕ. The energy transfer,
E, is obtained simply and reliably from the arrival times of the neutrons at the
detector. On the other hand, for each detector bank at ϕ, the value of Q varies
with E and the energy of the incident neutron Einc as:

Q[Å−1] = 0.6947
√

2Einc − E − 2
√

Einc(Einc − E) cosϕ , (11.39)

where E and Einc have units [meV]. Curves showing relationships Q(E) are
presented in Figure ??. The curves cannot extend to the right beyond Einc

14Consider each phonon excitation to be a random variable with a probability distribution of
A1. The sum of two random variables has a distribution that is the convolution of the probability
distributions A1 ∗ A1.
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because the incident neutron cannot lose a greater amount of energy to the
sample. Notice that the curves are generally asymmetrical in ±E.

For calculating the multiphonon scattering at a particular scattering angle
ϕ, it is necessary to evaluate the 2W and the Debye–Waller factor at each energy
of the spectrum, because Q varies with E as in (11.39) and as shown in Figure
??. Examples of such calculations are shown in Figure ??. Figure ??a shows the
phonon DOS curve from fcc nickel metal from which the subsequent curves
were calculated. Figure ??b shows the total inelastic scattering calculated for
a temperature of 500 K.15 The 1-phonon scattering is confined to the range
±37 meV, since this is the maximum phonon energy. With the excitation of two
phonons, the energy range can be extended to 2 × ±37 = ±54 meV, and this
is the energy range of the 2-phonon scattering. In Figure ??b, the intensity at
40–50 meV is almost entirely 2-phonon scattering.

Notice the general trend in Figure ??b showing that the inelastic scattering
to increases with the scattering angle, owing to the factor of 2Wn in (11.32).
On the other hand, the scattering is suppressed by the Debye–Waller factor,
exp(−2W). At high Q or high T the Debye–Waller factor becomes increasingly
important, and effects of this are seen in Figure ??c. First notice that although
there are about twice as many phonons at 1000 K as at 500 K, the inelastic
scattering of Figure ??c is nowhere near twice as large as in Figure ??b. Also
notice the change in symmetry of the spectra in Figure ??c with detector angle.
For a detector angle of 60◦, Figure ??c shows an inelastic scattering that is
approximately symmetrical in ±E. This is consistent with the gradual variation
of Q with E in the kinematics as shown in Figure ??. On the other hand, for the
larger detector angles of 90◦ and 140◦, the value of Q is larger for −E than +E.
This asymmetry causes the Debye–Waller factor to attenuate the scattering at
−E more severely than at +E. When these effects are significant, it is obviously
naive to interpret the asymmetry in E of the inelastic scattering in terms of
detailed balance.

11.5.1 Multiphonon Correction – Iterative

The present section describes a correction procedure that can be used to remove
higher-order multiphonon scattering from an experimental inelastic scattering
spectrum, so the spectrum can the be used to deduce a 1-phonon profile and a
phonon DOS. It is based on the incoherent approximation, but this procedure
has been used for many years with coherent multiphonon scattering data, and
it is often expected to be reliable in such cases, at least for polycrystalline
samples. (The idea is that averaging over crystalline orientations provides a
broad sampling of reciprocal space, performing a good average over phonon
modes. The incoherent approximation is adequate when all modes are sampled

15An experimental spectrum would contain a large peak at E = 0 from the elastic scattering. In
principle, the area of this elastic peak would be the factor exp(−2W) of the total integrated scattering
(elastic plus inelastic).
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this way. It is unlikely that this approach could be reliable for the analysis of
coherent scattering from single crystals, of course.)

An example of multiphonon calculations and an extraction of 1-phonon
scattering is shown in Figure ??. Cerium is a coherent scatterer, and the data
were acquired at several values of Q to average over the different phonon
modes. An inelastic spectrum for one value of Q = 3.924 Å−1 is presented in the
figure.16 Steps of an iterative procedure to refine the phonon DOS are shown
in Figure ??. The first step of the iteration used a very crude approximation
for the multiphonon scattering plus random background – a simple constant
function of approximately 70 counts. After this constant was subtracted from
the experimental data, the DOS curve, g(E) labeled “1” in Figure ??b was
obtained from the 1-phonon profile from (11.33) with a Debye–Waller factor of
(11.32). The 2–5 phonon scattering was calculated from this first iteration of a
phonon DOS, scaled in height (plus a constant background was also fit to the
data), and a second iteration of the DOS was generated by the same procedure.
Notice that the second and third iterations of the phonon DOS in Figure ??b
are rather similar. Even for this difficult case where the 2–5 phonon scattering
is a large fraction of the total inelastic scattering, convergence is fairly quick
because the 2–5 phonon scattering does not have much structure.

The multiphonon expansion assumes that the scattering is incoherent. Un-
fortunately, a better approximation would require a detailed simulation of the
lattice dynamics to account for the Q⃗-dependence. To our knowledge, such a
calculation has not been done as of 2004. Another case where the assumptions
of this procedure are stretched is the application of the incoherent multiphonon
correction procedure to inelastic spectra from alloys. One concern about alloys
is that the Debye–Waller factors differ for the different atoms in the alloy, caus-
ing some phonons to be weighted more than others. Although the multiphonon
correction procedure has been used without adapting to the different ⟨U2

⟩ of
the atoms in the alloy, comparisons with other measurements have shown that
the procedure is often acceptable, perhaps because the multiphonon scattering
is essentially featureless.

11.5.2 Multiphonon Correction – Fourier Log

Another way to correct for multiphonon scattering is possible for energy spectra
at constant Q. Following the notation of Section 11.5, for fixed values of Q and
temperature, the energy dependence of the various phonon contribu-tions,
Sn(Q,E), is

S(Q,E) =
(2W)n

n!
e−2WAn(E) , (11.40)

16A spectrum at one value of Q can provide a piece of the dynamical structure factor intensity,
which we loosely call a “phonon DOS,” since the result would be a phonon DOS if the scattering
were incoherent. Data were acquired from the triple-axis spectrometer HB3 at HFIR.
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The measured scattering intensity, S(Q,E), is the sum of intensities from all
phonon processes:

S(Q,E) =
∑

n

Sn(Q,E) , (11.41)

Our problem is to use the measured S(Q,E) to isolate the single scattering
profile, A1(E).

An approach to extracting the phonon partial DOS from experimental data is
called the “Fourier-log deconvolution method.” It was used for analysis of plas-
mon scattering measurements in electron energy-loss spectrometry [Spence].
This method is also used for incoherent inelastic phonon scattering [M. Y. Hu,
W. Sturhahn, et al.]. It has the additional feature of being able to correct for
the broadening of the elastic line, but only if the energy resolution is constant
across the energy spectrum (not the case in TOF spectrometers). The zero-loss
peak, Z(E), is convoluted with the scattering from the specimen as:

S(Q,E) = Z(E) ∗

e−2Wδ(E) +
∑

n

Sn(Q,E)

 , (11.42)

where the first term in (11.42) is the zero-loss peak, reduced by the Debye–Waller
factor. Taking the Fourier transform, F[], of (11.42) simplifies the convolutions
of (11.35), which become multiplications in Fourier space:

F[S(Q,E)] = F[Z(E)]e−2W

1 +
∑

n

(2W)n

n!
(F[A1(E)])n

 . (11.43)

The term in parentheses () on the right side of (11.43) is recognized as the
expansion of an exponential function:

F[S(Q,E)] = F[Z(E)]e−2W
(
e2WF[A1(E)]

)
. (11.44)

Taking the logarithm of (11.44) and rearranging:

F[A1(E)] =
1

2W
ln

(
F[S(E)]
F[Z(E)]

)
+ 2W . (11.45)

The inverse Fourier transformation, F−1[], provides the single scattering profile,
A1(E):

A1(E) =
1

2W
F−1

[
ln

(
F[S(E)]
F[Z(E)]

)]
+ 2Wδ(E) . (11.46)

If we do not care about the normalization of the single scattering profile, and if
we delete the zero-loss peak Z(E) from the data (it is suppressed by the thermal
correction anyway), we obtain:

A1(E) =
1

2W
F−1

[
ln

(
F[S(E)]
F[Z(E)]

)]
. (11.47)



11.6. CORRECTIONS FOR SIMULTANEOUS MULTIPLE SCATTERING AND MULTIPHONON SCATTERING307

11.6 Corrections for Simultaneous Multiple Scatter-
ing and Multiphonon Scattering

11.6.1 Best Practices

Recursive computation

Multiple-scattering is naturally computed with a recursive algorithm, as imple-
mented in MCViNE (102) or MCSCAT (72). For the purpose of this discussion,
we differentiate between two types of multiple scattering: single-scatterer mul-
tiple scattering (SSMS) to describe the multiple scattering within one neutron
scatterer and multiple-scatterer multiple scattering (MSMS) to describe multi-
ple scattering among different neutron scatterers, such as between the sample
and its holder.17 A neutron may scatter by different processes, and it may un-
dergo these processes in different sequences and in different locations. The set
of scattering processes (implemented as “scattering kernels”) used in MCViNE
in 2014 is

• Incoherent elastic scattering

• Coherent elastic scattering from powder sample

• Incoherent inelastic single-phonon scattering

• Coherent inelastic single-phonon scattering from a powder sample

• Multi-phonon scattering

• Scattering from a dispersion surface where the dispersion relation and
the dynamical structure factor are described by analytical functions of
momentum transfer vector Q.

Figure 2 shows an example of SSMS in which a neutron is scattered three
times before exiting a scatterer. When a neutron is scattered inside a homoge-
neous scatterer, the original incident neutron is split into two for computational
efficiency. One neutron is propagated through the scatterer with its probability
lowered by attenuation, while the other is scattered by one of the scattering
kernels, chosen by random selection, at a point also randomly selected along
the forward path of the incident neutron. This splitting process repeats for
several scatterings, as illustrated in Fig. 2, until either the neutron probability
is lower than a pre-selected limit, or the maximum order of multiple scattering
is reached. At this point, the neutron that is still inside the scatterer is allowed
to propagate out, with its probability attenuated appropriately.

17Sample components in some linear-chain-based MC ray tracing packages can support SSMS,
but they do not have abstractions similar to composite scatterer or scattering kernel. As a result,
the SSMS algorithm must be duplicated in these sample components.
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Figure 3 shows an example of multiple scattering in a sample assembly
with a simple “concentric” arrangement of the sample and the sample envir-
onment. Only five of an infinite number of possible multiple scattering paths
are illustrated, and the splitting processes are not shown.

Multiple scattering from an aluminum sample and environment

In this example, we present experimental and simulated inelastic spectra from
polycrystalline Al metal. Most interesting, perhaps, are the simulations that
include subsets of the scattering processes. These can show how to optimize
the experiment, or how to do the most important corrections for unwanted
intensities. The experiment and simulations used a 60 mm×60 mm×4 mm
polycrystalline aluminum (1100 alloy) plate in the ARCS spectrometer. A quick
calculation using the total scattering cross section for Al shows that the sample
scatters 5% of the incident beam. In the simulation and experiment, the sample
was placed at approximately 135◦ to the beam direction, and the incident energy
was tuned to 80.5 meV using a Fermi chopper slit package at 480 Hz. The
simulated sample assembly contains only one homogeneous scatterer for the
aluminum plate. Different simulations made use of different combinations of
scattering kernels. All phonon-related scattering kernels used phonon energies
and polarization vectors computed on a regular grid in a Brillouin zone from a
BvK model [67].

Figure ?? displays different I(Q, ω) for the aluminum plate. The experimen-
tal result is in panel (a) and panels (b)–(e) show simulated data. In (b) only the
incoherent elastic and incoherent single phonon scattering are included (The
intensity was enhanced to show detail – the values on the colorbar give an
indication of the scaling). In (c) only the coherent elastic (powder diffraction)
and the coherent single-phonon inelastic scattering are included. In (d), all of
the kernels in (b) and (c) with the addition of a multiphonon kernel using the
incoherent approximation. In (e), all of the kernels in (d) are used with multiple
scattering turned on.

Overall, the features shown in the experimental data (a) and the simulated
data (e) agree very well. Comparison of (b) and (c) shows that coherent scatter-
ing gives rise to more features such as diffraction peaks and phonon dispersion
curves. It is evident from comparing (c) and (d) that multiphonon scattering
increases in intensity at higher Q. The most obvious difference in (d) and (e) is
in the elastic line, which shows that multiple scattering of coherent elastic scat-
tering seems to contribute similarly to incoherent scattering in the elastic line.
The elastic lines in (a) and (e) suggest that the sample used in the experiment
may contain traces of an additional phase, most likely from a surface layer of
Al2O3. From quantitative comparisons between simulation and experiment, it
was found that multi-phonon scattering plays a significant role in the observed
intensity, whereas multiple scattering plays little role in this Q range (102). This
is as expected because the sample is only a 5% scatterer.
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11.6.2 Approximate Corrections for Simultaneous Multiphonon
and Multiple Scattering

Corrections for multiple scattering have been performed in many ways, from
subtracting a constant from the data [1], to full Monte-Carlo simulations [2].
At high temperatures, the former does not account for the slope of the scat-
tering past the cutoff energy. The latter can be computationally intensive, and
requires detailed information about the shape of the sample. Here we take an
approach of intermediate complexity, reported previously [3]. For both multi-
ple scattering and multiphonon scattering, a two-scattering profile involves a
convolution of two single-scattering profiles. In either case, the idea is that an
n-phonon-scattering profile, Pn(E), is related to the 1-phonon-scattering profile,
P1(E), through the recursion relation:

Pn(E) =
∫
∞

−∞

Pn−1(E′) P1(E − E′) dE′ . (11.48)

For multiple scattering processes, the n-phonon probability function has
additional position and momentum dependencies, that do not appear for mul-
tiphonon scattering processes. Sears, et al. [1], argue that the integrals for
multiple scattering are related to those for the multiphonon scattering through
slowly varying functions of Q and E. Here we take these functions to be
constants, an. In essence, we make the approximation that the position and
momentum dependencies can be factored out. Thus,

I(Q,E) = N′
 ∞∑

n=1

(1 + an)Sn(Q,E)

 , (11.49)

where I(Q,E) is the experimentally-determined total scattering (including mul-
tiple scattering), Sn(Q,E) is the n-phonon scattering (both creation and annihi-
lation), and N′ is a normalization constant. Note that I(Q,E) is distinct from
the scattering function, S(Q,E), which does not include multiple scattering [4].
(When we stripped the elastic peak from the data, the dominant multiple elastic
scattering is removed, so the index n in Eq. 11.49 starts at 1 rather than 0.)

Consistent with this factoring of Q and E dependencies, we make the inco-
herent approximation [5]:

Sn
coh(Q,E) =

σcoh

σinc
Sn

inc(Q,E) , (11.50)

where we apply this equation to the 1-phonon terms as well as all higher orders.
The last step in our procedure will be to assess any error this has introduced
into our analysis.

Our next assumption is that an = C′ms for all n ≥ 2, where C′ms is a single con-
stant that relates the multiple scattering to the multiphonon scattering. Since
the multiphonon scattering drops off rapidly with increasing n, this approx-
imation will only have a small effect on our results. The final normalization
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is performed with the total scattering, so the factor 1 + a1 is included in the
normalization constant. We find:

I(Q,E) = N
[
S1

inc(Q,E) + (1 + Cms)S2+
inc(Q,E)

]
, (11.51)

where N = N′(1+ a1) (1 + σcoh/σinc) is the normalization constant, and 1+Cms ≡

(1 + C′ms)/(1 + a1). Also, for notational convenience,

S j+(Q,E) ≡
∞∑

n= j

Sn(Q,E) . (11.52)

For a cubic crystal, and a fixed value of Cms, we can now find the DOS by
solving Eq. 11.51 in the manner described by Sears, et al. [1].

Since we do not know the value of Cms a-priori, we generate a list of possible
values, and solve for the DOS at each one. In the current study, values of Cms
between 0.0 and 2.0 were tested. It then remains to select the “best” DOS from
those generated with the different Cms. This was done by minimizing a penalty
function constructed to find the DOS that produced S(E) that best satisfied the
following conditions:

(1) I(E)
N
= Sinc1(E) + (1 + Cms)S2+

inc(E) , (11.53)

where the implied sum over Q allows us to compare the partially coherent
scattering on the left with the totally incoherent scattering on the right.

(2) The experimental noise at energy transfers near the incident energy oscillates
about (1 + Cms)S2+

inc(E).

(3) At energy transfers near the incident energy, the slope of a linear fit to the
experimental noise matches the slope of a linear fit to (1 + Cms)S2+

inc(E).

These three criteria are correlated, but are not identical. For nickel at 300 K,
these three contributions and their sum are shown in Fig. 11.4. Figure 11.5
shows the best fit to the normalized scattering, I(E)/N for nickel at 300 K, which
had Cms = 0.6.

The DOS curves obtained this way were fit with a Born–von Kármán model,
from which all phonon contributions to the scattering, both coherent and inco-
herent, were calculated. With these results, and with the final value for Cms, the
calculation was checked against the measured scattering. It was our experience
that this procedure worked well for the present case of nickel, and also works
for cases of other BCC and FCC materials.

[1] V.F. Sears, E.C. Svensson, and B.M. Powell, “Phonon density of states in
vanadium,” Can. J. Phys. 73, 726 (1995).
[2] E. Johnson, and L. Robinson, “Neutron multiple scattering and absorption
factors,” Rev. Sci. Instrum. 60, 3447 (1989).
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Figure 11.4: Penalty functions for nickel at 300 K, as defined in the text. The
dash-dotted line (1) relates to the overall fit, the dotted line (2) relates to the
noise near the incident energy, and the dashed line (3) relates to the slope
near the incident energy. The solid line is the sum of these three contributions
(offset).
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Figure 11.5: Best fit to scattering for nickel at 300 K. The triangles are the
normalized experimental scattering, I(E)/N. The solid line shows the fit,
S1

inc(E) + (1 + Cms)S2+
inc(E). The dashed line is the multiple scattering, CmsS2+

inc(E).
The dash-dotted line is the multiphonon scattering, S2+

inc(E). The dotted line is
the sum, (1 + Cms)S2+

inc(E).
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Chapter 12

Computational Scattering
Science

12.1 Software for Inelastic Scattering

12.1.1 Overview of Capabilities

Data from inelastic chopper spectrometers can reveal the fundamental dynami-
cal processes in materials or condensed matter, but not without substantial data
analysis to produce even a basic graph of S(Q⃗,E), the intensity as a function
of momentum and energy transfers. The elementary excitations in solids are
a substantial topic in themselves, and are covered in the earlier chapters of
this book. Making comparisons between the experimental S(Q⃗,E) and the un-
derlying theory requires another level of software sophistication. This chapter
describes the essential types of computational workflows that can be used to
go from data to science.

A schematic overview of software for inelastic scattering is presented in Fig.
12.1. This figure, first presented as a roadmap in Sept. 2001, shows three paths
for extracting scientific results from the raw data in the upper left corner. They
are:

• Data reduction. The raw data are not interpretable by humans. They must
be “reduced” to forms that display trends of intensity versus momentum
and/or energy transfer between neutrons and the sample. Identifying
features in these data may be publishable in their own right.

• Modeling. The intensity as a function of energy and momentum transfer,
I(Q⃗,E), is a quantity that can be obtained from reduced data, and it can
be calculated by theoretical models. The comparison between the models
and the measurements can reveal new science.

• Direct Experiment Simulation. Although data reduction procedures make

315
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Figure 12.1: Schematic of DANSE software for inelastic scattering.

a major effort to remove the quirks of and instrument from the experimen-
tal data, this practice is not perfect. For example, it is not always possible
to correct accurately for the instrument resolution. Sometimes it is better
to simulate the data obtained from an entire experiment, including the
effects of the instrument and the sample.

These three paths to science are described in sequence below.

12.1.2 Data Reduction

The first path, horizontally across the top of Fig. 12.1, is the traditional approach
to data reduction and visualization. The goal of this analysis is to obtain the
intensity as a function of momentum transfer and energy transfer, S(Q⃗,E). To
do so, the data arrays of counts acquired in terms of instrument parameters
such as detector pixel and arrival time must be converted into normalized in-
tensities with physical units such as Å and meV. Instrument backgrounds and
other distortions must also be removed. It is often necessary to correct for other
distortions caused by, for example, multiple scattering or multiple excitations.
By implementing all software components in the interpreted Python language,
the architecture can provide a set of components that can be replaced or rear-
ranged to test different processing algorithms. It is also important that data
streams can be piped into visualization windows for inspecting the data after
the different steps of data processing. An example of a component for energy
rebinning of data from a chopper spectrometer is described in the context of
the data stream architecture in Sect. ??. Some of the required corrections were
described in Sects. 11.3 – 11.6.
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12.1.3 Modeling

The second and third paths for extracting scientific results from experimental
data are designed to connect experimental data to theory or analytical models.

The second path, the vertical chain in the center of Fig. 12.1, is for compar-
ing experimental results to models of sample dynamics. This path is especially
appropriate for analytical models with adjustable parameters. Consider its use
for the “neutron-weighting problem” in phonon dynamics, which originates as
follows. A measured S(Q,E) from a polycrystalline sample of a pure element
can often be converted into a phonon density-of-states using a thermal correc-
tion procedure. On the other hand, a phonon DOS from a binary compound
cannot be otained from the measured S(Q,E) because the different elements
in the compound do not scatter neutrons with equal efficiencies, causing a
“neutron-weighting” of the experimental spectra. Without knowing the lattice
dynamics of the compound, it is impossible to know the distortions of an ex-
perimental DOS obtained from a measured S(Q,E) after a thermal correction
procedure.

The phonon scattering efficiencies of the different atoms are well known, so
a lattice dynamics model can be used to calculate an experimental spectrum.
We do so with an iterative procedure where the force constants in the dynamics
model are varied to obtain the best fit to the experimental data. We there-
fore can use a lattice dynamics model plus a “neutron weighting” correction
to obtain the true phonon density-of-states from the measured S(Q,E) of the
compound. The force constants are obtained as parameters that give the best
fit between calculation and experiment. This is now a routine procedure, and
new experiments can be designed around this capability.

Besides phonon dynamics in ordered compounds, there are many dynam-
ics models that can be compared to experimental data. Applications include
data corrections, the determination of parameters such as force constants or ex-
change stiffnesses, or testing if the model is in fact consistent with the measured
S(Q,E). Several types of dynamics models have been included in systems for
inelastic scattering software:

1. lattice dynamics with a Born–von Kármán model (periodic structure)

2. spinwave dynamics with a Heisenberg hamiltonian on a periodic struc-
ture

3. lattice dynamics on a disordered structure, using a moments analysis of
the dynamical matrix

4. lattice dynamics with density functional theory on ordered structures, or
disordered structures with supercell calculations

5. ab-initio molecular dynamics calculations with density functional theory
on ordered structures, or disordered structures with supercell calculations

6. spin dynamics in a paramagnetic model
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7. spin dynamics with density functional theory for chemically ordered
structures

12.1.4 Direct Experiment Simulation

The third path from data to science is shown on the left of Fig. 12.1. This ap-
proach is a direct simulation of the data measured at the detectors. It is based
on Monte Carlo codes that are used in the neutron community for simulation of
instrument performance. These codes have been tested and validated against
the performance of real instruments. These Monte Carlo simulations have been
used with molecular dynamics simulations to perform direct simulations of ex-
perimental data. A number of molecular dynamics simulations are available to
the theory community. These simulations are complementary to the analytical
models of Sect. 12.1.3, and are sometimes advantageous. For example, no ap-
proximations are needed when implementing structural models of disordered
solids, which are not handled well by the methods of Sect. 12.1.3 (except when
the Q information is ignored as in methods 3 and 6).

In these direct experiment simulations, the sample is used as a component in
the Monte Carlo computations of neutron trajectories through the instrument,
transforming an individual incident neutron into a neutron scattered into the
detector array. Typically, simulation results for the primary flight path are
stored and used for several simulations. For lattice dynamics simulations,
a large four-dimensional (Qx,Qy,Qz,E) data structure of dispersive excitations
can be pre-calculated, and the velocity-velocity correlation function of the atoms
in the sample can be sampled. This same path could be followed for classical
spin dynamics simulations.

12.2 Simulation of Neutron Scattering Experiments
with MCViNE

12.2.1 General Features of Monte Carlo Ray Tracing Simula-
tions

Except when interacting with atomic-scale periodicities in the sample, much
of the simulation of a neutron scattering experiment can be done with the
assumption that neutrons are particles that move in approximately straight
lines. Monte Carlo (MC) ray tracing simulations of neutron scattering spec-
trometers with support of multiple scattering were performed as early as the
1970s using MCS(71) and MSCAT(72) to understand the effects of multiple
scattering on the measured spectra (73). In the 1990s, with increasing needs
of simulating neutron instruments for the purpose of instrument design and
optimization, several MC neutron ray tracing packages emerged, including
McStas(74; 75), Vitess(76), Ideas(77), and NISP (78). Simulations with these
packages were intended primarily for instrument design, such as calculat-
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ing energy resolution under different operating conditions (see, for example,
(79; 80; 81; 82; 83; 84; 85; 86; 87; 88)). Unlike MCS and MSCAT, most of these
newer MC software packages (with a notable exception in NISP) treat a neutron
instrument as a linear chain of neutron optical components. Each component
performs one modification of neutron beam characteristics such as spatial di-
vergence and energy distribution. The approach based on direct acyclic graphs
(Sect. ??) greatly simplifies the coding of instrument simulations. Such an
approach is adequate when neutrons are rarely scattered back to the upstream
components. These software packages, especially McStas and Vitess, have
made important contributions to neutron instrument design.

A Monte Carlo neutron ray tracing simulation follows the neutron from
the moderator through the guides and choppers in the primary flight path, to
the sample with various possible complexities, and then to a detector or get-
lost pipe. There are substantial differences in these components, and natural
differences in the structure of the software programs to simulate them.

Detector system

The detector systems in modern neutron scattering instrumentation have a
modular and sometimes hierarchical organization, facilitating their construc-
tion, maintenance and validation. For example, the four direct geometry time-
of-flight spectrometers at Spallation Neutron Source (SNS) (89), ARCS (90), SE-
QUOIA (91; 92), CNCS(93), and HYSPEC(94) have detector arrays that use use
the same so-called “8-packs” (95), each of which is a detector module with eight
3He linear position sensitive detector tubes (LPSD). The 8-packs are arranged
in a vertically-oriented cylindrical geometry around the sample position, form-
ing a hierarchical organization of pixels, tubes, packs, and detector rows. A
simplified illustration of the detector hierarchy can be found in Figure 12.2(c).

Sample Assembly

Samples, sample holders, and sample environments comprise a “sample as-
sembly.” The sample assembly is an aggregation of neutron scatterers near the
sample position, as illustrated in Figure 12.2(b). A challenges in simulations
of a sample assembly is that neutrons can scatter back and forth among its
constituents. Even within a sample of some thickness, multiple scattering is
possible. Section 12.3.2 shows simulated and measured effects of multiple scat-
tering in the MICAS furnace, which contains heating elements, heat shields, in
addition to the sample (96).

12.2.2 General capabilities of MCViNE

MCViNE(97) is a general purpose neutron ray tracing package that combines
the two different approaches taken by MSCAT-like packages and McStas-like
packages. At the instrument level, it allows users to create a simulation ap-
plication as a linear chain of neutron components, each fully configurable by
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its type and corresponding geometrical and physical properties using either
command line options or an xml-based configuration file. At the component
level, two general components exist with support of hierarchical representation
for the sample assembly and the detector system. A detector system can be
specified with an xml file describing its hierarchy, while a sample assembly is
specified by a collection of xml files, one for the geometrical organization of
the constituent scatterers, and others describing the scattering mechanisms for
them. Multiple-scattering among scatterers in a sample assembly can be turned
on and off by a command line option.

12.2.3 Software Architecture of MCViNE

MCViNE is implemented in C++ and Python. The two C++ layers contain
fundamental mathematics, the neutron ray tracing mechanism, the mechanism
to include components from other MC ray tracing packages, and support of
multiple scattering and composite scattering kernels. The neutron components
from McStas are included in the C++ layer so they can be used individually
rather than as a whole compiled instrument. For the sample, the combination
of the object oriented features of C++ and the speed of the compiled code
make C++ appropriate for implementing the composite kernel and scattering
kernels. The “composite scatterer,” of MCViNE will be explained in detail in
Sect. 12.2.4.

A Python layer on top of the two C++ layers allows construction of a
component chain similar to McStas-like neutron ray tracing software packages,
provides the interface to the C++ components to include in that chain, and
allows for introduction of components that are completely written in Python.
This last feature makes it extremely easy to create simple neutron components,
and to create prototypes of more sophisticated neutron components.

12.2.4 Composite Scatterer

This section starts with basic concepts of the “composite scatterer,” followed
by an introduction to the essential object-oriented software designs centered
around it, and finishes with examples of ray-tracing algorithms in sample
assemblies and detector systems enabled by these designs.

Concepts

In MCViNE, a “composite neutron scatterer” represents a group of physical ob-
jects, for example, a powder sample in an aluminum can, a single crystal sample
surrounded by a furnace, or (perhaps surprisingly) a detector system. An “ele-
mental scatterer” is a scatterer without constituent scatterers. A “homogeneous
scatterer” is one kind of elemental neutron scatterer, whose scattering function
is homogeneous within its volume. The scattering properties are modeled us-
ing one “scattering kernel” or a combination of several “scattering kernels.”
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(a) (b) 

(c) 

Figure 12.2: Concepts in scattering composites: composite scatterer, homo-
geneous scatterer, shape, scattering kernels. (a) an abstract hierarchy of an
abitrary scattering composite. (b) and (c) are concrete examples of such hierar-
chies. (b) top view of a sample assembly consisting of an aluminum can and a
copper plate. (c) a detector system – how it is constructed from an elemental
scatterer (detector tube) in a three-level hierarchy.
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In the spirit of Sect. 1.1, each scattering kernel allows one scattering mecha-
nism, such as incoherent one-phonon nuclear scattering or coherent magnetic
scattering.

Figure 12.2(a) shows an abstract hierarchy of a composite scatterer in MCViNE.
Figure 12.2(b) depicts a sample assembly that is a composite of two-level hi-
erarchy, in which the bottom level consists of two homogeneous elemental
scatterers: one aluminum can and one copper plate sample. Figure 12.2(c)
represents a detector system consisting of 3He eight-packs that form roughly
a cylindrical arrangement around the sample position. The detector system is
represented in MCViNE in a three-level hierarchy: at the bottom level is the
3He detector tube; at the middle level, 8 such tubes construct an 8-pack; at the
top-level, the detector system consists of a collection of 8-packs. Such hierar-
chical representations allow MCViNE to model the closely the physical reality
in a way that parallels the experimental work.

Object-Oriented Designs

Design patterns for object-oriented programming are developed in the classic
text by Gamma, et al., (98). Two important object-oriented design patterns used
in MCViNE are

• The “composite pattern,” which describes the part-whole relationship
and to represent a hierarchy. It allows clients to treat composites and
their constituents in a uniform way.

• The “visitor pattern”, which allows separation of operations from the ob-
jects to be operated on, so new operations can be added without touching
these objects.

Using these design patterns for scattering composites unifies the programming
interfaces to the operations on both the composites and on the individual ele-
mental objects. Composite and visitor patterns are used in three major aspects
of the MCViNE neutron scattering model: neutron scatterers, geometric shapes
of scatterers, and scattering kernels, as described next.

Neutron scatterers. By using the composite pattern, algorithms for multiple
scattering are consolidated in one implementation. Scattering from a composite
neutron scatterer starts with a determination of which constituent intersects
the incident neutron ray, and then delegates the scattering assessment to that
particular constituent. The constituent could be a composite itself that requires
another delegation for scattering. The hierarchical representation of neutron
scatterers and this recursive algorithm work for both samples and detector
systems, and can improve computing efficiency and code maintenance.

Geometric shapes Using constructive solid geometry (CSG) (see for exam-
ple (99)), composite shapes are constructed from basic shapes such as cylinders
and blocks, and composites by using operations such as union, intersection
and difference. Ray-tracing through shapes is therefore simplified as visitor
methods of the primitive shapes and the binary shape operations.
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Scattering kernels Composite scattering kernels make it easy for the Monte
Carlo algorithm to sample a total S(Q, ω) consisting of both slowly-varying
regions and regions containing sharp features, such as diffraction and coher-
ent phonon scattering, by allowing users to combine different kernels such as
incoherent and coherent kernels in a kernel composite. In addition, users can
organize scattering kernels into groups; this makes it easy to apply importance
sampling (assign different weights to different kernels or kernel groups) in
simulations.

A “scattering kernel” in MCViNE is an abstraction of the scattering mecha-
nisms such as diffraction, nuclear scattering by phonons, or magnetic scattering
by spin waves. It does not include the sample geometry, but only the scatter-
ing physics. By separating the implementation of “scatterer,” “shape,” and
“scattering kernel,” a sample in MCViNE generally consists of a combination
of scattering kernels that can be added or deleted easily. Furthermore, the
scattering kernel library in the MCViNE framework can be extended without
affecting the logic of geometric ray tracing, which is implemented in “shape”
and “scatterer.” For example, simple scattering kernels taking a histogram
form of S(Q, ω) can be used, or more sophisticated phonon scattering kernels
that take phonon energies and polarizations as inputs (these were used in the
examples of vanadium and aluminum in Sect. 1.1). Many others are possible.

12.2.5 Algorithms

Ray Tracing

In components such as sample assemblies or detector systems, neutron scat-
terers are represented by a hierarchy of objects with shapes and scattering
mechanisms. Ray tracing of a neutron happens by first determining which
neutron scatterer at the top level of the composite hierarchy intercepts the neu-
tron. This is done by computing the intersections of the forward ray of the
neutron and all the shapes of the top-level constituents. A random selection
might be necessary if multiple top-level objects intercept the neutron. After the
top-level neutron scatterer is identified, the neutron is propagated to the front
surface of the scatterer if necessary (not necessary if the neutron is already in-
side the scatterer) with appropriate attenuation, and the ray tracing algorithm
then recurses into itself if the scatterer is a composite. Otherwise a point in the
forward path of the neutron inside the scatterer is picked at random, and the
neutron is propagated to that point with attenuation. At this point a scatter-
ing (or an absorption) mechanism of the scatterer is randomly picked, and the
neutron is either scattered with its probability adjusted, or is absorbed.

Multiple Scattering

Multiple-scattering (MS) is naturally supported in MCViNE scattering compos-
ites, implemented with a recursive algorithm. Here we differentiate between
two types of multiple scattering
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Figure 12.3: An example of multiple scattering within one scatterer. The inci-
dent neutron was scattered three times by three different scattering kernels. At
each scattering point, the original neutron is also propagated out of the scatterer
with proper attenuation. Red arrows are paths of neutron propagation. Circles
highlight the location of scattering. Different scattering events are coded using
different colors.

• single-scatterer multiple scattering (SSMS) to describe the multiple scat-
tering within one neutron scatterer

• multiple-scatterer multiple scattering (MSMS) to describe multiple scat-
tering among neutron scatterers.

Figure 12.3 shows an SSMS in which a neutron is scattered three times before
exiting a scatterer. Each time a neutron is scattered inside a homogeneous
scatterer, the original incident neutron packet is split into two neutron packets
for computational efficiency. One neutron packet is propagated through the
scatterer with its probability lowered by attenuation, while the other is scattered
by one of the scattering kernels, chosen by a random selection, at a point also
randomly selected along the forward path. This splitting process repeats for
the scattered neutron several times, as illustrated in Figure 12.3, until either the
neutron probability is lower than a pre-selected limit, or the maximum order
of multiple scattering is reached. When either termination condition is met,
any neutron that is still inside the scatterer is allowed to propagate out, with its
probability attenuated appropriately.

Figure 12.4 shows an example of multiple scattering in a sample assembly
consisting of a “concentric” arrangement of a sample and a sample environ-
ment. Only five possible multiple scattering paths are illustrated, and the split-
ting processes are not shown. Sample components in some linear-chain-based
MC ray tracing packages can support SSMS, but they do not have abstractions
similar to composite scatterer or scattering kernel. As a result, the SSMS al-
gorithm must be duplicated in these sample components as explained in Sect.
??. In MCViNE, implementations of new scattering kernels can be added with-
out reimplementing the multiple scattering algorithm. McStas supports MSMS
partially for a concentric sample assembly by, for example, adding a second
outer cylinder into the simulation component chain (100). Path (e) of Figure 12.4
is included this way, but path (c) of Figure 12.4 is supported only with more
work on the user’s part. The multiple scattering algorithm of MCViNE is more
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Figure 12.4: An example of multiple scattering in a concentric sample assembly.
Five (out of infinite) possible multiple scattering paths are illustrated (see text).

comparable to that of MSCAT(72) in which the sample and the sample envir-
onment are treated together in the multiple scattering loop, offering complete
treatment of SSMS and MSMS. However, MCViNE allows a straightforward
increase in complexity of the sample and sample environment interactions by
using the recursive MS algorithm enabled by OOP.

Ray tracing in a detector system

For detector systems, MCViNE takes advantage of the hierarchical represen-
tation for neutron scatterers, only in this case the elemental homogeneous
neutron scatterer is the 3He detector tube that intercepts neutrons and records
them. MCViNE reuses the code for ray tracing in a composite scatterer for sim-
ulating 3He detector systems, and the new code needed is a scattering kernel
for the 3He that takes into account gas absorption. When a neutron is sent to
a detector system shown in Figure 12.2(c), for example, the generic ray tracing
algorithm for composite scatterers first checks whether the top level composite
scatterer is penetrated by the neutron. If so, all constituents of the composite
scatterer, i.e. the detector packs, are examined to determine which of them in-
tercepts the neutron. Unless a neutron traverses a gap between detector packs,
the detector pack is identified and then its constituents, the 8 detector tubes,
are examined for neutron detection. The path of a neutron through the detector
tube is then computed by ray tracing of the neutron through a cylinder, and a
MC sampling picks a point in the path for the neutron to be absorbed. (The
ray tracing through a cylinder takes care of the parallax effect of the detector
tube.) Additionally, the appropriate weighting multiplier for neutron detection
probability (computed from absorption probability depending on the 3He pres-
sure and the length of the neutron path through the tube) and the time-of-flight
are computed for the neutron to be recorded as a detector event in a “virtual
detector electronics device.” This hierarchical approach to detectors allows for
adding more physical features, including details of the charge cloud around
the anode wire of the detector.
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12.3 Example of a Neutron Simulation

12.3.1 Relationship to Data Reduction

Inelastic neutron scattering data contains a complex overlap of signals with
several origins. Multiple scattering and multi-excitation scattering are obvious
sources of signal that are usually unwanted in final data analysis. These con-
tributions will vary depending on factors such as sample temperature, sample
thickness, additional scattering components in the beam, such as sample con-
tainers and sample environments, and the complex geometrical arrangement
of all these components. In addition, the instrument has a complex resolution
function. Attempts to describe this resolution function analytically separate
contributions to the resolution and include uncertainty in timing from the
source and differences in path length due to the finite chopper opening (? ).
The data reduction process attempts to strip the measured data of unwanted
contributions to the measured signal, leaving only single-excitation inelastic
and elastic scattering from the sample. Because the individual signal contri-
butions are not known, this process is done with a series of approximations
that are imperfect, and are also incapable of capturing the complex overlap of
signals.

As instruments improve, more detailed information is available from ex-
perimental measurements. Some trends and phenomena can be ignored when
counting statistics are poor, but become more evident in data of higher quality.
There is a growing need for more accurate and reproducible approaches to
data reduction. Simulations of neutron experiments offer an alternative way
to identify and isolate the individual and mixed contributions to measured
intensities.

Section 12.2 described some technical features of the Monte Carlo VIrtual
Neutron Experiment (MCViNE) software package. In short, MCViNE is a
Monte Carlo neutron ray tracing package developed during the commission-
ing of the ARCS instrument at the SNS (97; 101; 102). This package has several
improvements over previous Monte Carlo neutron ray tracing packages, in-
cluding the use of a recursive function to inherently handle multiple scattering
and a flexible architecture for re-arrangement of components.

12.3.2 Scattering from a Sample in a Furnace

A high-temperature furnace used in the ARCS spectrometer is shown in Fig. 12.10.
It has many layers of shielding that cause scattering that appears as an un-
wanted experimental background. In experimental practice, this background
can be measured and then subtracted from data acquired from the sample in
the furnace. There are two subtleties about this practice that bring abmiguities
to this experimental practice

• When the sample is in the furnace, it removes some of the incident beam,
perhaps 10%, by scattering or absorption. The downstream part of the
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furnace does not see the full incident beam that was seen for the empty
furnace measurement. The typical practice is to assume half of the furnace
scattering is from the downstream side, so the full background of an
empty furnace is not subtraced from the measured data with the sample.
If the sample scatters 10% of the incident neutrons, perhaps 95% of the
background from the empty furnace should be removed by subtraction.

• Unfortunately, the parts of the furnace upstream and downstream from
the sample are not in the same position, and they give different back-
ground signals. Sometimes it is possible to make a third measurement
(in addition to the empty furnace, furnace plus sample) with a strongly
absorbing material in place of the sample. In this case, the downstream
part of the furnace will receive less of the incident beam, and perhaps the
scattering contributions from the upstream and downstream parts of the
furnace can be isolated by comparing these measurements of a furnace
with a black absorber to the measurements of the empty furnace. This
can be challenging when the sample and absorber are smaller than the
full width of the incident beam, but in principle it can work well.

• A much more difficult problem occurs when there is a first scattering from
the furnace to the sample and a second scattering from the sample to the
detector (or vice-versa). The intensity from these neutrons that interact
with both the sample and the furnace can only be observed when the
sample is in the furnace, and an empty furnace measurement is not help-
ful. Perhaps samples of different thickness can be used to help analyze
these multiple scattering effects, but this is not a popular method.

These three problems present an opportunity for simulations. Accurate
simulations of the empty furnace, furnace containing the sample, and the sam-
ple by itself, can elucidate the contributions of background scattering from the
furnace, and between the furnace and sample. These results could show how
much of the empty furnace measurement to subtract from the data with the
sample, and then show how much multiple scattering between the sample and
furnace needs to be removed as well.

12.3.3 Steps of Simulations with MCViNE

A “sample assembly” is constructed from several scatterers, arranged in a spe-
cific geometrical configuration to model the physical layout of all components
in the path of the beam. Construction of the sample assembly is a primary task
before starting the simulation, much in the same way as an experimentalist
modifies the sample and its envioronment, rather than the instrument itself.
The instrument configuration of the various guides and choppers in the pri-
mary flight path upstream of the sample has been previously developed, and
neutron beams on the sample for many conditions have already been simulated.
The detector configuration is static, and also does not require user modification.
The simulation sequence follows four steps illustrated in Fig. 12.5
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Step 2: Sample 
Scattering 

Step 3: Detector 
Interception 

Step 4: Data 
Reduction 

Step 1: Beam 
Simulation 

Figure 12.5: The simulation proceeds in four steps, as shown for a schematic
of the ARCS instrument. First, the neutrons travel from the moderator to the
sample (yellow path). Second, the neutrons are incident on the sample and
scatter from the sample (pink path). Third, the neutrons are intercepted by
the detector array (green path). Fourth, the event-mode NeXus file is reduced
using Mantid.

1. First, the beam is simulated as the neutrons travel from the moderator to
the sample. The instrument components before the sample are modeled
in a linear chain, and scattering probabilities are propagated and updated
by each component in the chain until the neutrons reach the sample. This
beam simulation is archived, and does not need to be repeated unless the
user selects a new configuration of operating parameters.

2. Second, the neutrons are scattered from the sample assembly. The sample
assembly includes the sample and furnace as described below.

3. Third, the scattered neutrons are intercepted by the detector array. This
assigns a detector pixel ID and time-of-flight to each neutron that reaches
the detector. The collected neutrons are then processed into an event-
mode NeXus file. This approach to data collection is the same as is
currently in use at the SNS.

4. The final step in the simulation sequence is the reduction of the NeXus
file using Mantid. This reduction step uses the routines and procedures
that are used for reduction of experimental data.

It is also possible to introduce a radial collimator between the second and
third steps. The neutrons are forced to travel in straight lines through the
collimator after scattering from the sample and before entering the detectors.
The collimator triangulates the neutron paths to converge on the sample, and
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Figure 12.6: Photograph of the inner edge of collimator septa around the sample
region of the ARCS spectrometer. The perspective of the photo is from a camera
slightly above the position of the sample. The detector array lies approximately
2 m beyond the collimator towards the top of the photograph.

eliminates much of the scattering from the furnace components that are at
different radii. The radial collimator gave a remarkable improvement in the
background from the ARCS instrument. Figure 12.6 shows the actual radial
collimator in position around the sample space. For the simulation, the radial
septa are configured with the same geometrical positioning and spacing as the
real collimator, but are modeled as “ideal” in that they are infinitely thin and
have 100% absorption.

12.3.4 Furnace Simulation Template

12.3.5 Furnace Geometry

The MICAS furnace, shown in Fig. 12.7 is capable of heating samples to 1900 K
(or more practically, 1500 K). In use, the entire furnace is lowered with a crane
into the sample region. The bottom-most portion of the furnace, the many-
layered region in the schematic and the crinkled-foil region in the photo, is the
part of the furnace in the path of the neutron beam. This is this region that must
be accurately described in any Monte Carlo simulation.

The critical region of the furnace in the neutron beam contains the sample at
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Figure 12.7: Schematic of the MICAS furnace (left) and the furnace itself (right),
supported on a yellow cart.
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Table 12.1: Outer diameters of the concentric cylinders of heating elements,
shielding, and the outer vacuum tank containment for the MICAS furnace. All
of these components are made from high-purity Nb foil with a thickness of
0.002 in.

inner heating element 3.13 in.
outer heating element 3.65 in.
heat shield 1 5.10 in.
heat shield 2 5.52 in.
heat shield 3 5.93 in.
heat shield 4 6.35 in.
heat shield 5 6.77 in.
heat shield 6 7.18 in.
heat shield 7 7.60 in.
heat shield 8 8.01 in.
outer tank 11.54 in.

the center, which is attached to the bottom of a stick and inserted into the fur-
nace. Concentric cylinders around the sample providing heating and thermal
radiation shielding. Their dimensions are given in Table 12.1. Figure 12.8 de-
picts these concentric cylinders. The two inner-most cylinders are the heating
element. They are surrounded by between 1 to 8 layers of shielding for thermal
radiation that suppress heat loss from the furnace. (Dissipation of heat from the
heating element into the sample region of the instrument tank is an issue that
must be observed closely, ideally by monitoring the temperature on the outer
tank layer. In recent modifications of the MICAS furnace design, this problem is
mitigated by water cooling above and below the sample region of the furnace.)
It was discovered that the precise diameters of these heating elements and heat
shields is crucial for accurately modeling their scattering. The values given in
Table 12.1 were obtained from an actual measurement of the heating element
and heat shields with a micrometer when the furnace was deconstructed and
not in use. Initially, all of the concentric layers were simulated as individual
scatterers. This was cumbersome and proved to be unnecessary, however.

Details of Furnace Model

The furnace assembly was modeled as two scatterers: (1) the outer vacuum
container, and (2) the two heating elements and eight heat shields. The outer
vacuum container is modeled as a hollow cylinder with radius 5.77 in., thickness
0.1 mm, and height 15 in. As is obvious from the photo in Fig. 12.7, this outer
layer is not a smooth cylinder because of some mechanical abuse. It also serves
as the outer vacuum containment for the furnace, so any pressure imbalance
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Figure 12.8: Drawing (not to scale) of the heating element and heat shield region
of the MICAS furnace. The inner and outer heating elements and the outer
tank are fixed. Heat shields can be removed, beginning with the outermost,
depending on the maximum temperature of the experiment.

that is created during pump down and venting of the furnace and sample area
can cause this thin layer to crinkle. So instead of modeling this region as a
perfectly dense cylinder of thickness 0.002 in. (0.05 mm), it is modeled with
twice this thickness, and a reduced “packing factor” of 0.5. In Fig. 12.8, it is
depicted as the blue cylinder.

The scatterer describing the remaining components also has a hollow cylin-
der shape with inner radius 1.56 in., outer radius 4 in., and height 15 in. This
hollow cylinder has a reduced packing factor of 0.008 to capture the consid-
erable amount of ‘empty space’ present in this cylinder. In Fig. 12.8, this is
depicted by the volume encompassed by the two red cylinders. Figure 12.9 is
an example of the furnace template in the sample assembly file. In practice,
the sample assembly is an xml file modified by the user to add or remove
components of the sample to the simulation. In this example file, the furnace
template is in use as indicated by the blue labels. The shape, composition, and
geometric conditions described for these components are input variables. A
separate “scatterer” file for each of the components provides details including
the packing factor, scattering kernels, and scattering probabilities.

Computational Results

Neutron scattering was both measured and computed for an “empty” furnace
at room temperature, both with and without the radial collimator. Figure 12.10
compares experimental results (a, b) with simulations (c-f). For these test cases,
the empty furnace is not truly empty. The experiment contained an empty Nb
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Figure 12.9: The furnace template contributes two components to the sample
assembly. The blue labels indicate which component is being described. The
“outer most” and “Nb heating elements etc. 2+8” make up the furnace.
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sample sachet fixed in a BN absorbing frame at 45 degrees to the incident beam.
The simulation was simpler, however, containing two pieces of Nb foil at the
sample position, also at 45 degrees to the incident beam.

The experimental data in (a) and (b) are plotted on the same intensity scale,
demonstrating the dramatic effect of the radial collimator in reducing unwanted
scatter from the sample environment. Prior to the introduction of the radial
collimator, the result in (a) shows the considerable background scattering that
needed to be removed from the experimental data. Most notable is the high
intensity scattering along the elastic line, including a peculiar split in the elastic
intensity, especially towards higher Q. Inelastic scattering intensity is also
visible, and it is even possible to see some phonon dispersions from Nb.

The broad Bragg diffractions, which split into two at higher Q, originate from
two distinct regions of scatterers in the furnace. There is a high concentration of
Nb near the sample position, including the Nb foil at the sample position and
10 concentric layers of Nb foil within 4 in. of the beam center. This produces
a set of elastic scattering peaks with an intensity somewhat broadened along
E. The second set of elastic scattering peaks results from the outermost Nb
foil layer, which is at a considerable distance of nearly 6 in. from the sample
center. A gap of nearly 2 in. exists between the sample and shielding, and
this outer cylinder, causing its own set of diffraction peaks from scattering. In
the experimental measurement with the collimator introduced (b), this effect
is entirely eliminated. This is as expected because the radial geometry of the
collimator is highly effective in removing scattering that occurs at angles not
radiating directly from the sample position. The collimator is less effective at
low Q, and the lowest-order diffractions from Nb have moderate intensity with
the collimator in place.

The simulations in Fig. 12.10 show the furnace without the collimator (c, e)
and with the collimator (d, f), and provide a comparison with (e, f) and without
(c, d) multiple scattering. The intensity scales are matched in all of the simulated
results to demonstrate the high efficiency of the collimator in reducing this
unwanted background scattering (so it is easier to analyze the results for the
simulation without the collimator). Panel (c) shows the empty furnace with all
scattering kernels in use, but without multiple scattering. This reproduces the
experiment data in (a) reasonably well, although intensity along the elastic line,
especially at low Q, is noticeably absent. This is also evident in comparison of
(b) and (d), the experiment with the collimator in place and simulation without
multiple scattering. In (e), multiple scattering is introduced, which provides
the missing intensity near E=0 and also smears out the scattering along Q. This
appears to also be the case in (f), though it is less obvious. Multiple scattering
often involves two elastic scattering events, but these tend to be incoherent and
contribute intensity between the Bragg peaks from the Nb. A similarly broad
elastic line is seen in Fig. 1.1e for multiple scattering from fcc Al, for which the
individual scatterings were assumed coherent.

These empty furnace measurements and simulations demonstrate the via-
bility of simulating background intensities in inelastic neutron scattering exper-
iments. Not only are the results interpretable in terms of individual scattering
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without collimator      with collimator    with collimator

(a)                (b)

(c)                (d)

(e)                (f )

Figure 12.10: The empty furnace provides significant background, as is visible
from the experiment without the collimator (a), but the background is consid-
erably reduced with the collimator (b). The simulation without the collimator
is shown without multiple scattering (c) and with multiple scattering (e). The
simulation with the collimator is also shown without multiple scattering (d)
and with multiple scattering (f).
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processes, but they are quantitatively accurate. Nevertheless, this approach is
not fully proven. It still seems prudent to make experimental measurements of
the main contributions to the background, such as the furnace itself, and use
the simulations to correct for more difficult effects such as multiple scattering
between the sample and the furnace.

12.4 The Future of Computational Scattering Sci-
ence

The opportunities of computational scattering science, and the effort to achieve
them, are not new ideas. The authors had understood many of them around
the end of the 1900’s. It is somewhat disappointing that they are not more
widespread today. Some of this is understandable, since it a project in compu-
tational scattering science requires success in both experiment and in compu-
tation. Obviously it is easier to address only one of these, and this has been
the historical norm. However, “Without deviation from the norm, progress is
not possible,” as pointed out by Frank Zappa. What follows are a number of
observations about the opportunities and the paths needed to achieve them.

12.4.1 Some General Thoughts

Today it requires less effort to use sophisticated tools for computational ma-
terials science than it did about 10 years ago. Today a graduate student may
routinely use more than a million CPU hours per year, and this will increase
steadily. Yet there remains a large learning curve for applying these tools to
Scattering Science.

The bigger challenge is to incorporate these computational tools into work-
flows for doing new science. This is not moving forward very rapidly, and
the status quo of an individual scientist/developer is an inefficient cottage in-
dustry. The scattering community needs help to make the new computational
tools easier to use. There is some need to develop new codes for computational
scattering science, but the bigger need is to use the existing codes for calculating
the properties of materials, and integrate them into workflows to interpret the
results of experimental scattering data. These workflows could be archived
and shared, allowing them to be adapted quickly for new scientific endeavors,
supporting scattering scientists who need them.

It is of course paramount to quantify the accuracy of quantitative science.
When sophisticated features are extracted from a workflow that combines com-
puting and experiment, or when different types of experimental data are com-
bined to develop an underlying materials model, we have little experience with
the reliability of the results. Uncertainty quantification needs to be considered
when building new scientific workflows. Although underutilized in scattering
science, Bayesian methods can be incorporated naturally into efforts that com-
bine computation with experiment, using results from one as prior information
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for the other, for example. These methods are challenged when the models for
obtaining conditional probabilities are not well-known, however.

Nearly all scattering science research with X-ray and neutron facilities in-
volves studies of materials, but the experiments cover an enormous range of
different materials and phenomena. Nevertheless, some computational materi-
als science methods are important for broad classes of materials. All atoms obey
quantum mechanics, for example. Modern methods for calculating electronic
structure, molecular dynamics, and tools for modeling atomic structure and
dynamics are well established. Software that simulates materials at the atomic
level using quantum mechanics and statistical mechanics has become both
commonplace and essential for understanding a large range of phenomena.
It is time to develop specific scientific workflows that use these modern tools
of computational materials science to assist in interpreting specific scattering
experiments.

12.4.2 Some Specific Workflows

Direct experiment simulations have not reached their full potential in 2016.
These simulate neutrons sent into a beamline, how the beams are monochro-
mated and focused, and how they are scattered from the sample into detectors.
The quirks of the instrument are included in these simulations, and in many
cases it is more reliable to compare simulated data to real data, rather than try-
ing to correct experimental data for characteristics of the instrument. Central
to these simulation workflows is the scattering from the sample. We know how
a neutron is deflected by different interactions with the atoms in the sample,
and we now have the tools to calculate the positions of atoms, their vibrational
dynamics, their magnetic moments, and how local magnetic moments respond
to temperature and magnetic field. These ab-initio codes are a triumph of quan-
tum mechanics in the past two decades. We should be using them to calculate
the relevant correlation functions and cross-sections for scattering events, and
using these results in the simulations of experimental data.

There is broad agreement that density functional theory (DFT) codes are
the standard workhorses for computational materials science today, and there
should be no major issues incorporating them into workflows that calculate
diffraction patterns and phonon dispersions of regular crystalline material, for
example. To date, many studies have already benefited from DFT workflows.
Classical molecular dynamics codes could also be made available this way,
but using them for accurate simulations of real materials requires expertise in
“training” their force fields. This detailed work may be beyond the patience
of computational scattering scientists. Although ab-initio molecular dynamics
demands much more of the computer, it demands less from the scientist. Finally,
there is widespread interest, both in theory and in experiment, in understanding
materials when their structures are not in equilibrium. Codes to calculate the
structures and dynamics of materials with excited electrons are emerging, and
are currently limited to much smaller systems than are typical DFT calculations
due to the less favorable scaling with system size of these methods.
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Uncertainty quantification is hardly used by the scattering science com-
munity today, even though it is almost always desirable to estimate errors
in experimentally-derived quantities. When these quantities are not obtained
by direct measurement, but instead the measurements are used to optimize
parameters in an underlying atomic model, for example, it is challenging to es-
timate the uncertainties. There are some families of workflows where classical
Bayesian statistics could be adapted to estimate uncertainty. These methods are
not implemented in core packages of computational materials science. Software
workflows need to give more attention to uncertainty quantification, especially
those that combine multiple sets of data and computation. It is unfortunate that
there is so little reward for the effort of doing this, but this work is especially
important when the models themselves are uncertain or controversial. In such
cases the traditional Bayesian approach may not be appropriate, but there are
new efforts in the applied mathematics of uncertainty quantification that could
help over the next years.

Adapting computational tools to new scientific workflows is most efficient
when the software packages are modular, and have consistent interfaces for I/O,
for example. The rules of good object-oriented programming go a long way
towards satisfying this goal, although compatibility must be designed. Also
necessary will be workflow documentation, discussion forum management,
and some brokerage of computing resources. Software development with pro-
fessionalism, and with steady input from the scattering community, is essential
for building useful and sustainable software for computational scattering sci-
ence. We are not doing this so well today, but the promise is there. It seems too
obvious to go unrecognized for much longer.

Further Reading

The contents of the following are described in the Bibliography.
H. A. Abelson and G. J. Sussman: Structure and Interpretation of Computer Pro-
grams (MIT Press, Cambridge Mass, 2001).
Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).



Appendix A

Appendix 3: Selected
Derivations and Physical
Constants

A.1 Convolutions and Correlations

A.1.1 Convolution Theorem

It is easiest to explain convolutions is in terms of a broadening of a sharp peak
caused by making a measurement with a blurry instrument. The instrumental
broadening function is f (k).1 We seek the true specimen diffraction profile g(k).
What we actually measure with our diffractometer is the convolution of f (k)
and g(k), denoted h(K) (where K is the shift of the detector across the diffraction
intensity). Deconvolution will require the Fourier transforms of f (k), g(k), h(K):

f (k) =
∑

n

F(n) ei2πnk/l equipment, (A.1)

g(k) =
∑

n′
G(n′) ei2πn′k/l specimen, (A.2)

h(K) =
∑
n′′

H(n′′) ei2πn′′K/l measurement. (A.3)

Note that l has units of inverse distance, so n/l is a real space variable. The
range in k of the Fourier series is the interval −l/2 to +l/2 , which includes all

1Measurements are typically in scattering angle, which is interpretable as a k-space variable.
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features of a diffraction peak.2 The convolution of f and g is defined as:

h(K) =

∞∫
−∞

f (K − k) g(k) dk . (A.4)

We must choose an interval so that that f and g vanish outside the range ± l/2,
so we can change the limits of integration from ± ∞ to ± l/2. Substitute (A.1)
and (A.2) into (A.4):

h(K) =

l/2∫
−l/2

∑
n

F(n) ei2πn(K−k)/l
∑

n′
G(n′) ei2πn′k/l dk . (A.5)

We rearrange summations over the independent variables n and n′, and remove
from the integral all factors independent of k:

h(K) =
∑

n′

∑
n

G(n′)F(n) ei2πnK/l

l/2∫
−l/2

ei2π(n′−n)k/l dk . (A.6)

Now we employ the orthogonality condition3:

l/2∫
−l/2

ei2π(n′−n)k/ldk =
{

l if n′ = n
0 if n′ , n

}
. (A.7)

With the orthogonality condition of (A.7), the double sum in (A.6) is reduced
to a single sum:

h(K) = l
∑

n

G(n)F(n) ei2πnK/l . (A.8)

Compare (A.8) to the definition for h(K) in (A.3). We see that that the Fourier
coefficients H(n′′) are proportional to the product of G(n) and F(n):

l G(n)F(n) = H(n) . (A.9)

By comparing (A.4) and (A.9), we see that a convolution in k-space is equiv-
alent to a multiplication in real space (with variable n/l). The converse is also
true; a convolution in real space is equivalent to a multiplication in k-space.
This important result is the convolution theorem.

2We don’t care about f (k) and g(k) outside this interval, but with (A.1)–(A.3) these Fourier
transforms repeat themselves with a period of l. We confine ourselves to one period, and require
that f and g vanish at its ends.

3Verified by writing the exponential as cos(2π(n′−n)k/l)+i sin(2π(n′−n)k/l). The sine integration
vanishes by symmetry. The cosine integration gives l[2π(n′ − n)]−1[sin(π(n′ − n))− sin(π(n′ − n))],
which = 0 when n′ − n , 0. In the case when n′ − n = 0, the integrand in (A.7) equals 1, so the
integration gives l.
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A.1.2 Deconvolutions

Equation (A.9) shows how to perform the deconvolution of f (k) from h(K);
perform a division in n-space. Specifically, when we have the full sets of
Fourier coefficients {F(n)} and {H(n)}, we perform a division in n-space for each
Fourier coefficient:

G(n) =
1
l

H(n)
F(n)

. (A.10)

We obtain each F(n′) by multiplying both sides of (A.1) by exp(−i2πn′k/l) and
integrating over k:

l/2∫
−l/2

f (k) e−i2πn′k/ldk =
∑

n

F(n)

l/2∫
−l/2

ei2π(n−n′)k/ldk . (A.11)

The orthogonality relationship of (A.7) causes the right-hand-side of (A.11) to
equal zero unless n = n′. Equation (A.11) therefore becomes:

1
l

l/2∫
−l/2

f (k) e−i2πn′k/ldk = F(n′) . (A.12)

The Fourier coefficients H(n) are obtained the same way. The simple division of
Fourier coefficients in (A.10) then provides the set of Fourier coefficients for the
true specimen profile, {G(n)}. If we then use (A.2) to take the Fourier transform
of the {G(n)} from (A.10), we obtain g(k), the true specimen diffraction profile.

A.2 Fourier Transform of Screened Coulomb Poten-
tial

In this subsection we calculate the Fourier transform of a “screened Coulomb”
potential, a result that is useful in calculations of form factors of atoms for
example. This screened Coulomb potential, V(r), is:

V(r) = −
Ze2

r
e−r/r0 . (A.13)

The exponential factor accounts for the screening of the nuclear charge by the
atomic electrons, and r0 is an effective Bohr radius for the atom. Interestingly,
the exponential decay also facilitates the mathematics of working with a poten-
tial that is otherwise strong at very large distances.

We now use the first Born approximation, (1.75), to calculate the atomic
scattering factor, f

(
∆⃗k

)
, as the Fourier transform of V

(⃗
r
)

:

fel

(
∆⃗k

)
= −

m
2πℏ2

∫
all space

e−i∆⃗k·⃗r V(⃗r) d3r⃗ . (A.14)
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Substituting the potential (A.13) into (A.14):

fel(∆⃗k) =
mZe2

2πℏ2

∫
all space

e−i∆⃗k·⃗r e−r/r0

r
d3r⃗ . (A.15)

The integral, I
(
∆⃗k, r0

)
, in (A.15) occurs in other contexts, so we pause to

solve it.

I

(
∆⃗k, r0

)
≡

∫
all space

e−i∆⃗k·⃗r e−r/r0

r
d3r⃗ , (A.16)

which is the 3-dimensional Fourier transform of the screened Coulomb poten-
tial (A.13). It is natural to use spherical coordinates:

I

(
∆⃗k, r0

)
=

∞∫
r=0

π∫
θ=0

2π∫
ϕ=0

e−i∆⃗k·⃗r e−r/r0

r
r2 sinθdθdϕdr . (A.17)

The trick for working with the exponential in (A.17), e−i∆⃗k·⃗r, is to align the
vector ∆⃗k along the z-axis so that ∆⃗k · r⃗ = ∆kz. Also, since z = r cosθ:

dz = −r sinθdθ . (A.18)

The limits of integration are changed as:

θ = 0 =⇒ z = r , (A.19)
θ = π =⇒ z = −r . (A.20)

With the substitution of (A.18)–(A.20) into (A.17):

I

(
∆⃗k, r0

)
=

∞∫
r=0

−r∫
z=r

2π∫
ϕ=0

e−i∆kze−r/r0 dϕ(−dz)dr , (A.21)

I

(
∆⃗k, r0

)
= 2π

∞∫
r=0

r∫
z=−r

e−i∆kze−r/r0 dz dr . (A.22)

Writing the exponential as e−i∆kz = cos(∆kz)− i sin(∆kz), the z-integration of the
sine function vanishes by symmetry in the interval −r to +r, and the cosine
integral is:

r∫
z=−r

cos(∆kz) dz =
+2
∆k

sin(∆kr) , (A.23)
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which does not depend on the direction
̂⃗
∆k. Using (A.23) for the z-integration

in (A.22), we obtain:

I (∆k, r0) =
4π
∆k

∞∫
r=0

sin(∆kr) e−r/r0 dr . (A.24)

Equation (A.24) is the Fourier transform of a decaying exponential. This
integral can be solved by twice integrating by parts.4 The result is a Lorentzian
function:

∞∫
r=0

sin (∆kr) e−r/r0 dr =
∆k

∆k2 + 1
r2

0

. (A.25)

We substitute the result (A.25) into (A.24), completing the evaluation of (A.16):

I (∆k, r0) =
∫

all space

e−i∆⃗k·⃗r e−r/r0

r
d3r⃗ =

4π
∆k2 + 1

r2
0

. (A.26)

For later convenience, we now obtain a related result. The use of an expo-
nential screening factor to perform a Fourier transform of the Coulomb potential
is a useful mathematical trick. By letting r0 → ∞, we suppress the screening
of the Coulomb potential, so e−r/r0 = 1 in (A.13). The Fourier transform of this
bare Coulomb potential, with its mathematical form of 1/r, is obtained easily
from (A.26): ∫

all space

e−i∆⃗k·⃗r 1
r

d3r⃗ =
4π
∆k2 . (A.27)

4Defining U ≡ e−r/r0 and dV ≡ sin(∆kr) dr, we integrate by parts:
∫

UdV = UV −
∫

VdU. The
integral on the right hand side is evaluated as: (∆kr0)−1

∫
∞

r=0 cos(∆kr) e−r/r0 dr, which we integrate

by parts again to obtain: − (∆kr0)−2
∫
∞

r=0 sin(∆kr) e−r/r0 dr. This result can be added to the
∫

UdV on
the left hand side to obtain (A.25).
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A.3 Fundamental and Derived Constants

Fundamental Constants

ℏ = 1.0546 × 10−27 erg·sec = 6.5821 × 10−16 eV·sec
kB = 1.3807 × 10−23 J/(atom·K) = 8.6174 × 10−5 eV/(atom·K)
R = 0.00198 kcal/(mole·K) = 8.3145 J/(mole·K) (gas constant)
c = 2.998 × 1010 cm/sec (speed of light in vacuum)
me = 0.91094 × 10−27 g = 0.5110 MeV·c−2 (electron mass)
mn = 1.6749 × 10−24 g = 939.55 MeV·c−2 (neutron mass)
NA = 6.02214 × 1023 atoms/mole (Avogadro constant)
e = 4.80 × 10−10 esu = 1.6022 × 10−19 coulomb
µ0 = 1.26 × 10−6 henry/m
ε0 = 8.85 × 10−12 farad/m

a0 = ℏ2/(mee2) = 5.292 × 10−9 cm (Bohr radius)
e2/(mec2) = 2.81794 × 10−13 cm (classical electron radius)
e2/(2a0) = R (Rydberg) = 13.606 eV (K-shell energy of hydrogen)
eℏ/(2mec) = 0.9274 × 10−20 erg/oersted (Bohr magneton)
ℏ2/(2me) = 3.813 × 10−16 eV s cm−2

Definitions

1 becquerel (B) = 1 disintegration/second
1 Curie = 3.7 × 1010 disintegrations/second

radiation dose:
1 roentgen (R) = 0.000258 coulomb/kilogram
Gray (Gy) = 1 J/kG

Sievert (Sv) is a unit of “radiation dose equivalent” (meaning that doses of
radiation with equal numbers of Sieverts have similar biological effects, even
when the types of radiation are different). It includes a dimensionless quality
factor, Q (Q∼1 for x-rays, 10 for neutrons, and 20 for α-particles), and energy
distribution factor, N. The dose in Sv for an energy deposition of D in Grays
[J/kG] is:

Sv = Q×N×D [J/kG]
Rad equivalent man (rem) is a unit of radiation dose equivalent approximately
equal to 0.01 Sv for hard x-rays.

1 joule = 1 J = 1 W·s = 1 N·m = 1 kg·m2
·s−2

1 joule = 107 erg
1 newton = 1 N = 1 kg·m·s−2

1 dyne = 1 g·cm·s−2 = 10−5 N
1 erg = 1 dyne·cm = 1 g·cm2

·s−2

1 Pascal = 1 Pa = 1 N·m−2

1 coulomb = 1 C = 1 A·s
1 ampere = 1 A = 1 C/s
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Element Kα Kα1 Kα2 Kβ1

Cr 2.29092 2.28962 2.29351 2.08480

Co 1.79021 1.78896 1.79278 1.62075

Cu 1.54178 1.54052 1.54433 1.39217

Mo 0.71069 0.70926 0.71354 0.632253

Ag 0.56083 0.55936 0.56377 0.49701

1 volt = 1 V = 1 W·A−1 = 1 m2
·kg·A−1

·s−3

1 ohm = 1 Ω = 1 V·A−1 = 1 m2
·kg·A−2

·s−3

1 farad = 1 F = 1 C·V−1 = 1 m−2
·kg−1

·A2
·s4

1 henry = 1 H = 1 Wb·A−1 = 1 m2
·kg·A−2

·s−2

1 tesla = 1 T = 10, 000 gauss = 1 Wb·m−2 = 1 V·s·m−2 = 1 kg·s−2
·A−1

Conversion Factors

1 Å = 0.1 nm = 10−4 µm = 10−10 m
1 b (barn) = 10−24 cm2

1 eV = 1.6045 × 10−12 erg
1 eV/atom = 23.0605 kcal/mole = 96.4853 kJ/mole
1 cal = 4.1840 J
1 bar= 105 Pa
1 torr = 1 T = 133 Pa
1 kG = 5.6096 × 1029 MeV·c−2

Useful Facts

energy of 1 Å photon = 12.3984 keV
hν for 1012 Hz = 4.13567 meV
1 meV = 8.0655 cm−1

temperature associated with 1 eV = 11, 600 K
lattice parameter of Si (in vacuum at 22.5◦C) = 5.431021 Å

Neutron Wavelengths, Energies, Velocities

En = 81.81λ−2 (energy-wavelength relation for neutrons [meV, Å])
λn = 3955.4/vn (wavelength-velocity relation for neutrons [Å, m/s])
En = 5.2276 × 10−6 v2

n (energy-velocity relation for neutrons [meV, m/s])

Some X-Ray Wavelengths [Å]

Relativistic Electron Wavelengths

For an electron of energy E [keV] and wavelength λ [Å]:

λ = h
[
2meE

(
1 +

E
2mec2

)]−1/2
=

0.3877

E1/2 (1 + 0.9788 × 10−3E)1/2
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Table A.1: Parameters of high-energy electrons

E [keV] λ [Å] γ v [c] T [keV]

100 0.03700 1.1957 0.5482 76.79

120 0.03348 1.2348 0.5867 87.94

150 0.02956 1.2935 0.6343 102.8

200 0.02507 1.3914 0.6953 123.6

300 0.01968 1.587 0.7765 154.1

400 0.01643 1.7827 0.8279 175.1

500 0.01421 1.9785 0.8628 190.2

1000 0.008715 2.957 0.9411 226.3

kinetic energy≡ T = 1
2 mev2 = 1

2 E 1+γ
γ2



Appendix A

Appendix 2: Software Design

A.1 Extending DANSE: Writing C++ Extensions to
Python

Important sources of information on this topic are available elsewhere: the
Python extension and embedding manual, and the Python-C API reference
manual. These documents are available at the Python website: http://python.org,
but better yet, just look in the ’ext’ and ’api’ subdirectories of your Python
distribution’s Doc directory for HTML versions.

This section was written to supplement those documents, first by giving an
example of dynamically allocating C++ objects and keeping track of them, and
second by introducing some of the API functions for working with aggregate
types like tuples and lists, for which the easiest Python-C conversion tools don’t
work. Also, I’ve concocted some simple, try-this-at-home examples to illustrate
the process. Finally, I’ve added a more real-life example.

Note: In the following, C++ is used to mean both C and C++. The Python-
C API is written in C, but for the most part, but that can be called seamlessly
from C++. There’s only one item that must have C linkage, the init function,
described below.

A.1.1 Overview

Why write C++ extensions to Python? To reuse existing code, and to gain
better performance. A great deal of software has already been written in C
and C++ (not to mention FORTRAN), and, at least at the present, nothing
beats compiled languages for performance in the numerically intensive codes
that DANSE supports. Extending Python allows us to turn all that code into
building blocks for solutions. Libraries of extensions package those building
blocks into kits that users can adapt to solve their problems.

Of course you can do all that without Python, so why use it at all? Python
has an easier learning curve than C++, and it’s more flexible and immediate,

347
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making it available to a wider set of users. Once a library of extensions is
available on a platform, users can call out to that library, mixing and match-
ing components and testing combinations, without the overhead of compiling
and linking. (This immediacy should not be underestimated.) And with all
its standard library packages, Python can be manipulated to do some pretty
amazing things that would be more difficult to realize in C++, like parsing
XML documents, setting up computations, etc.

Writing C++ extensions for Python can be learned in an afternoon, especially
if there are some examples to follow.1 The idea is this: you have a C++ class or
function, and you’d like to make it callable from the Python interpreter. You’ll
need to (I) write some wrapper code in C++, and (II) compile it into a C++
library that the Python interpreter can dynamically load and use. You then
typically (III.) write a Python module that mediates between the Python user
and this library. This makes life plush for those users who don’t want to be
bothered with the details of finding out what’s in the library and how to call it.
More importantly, it gives us the chance to check inputs as soon as possible for
errors. When a bad pointer is sent to the C++ level, the results are disastrous
(a core dump on a good day), so our software can be made more robust if we
handle the pointers ourselves.

It takes more care to create a library that is complete: catches exceptions,
checks that preconditions and postconditions have been met, and so on. These
are more advanced topics, covered in other parts of the book (SOMEDAY NAME
A FEW??). Low-level DANSE programmers will be expected to incorporate
these techniques into their code, but first things first.

A.1.2 A Little More Detail

Here are those three easy steps again, in slightly more detail:

• Write the bindings. There are three essential components:

1. Wrapper function(s). (One for each function you want callable from
Python). The wrapper typically calls a function or a class method, or
it creates a heap object. Once you learn how to write one wrapper,
you know how to do it, because all wrappers do the same three
things.

2. Method table. (One entry in the table for each function you want
callable from Python). The method table tells the Python interpreter

1If it’s so easy, why hasn’t someone written a program to write the wrappers automatically?
They have! Packages like the Simple Wrapper Interface Generator (SWIG, http://www.swig.org) will

do nearly all of the work for you. There are arguments for and against automatic code-generators
like SWIG, and I’ve worked both ways. At the moment, writing the bindings is such an easy task,
and I do so relatively little of it, that I prefer to do it myself. Others no doubt feel differently, and I
have no interest in changing their minds. But even if you’re going to use SWIG, or a similar library,
there’s merit in putting in some time writing your own wrappers to learn how and why things get
done. Then you can judge well for yourself which approach suits your situation.
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which C++ functions it can call from the library.

3. init function. (One per module) This is the interpreter’s entry point
into the C++ library.

These three steps are accomplished with generous aid from the Python-C
extension API.

• Compile it. This is slightly platform dependent (Michael Aivazis’s system
for processing source code removes this platform dependence for UNIX
flavors, including cygwin; Windows is in the works). The goal is to
compile into a shared object library (unix) or a dynamically linked library
(the beloved Windows dll).

• Call it from Python. One typically writes a Python module that acts
as a layer between the user and the C++ library. By doing things like
providing Python classes that mirror the C++ classes, one can make the
experience quite similar. Or dissimilar. The choice is yours.

A.1.3 A Lot More Detail: Wrappers

Every wrapper function does three things:

a) Converts a Python object with the arguments to the C++ function into
C++ objects,

b) calls the C++ function,

c) converts the output to a Python object with the result and return it.

Let’s first run through these steps with numbers and strings, for which
there’s an immediate connection between Python and C++ types; we can use
a function, PyArg_ParseTuple(), which is built in to the API. Later examples
look at tasks like working with C++ class instances and using aggregate Python
types, such as dictionaries and lists.

Simple Example: PyArg ParseTuple, Py BuildValue
a) Convert arguments from Python to C++

To convert the Python arguments into C++ objects, first define variables of the
appropriate type, one for each C++ argument. Then pass the addresses of these
variables into PyArg_ParseTuple(). This function takes the args tuple, pulls
PyObject’s out of it, and converts them to C++ types according to a format
string.

Here are some examples:

//One integer:
int a;
int ok = PyArg_ParseTuple(args, "i",&a);
if(!ok) return o;
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//Two integers
int a, b;
int ok = PyArg_ParseTuple(args, "i",&a, &b);
if(!ok) return 0;
//One integer, a string, two doubles
int anint;
char * astring;
double dub1, dub2;
int ok = PyArg_ParseTuple(args, "isdd", &anint, &astring,

&dub1, &dub2);
if(!ok) return 0;

A complete list of what can go into the format string is given in the extension
documentation (look in the ext subdirectory of the doc directory in your Python
distribution, or look online at http://python.org/doc/current/ext/ext.html). In the cur-
rent (Oct. ’02) documentation, you want section 1.7, ”Extracting Parameters in
Extension Functions”.
PyArg_ParseTuple() checks the types of the objects in the tuple args against

the types given in the format string. If there’s a discrepancy, it sets the exception
context and returns 0 to our wrapper. If our wrapper detects that, it returns 0 to
the Python interpreter, which understands that to mean failure, and raises an
exception. So if you’re using PyArg_ParseTuple(), most of the error checking
is done for you! It is not idiot-proof, but it is smart-friendly.

Once PyArg_ParseTuple has successfully returned, do any additional pro-
cessing or checking of the input data that’s appropriate. For instance, Python
does not have an unsigned integer type. With a C++ function that takes an
unsigned int, you’ll need to pass an int to PyArg_ParseTuple, check that the int
is greater than -1, and then convert it to an unsigned int.

b) Call your code

It’s your function, call it.

c) Convert output to a Python object, and return it

The API gives a function called Py_BuildValue. It returns a pointer to a PyOb-
ject; it takes a format string and variables. The format strings are the same as
those used in
PyObject *py_result = Py_BuildValue("i", result);

or—
PyObject *py_result = Py_BuildValue("s", astring);

etc. What’s returned by Py_BuildValue is what the wrapper will return. One
note: don’t return 0; the interpreter will take this as sign of failure. You could,
of course, return a Python integer with value zero: Py_BuildValue("i",0).
You can specify more than one item to return, in which case Py_BuildValue
will place the items in a tuple.

Here’s a complete example of wrapping a function, “bogus”, that takes a
double, a string, and an int (in that order) and returns an int. We expect that
the arguments will come from Python in the order string, int, double.
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static PyObject *wrap_bogus(PyObject *, PyObject * args){
//First, get the arguments from Python
int anint = 0;
double adub = 0;
char * astring = 0;
int ok = PyArg_ParseTuple(args,"sid",&astring, &anint, &adub);
if(!ok) return 0;
//do any checking of arguments here
//Second, make the function call
int result = bogus(adub, astring, anint);
//do any extra stuff you want with the return result here
//Third, build a Python object to return
return PyBuildValue("i",result);
}

Wrapping classes: PyCObject FromVoidPtr, PyCObject AsVoidPtr

a) Creating C++ objects

Wrapping functions is well and good, but what about C++ classes? Python can
work with a C++ object by dynamically allocating it and holding onto a pointer.
That pointer can be passed back to subsequent wrappers that can then invoke
class methods on the object. The pointer is handled in Python by a type Py-
CObject. To convert a pointer to a PyCObject, use PyCObject_FromVoidPtr().
This API function takes two arguments: the void pointer, and a pointer to a
function that takes a void pointer and no return. The purpose of the function is
to delete the C++ object when nothing in the Python session is paying attention
to it any more.

We get the arguments to the constructor from the Python API, create the
object using new, and return a pointer to that object to the interpreter. Use the
API function PyCObject_FromVoidPtr() to create the Python object to return
to Python. Here’s an example with a real (if dull) class called Numbers:

class Numbers
{
public:
Numbers(int first, double second) : m_first(first), m_second(second){;}
˜Numbers(void){;}
double NumMemberMult(void){return (double)m_first*m_second;}
private:
int m_first;
double m_second;
};

Here’s a wrapper that creates a new instance of Numbers:

PyObject *wrap_new_Numbers(PyObject *, PyObject* args){
//First, extract the arguments from a Python tuple
int arg1;
double arg2;
int ok = PyArg_ParseTuple(args,"id",&arg1,&arg2);
if(!ok) return 0;
//Second, dynamically allocate a new object
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Numbers *newnum = new Numbers(arg1, arg2);
//Third, build a Python object to return
PyObject * py_newnum = PyCObject_FromVoidPtr( static_cast<void *>(newnum),
&DelNumbers);
return py_newnum;
}

Look familiar? This wrapper has essentially the same form as wrap_bogus().
That’s because ALL wrappers have essentially this form.

The pointer to the dynamically allocated object, newnum, goes out of scope
as soon as wrap_new_Numbers() returns. The only thing keeping this from being
the mega-classic memory leak is that the Python interpreter has an object that
will keep track of the address of the new object. The interpreter keeps track of
that object for us, and when we lose interest in it (when its reference count goes
to zero), the interpreter will call a C++ function to delete the C++ object. So, the
second slot in PyCObject_AsVoidPtr() is a pointer to a function with return
type void and one void argument. The signature of PyCObject_AsVoidPtr()
is:
PyObject * PyCObject_FromVoidPtr( void *, void (*DeleteFunction)(void*));

You must supply the function pointed to (in this example called DelNum-
bers). It has the delete corresponding to the new above. Here’s it is:

static void DelNumbers(void *ptr)
{

Numbers * oldnum = static_cast<Numbers *>(ptr);
delete oldnum;
return;

}

This strategy can be used for any dynamically allocated resource, such as file
handles or arrays.

Using the object

The user can’t actually do anything with the pointer in the Python layer, except
send it back to the C++ layer to do something else: call a C++ class method on
it, or give it as an argument to another function. Here’s an example of wrapping
a class method.

#include <Python.h>...
PyObject *wrap_Numbers_MemberMult(PyObject *, PyObject* args)
{
// First, extract the PyCObject that has the
// Python version of the address
// from the args tuple
PyObject *pynum = 0;
int ok = PyArg_ParseTuple(args, "O", &pynum);
//"O" is for Object
if(!ok) return NULL;
//Convert the PyCObject to a void *
void * temp = PyCObject_AsVoidPtr(pynum);
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//cast void pointer to Numbers pointer
Numbers * thisnum = static_cast<Numbers *>(temp);
//Can combine the two lines into one:
//Numbers *thisNum = static_cast<Numbers *>(
// PyCObject_AsVoidPtr(pynum));
//Second, make the function call
double result = thisnum->NumMemberMult();
//Third, build a Python object with the return value
return Py_BuildValue("d",result);
}

All you have to do is fish the PyCObject out of the tuple, extract the void pointer
to a C++ variable, cast it to the appropriate type, and use it; then bundle up the
result and send it back to the interpreter.

Working with composite types

What if you want to pass a Python list of numbers to a C++ function? There’s no
format code to pass to PyArg_ParseTuple for lists. The solution is to extract the
list from the args tuple as a PyObject (format code: “O”). Then use the Python-
C API functions for working with lists to load the Python list, item-by-item,
into a C++ array. Suppose our target function has the signature
double sum_some_numbers(double *numbers, int array_length)

Here’s some code that could wrap this function. Note that we have to take re-
sponsibility for error checking. We can set the exception usingPyErr_SetString().
We can verify that Python objects are the type what we think they are by
Pytype Check().

#include <Python.h>
#include <valarray> // This example uses the std::valarray class....
PyObject *py_sum_some_numbers(PyObject *, PyObject* args)
{

PyObject *pyList;
int ok = PyArg_ParseTuple(args, "O", &pyList);
if(!ok) return 0;
//Did the user send a Python list?
int isList = PyList_Check(pyList);
if(!isList)
{

//If not, complain to the Python user and raise an exception:
PyErr_SetString(PyExc_TypeError, "You fool! That’s not a list!");
return 0;

}
//How many items are in the list?
int numNums = PyList_Size(pyList);
//Maybe you want to do something here if the size of the list is 0.
// Now transfer the contents of the list to an array
// valarray: this C++ standard library class is a great
// way to avoid memory leaks, and much more
std::valarray<double> nums(0.0, PyList_Size);
for(int i=0; i<numNums; i++)
{

//Extract the next object in the list:
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PyObject *temp = PyList_GetItem(pyList, i);
// Was the list item a Python float? If not, quit.
// Note that we don’t need to worry about cleaning
// up the memory: nums will be automatically destroyed
// when execution exits the scope of nums.
if( !PyFloat_Check(temp))
{

//Just what was in that list?
PyErr_SetString(PyExc_TypeError, "You fool! That’s not a float";
return 0;

}
// Now convert the Python float to a double, and load
nums[i] = PyFloat_AsDouble(temp);

}
//Step 2: Call the function
double sum = sum_some_numbers(&nums[0], nums.size());
//Step 3: return result.
return Py_BuildValue("d", sum);

}

Sometimes you’ll want to return a Python object, such as a list. In this
case, you’ll have created a PyObject pointer at some point. You can return
that pointer directly. If you need to return several Python objects, you can use
Py_BuildValue()with the “O” format code.

The Python-C api is very complete and well-documented. Similar func-
tions exist for inserting objects into lists, and working with dictionaries, tuples,
modules, and so on. Consult Chapter 7 of the api reference. Hopefully, these
examples have given you the flavor for wrapping C++ functions.

A.1.4 A Lot More Detail: Method Table

The method table is sort of like a table of contents for the Python interpreter.
When it loads the library, it reads the method table to find pointers to the
functions in the library.

static PyMethodDef numbersMethods[] = {
{"PyNumbers", wrap_new_Numbers, METH_VARARGS,

"Create new Numbers object"},
{"PyNumbers_MembMult", wrap_Numbers_MemberMult, METH_VARARGS,

"Multiply Numbers object’s members"},
{NULL,NULL}

};

The name of the table must match the second argument in the init function.
Each function in the library gets an entry in the table, and each entry has four
components.

1. The string (”PyNumbers” or ”PyNumbers MemberMult”) is what you’ll
call from the interpreter.

2. The name wrap_whatever is the name of the corresponding C++ function.
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3. METH_VARARGS indicates that one is using the “tuple named args” ap-
proach.

4. The final string will appear as the docstring for this function in the Python
layer.

The {NULL,NULL}marks the end of the table for the interpreter.

A.1.5 A Lot More Detail: Init Function

The final component in the bindings is the init function. This function has to
be named initname of library(). If the filename of the library is numbers.dll or
numbers.so, this function must be named initnumbers; if it’s numbers.dll,
then this function is named init_numbers. For this example, let’s call the
extension library numbers. The init function’s return type is void, and it takes
no arguments. It calls Py_InitModule(), which takes two arguments: a string
literal with the name of the library, and the name of the Methods table. It must
match the name of the Method table. Also, the function must have C linkage,
not C++, meaning the function must be declared extern ”C” if you’re using
a C++ compiler. Also, on Windows, the function must be exported by the
dll, hence the __declspec(dllexport). To keep some platform independence,
wrap this in a pre-processor conditional. This function is executed when the
library is loaded, so if there’s other initialization steps you need to take, this is
the place.

extern "C"
#ifdef WIN32 || _WIN32
__declspec(dllexport)
#endif
void init_numbers(void)
{

(void) Py_InitModule("_numbers", numbersMethods);
}

A.1.6 More Detail: Compile
Compiling the Numbers example under Linux

Here’s a way to compile the Numbers example under Linux. You’ll need
files with the Numbers source code (Numbers.cpp and Numbers.h), and the
wrapper, Numbers bindings.cpp. I assume you’re using gcc; if not, you’ll need
to modify the compiler flags appropriately.

To compile, compile each source file:

gcc -I/usr/include/python2.2 -I. -c -fpic Numbers.cpp
gcc -I/usr/include/python2.2 -I. -c -fpic Numbers_bindings.cpp

and link them into a shared library:

gcc Numbers.o Numbers_bindgins.o -lm -lc -fpic -shared -o _numbers.so
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In the compile lines, you’ll of course need to make sure that you’ve pointed
to the directory where your Python.h file lives. The ”-fpic” specifies position
independent code, ”-shared” a shared library that can be dynamically linked.

Once you’ve compiled numbers.so, move it into a place on your system’s
PYTHON PATH and go to town.

Compiling the Numbers example under Windows

Well, of course we want all our ARCS modules to run under Linux/Unix, but
for all those times Windows needs a helping hand, here’s how to do it:

For working in Windows, it may be best to use MS Visual C++. Here’s what
you’d do to create a project and so on in VC7.

1. From the Start page select New Project.

2. From the Project Types, pick Visual C++ Projects, from the Templates,
choose Win32 project. Fill in the name for your library.

3. On the next window, pick Application Settings, and set Application Type
to DLL.

4. In the Solution Explorer,

• get rid of stdafx.cpp

• right-click on the name of the project, and choose Properties

• Under the C/C++/General folder, add the additional include direc-
tory in which your distribution’s Python.h file resides.

• Under the Linker/General tab, set the output file to your project name.dll.
Note that everything up the “.dll” must be the same as what follows
“init” in the init_your_project_name function in the bindings. In
the Numbers example, we called that function init numbers (it’s the
last function in the file). So the dll has to be called numbers.dll. If
the name of the file and the init function don’t agree, the interpreter
will get lost.

5. In Solution Explorer, look in the file your project name.cpp– you’ll need
to get rid of that crap about APIENTRY DllMain. Better yet, just get rid
of the automatically generated code.

Now fill add the source files Numbers.cpp, Numbers bindings.cpp, etc. Build,
and when the your project name.dll appears in the output directory, move it
into your PYTHON PATH, and enjoy.

A.1.7 More Detail: Call it from Python

In keeping with the Numbers example used above, here’s a Python class called
Numbers. It’s a ”shadow class” for the C++ Numbers class. Pretty much
everything you can do with the C++ class can also be done with the Python.
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import _numbers
class Numbers:

def __init__(self, an_int, a_float):
#Check an_int
if type(an_int) != type(1):

raise TypeError, "Fool! an_int must be an integer"
#Check a_float
if type(a_float) != type(3.14159)

raise TypeError, "Fool! a_float must be a float"
self.this = numbers.PyNumbers(an_int, a_float)

def MemberMult(self):
return numbers.PyNumbers_MembMult(self.this)

If this were saved in a module named numbers.py (stored somewhere on
your PYTHON PATH), then an interpreter command line session might look
like

>>> import numbers
>>> n = numbers.Numbers(2,3.14)
New Numbers object created
>>> n.MemberMult()
6.280000000002
>>> n = 1

The variable n is the only thing keeping track of the Numbers object. When we
reassign n, the interpreter calls our bit of code from the C++ library that deletes
the object, preventing the resource leak.

So now the Python user has something like ”interpreted C++”. Pretty cool,
eh?

A.1.8 More realistic example

Let’s wrap a function from the NeXus API, NXopen, with all the bells and
whistles. This wrapper is part of a larger library that wraps the entire NeXus C
API. The latter, of course, is a simplified interface to the HDF libraries that the
NeXus standard currently uses.

Since this is one of several dozen libraries, we split the bindings up into
several files. The wrappers live in pairs of files, one pair for each major func-
tional group: file.h/file.cc for file level operations, group.h/group.cc for group
level, etc. Only two file level operations from the original NeXus C API are in
the Python NeXus API: NXopen and NXflush. Therefore, file.h looks like the
following:

#ifndef NeXus_file_h
#define NeXus_file_h
// Python bindings for file level operations:
// NXopen
extern char pyNeXus_NXopen__name__[];
extern char pyNeXus_NXopen__doc__[];
extern "C" PyObject * pyNeXus_NXopen(PyObject *, PyObject *args);
// NXflush
extern char pyNeXus_NXflush__name__[];
extern char pyNeXus_NXflush__doc__[];
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extern "C" PyObject * pyNeXus_NXflush(PyObject *, PyObject *args);
#endif

This file will be included into the file that contains the methods table. Note that
in addition to the actual wrapper functions, we declare two char arrays for the
name and docstring. Defined in file.cc, these variables keep the methods table
neat (the docstrings in particular may get lengthy).

How do we implement the wrapper for NXopen? Begin with the signature
of NXopen, located in napi.h in the NeXus source distribution:

NX_EXTERNAL NXstatus CALLING_STYLE NXopen(CONSTCHAR * filename,
NXaccess access_method, NXhandle* pHandle);

The various types NXstatus, CONSTCHAR, NXaccess, and NXhandle are de-
fined in the NeXus C API header files; we need to track them down so we can
know what the Python user will have to give us in order to satisfy the function
call.

Searching through napi.h, we learn that NXstatus is a typedef for int,
CONSTCHAR is a typedef for char,2 NXaccess is an enumeration with members
like NXACC_READ, and NXhandle is a typedef for void *. We can’t map the
NXaccess enumeration directly into Python types, so we’ll expect a string from
the user; by comparing values of the string we’ll assign the proper value to
an NXaccess variable. As for the CONSTCHAR * filename, we can derive that
directly from a Python string.

What about the NXhandle *pHandle? This is interesting. Let’s open up
the NeXus C API source code and find out what exactly is done with that
void pointer. Reading through napi.c, we discover that NXopen dynamically
allocates a structure of type NexusFunction, and that the NXhandle we pass to
NXopen becomes a handle to that object. In other words, pHandle is an output
of NXopen, not an input. We don’t need to trouble the Python user with giving
us a NXhandle object; instead, we’ll give them one.

Expecting two inputs, both Python strings, we write the first few lines of
the wrapper as follows:

PyObject * pyNeXus_NXopen(PyObject *, PyObject *args)
{

char *filename = 0;
char *acc_method = 0;
int ok = PyArg_ParseTuple(args, "ss", &filename, &acc_method);
if(!ok) return 0;

and we’ve got what we needed from the Python user. Or do we? We owe it to
ourselves to check the inputs from the user. This could be done either here or in
the Python layer. Checking that the inputs are Python strings has already been
performed by PyArg_ParseTuple. There are two questions about the filename:

2Prefering to not mislead the readers of our code, we might have chosen CONSTCHAR as
typedef const char.
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is it the name of an actual file, and is it the name of an appropriate HDF file?
The first question is easily answered in a platform independent way in Python.
The second can only be answered by essentially doing what we do anyway in
NXopen. We need to inspect the value of acc_method anyway to convert it to
the appropriate member of the NXaccess enumeration. We can do that easily
using the C++ standard library class string:

//Check access_method:
std::string methstring(acc_method);
NXaccess mode;
if (methstring == "r" ) mode = NXACC_READ;
else if(methstring == "rw") mode = NXACC_RDWR;
else if(methstring == "c" ) mode = NXACC_CREATE;
else if(methstring == "c4") mode = NXACC_CREATE4;
else if(methstring == "c5") mode = NXACC_CREATE5;
else
{

std::string errstr("NeXus_bindings.cc pyNeXus_NXopen(): ");
errstr += "unrecognized access_method string.";
PyErr_SetString( PyExc_ValueError, errstr.c_str() );
return 0;

}

Here we’ve used PyErr_SetString to set the (Python) exception context if
we don’t recognize what the Python user wants, and then forced the interpreter
to raise the exception by returning 0.

At this point, we’re nearly ready to call NXopen—we only need to declare a
variable of type NXhandle:

NXhandle handle;
NXstatus status = NXopen(filename, mode, &handle);
if(status != NX_OK)
{

std::string errstr("NeXus_bindings.cc pyNeXus_NXopen(): ");
errstr += "NXopen failed.";
PyErr_SetString(PyExc_IOError, errstr.c_str() );
return 0;

}

If we get to this stage, we’re almost ready to return. Since we are not content
with any NXstatus but NX_OK, all we need to do is to return the NXhandle ini-
tialized by NXopen. But there’s another issue here: NXopen allocates a resource,
so we must release that resource when we’re finished. As with the discussion
of allocating C++ objects (§ A.1.3), we can use PyCObject_FromVoidPtr and a
helper function to release the resource when the Python user is finished:

return PyCObject_FromVoidPtr(handle, pyNeXus_NXclose);
}

The helper function (declared static to avoid ) wraps NXclose, which in turn
disposes of the resources allocated in NXopen:



360 APPENDIX A. APPENDIX 2: SOFTWARE DESIGN

static void pyNeXus_NXclose(void *file)
{

NXhandle oldnxh = static_cast<NXhandle >(file);
NXclose( &oldnxh);
return;

}

Finally, we define the name and docstring for this function. The name should
be something sensible, while the docstring is an opportunity to incorporate a
little documentation.

char pyNeXus_NXopen__name__[] = "nxopen";
char pyNeXus_NXopen__doc__[] = "Open a nexus file\n"
"2 Arguments: filename, access_method\n"
"Input: \n"
" filename (Python string)\n"
" access_method (Python string)\n"
" allowed values: r (read only)\n"
" rw (read/write)\n"
" c (create)\n"
" c4 (create HDF 4)\n"
" c5 (create HDF 5)\n"
"Output: (return)\n"
" PyCObject holding pointer to NXhandle\n"
"Exceptions: ValueError, IOError\n";
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strongly-correlated electrons, 199
structure factor, 145
supercell calculation, 317
supercell method, 199
superconductors

t − J model, 221
bismuth, 221
cuprates, 221
energy gap, 221
high Tc, 220
spin flip model, 221

switch Hamiltonian, 201
symbols, table of, 204
symmetry

broken, 222
symmorphic, 202
synchrotron radiation, 53, 66

beamlines, 69
user and safety programs, 69

T-zero chopper, 252
Taylor series, 194
theory vs. experiment, 292
thermal averages, 166
thermal diffuse scattering, 98
thermal electronic excitations, 229
thermal energy, 148, 302
thermal expansion, 188, 189

free energy, 191
thermal vibrations

diffuse scattering, 93
thermodynamic average, 156
thermodynamics

detailed balance, 157
phonon, 191

thermostat, 200
thin-film approximation, 59
three-phonon process, 232, 234
time average, 145
time dependence

quantum mechanics, 162
time-reversal, 209
timing, 240

torr, 345
total scattering cross-section, 13
transformations and ynformation,

291
transition metals

itinerant of local spins?, 218
magnetism, 217

triple-axis spectrometer, 301
tritium, 255

umklapp process, 231
uncertainty quantification, 338
undulator, 67
universe

map of, 141

V, 192
valence electrons, 31
Van Hove correlation function, 146
Van Hove function, 125, 141

definition of, 127
graphical construction, 130,

132, 133, 135
vanadium, 3
variational method, 200
visitor pattern, 322
Vitess, 319

W, 192
Warren, J.L., 201
wave amplitudes, 7
wave crests, 5
wavelengths

electron, table of, 345
x-ray, table of, 345

wavelet (defined), 5
waves

phases, 144
waves and particles, 94
weighting, neutron, 317
Weyl identity, 164
white lines, 29, 32
Wien filter, 28
wiggler, 67
workflow, 336

x-ray
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synchrotron radiation, 66
wavelengths, table of, 345

XY model, 214

ZAF correction, 76

Zappa, Frank, 336
zero-loss peak, 29
zero-point vibrations

diffuse scattering from, 102


