
 1   

 
 

Reliability of Critical Infrastructure Networks: Challenges  
 

Konstantin M. Zuev, Ph.D.1 and Michael Beer, Prof. Dr.-Ing.2,3,4 
 

1Department of Computing and Mathematical Sciences, California Institute of Technology,  
1200 E. California Blvd., Pasadena, CA, USA; e-mail: kostia@caltech.edu  
2Institute for Risk and Reliability, Leibniz Universität Hannover, Callinstraße 34, 30167 
Hannover, Germany; e-mail: beer@irz.uni-hannover.de 
3Institute for Risk and Uncertainty, University of Liverpool, UK 
4International Joint Research Center for Engineering Reliability and Stochastic Mechanics, 
Tongji University, China 
 
 
ABSTRACT 
 
Critical infrastructures form a technological skeleton of our world by providing us with water, 
food, electricity, gas, transportation, communication, banking, and finance. Moreover, as urban 
population increases, the role of infrastructures become more vital. In this paper, we adopt a 
network perspective and discuss the ever growing need for fundamental interdisciplinary study 
of critical infrastructure networks, efficient methods for estimating their reliability, and cost-
effective strategies for enhancing their resiliency. We also highlight some of the main challenges 
arising on this way, including cascading failures, feedback loops, and cross-sector 
interdependencies.  
 
1. INTRODUCTION  
 
Critical infrastructure networks, such as transportation systems (roads, rails, and airlines), 
electric power grids, natural gas and petroleum networks, water distribution networks, cellular 
grids, and the internet, are tightly interwoven into the fabric of the modern world. These complex 
distributed systems ensure the functioning of our society by providing us with services critical 
for everyday life, such as water, food, energy, banking, and finance. Moreover, they facilitate 
transport-dependent economic activities, and make communication and access to information 
fast and efficient. In a sense, critical infrastructures form a technological skeleton of our 
civilization.  
 About ten years ago, we have reached a “tipping” point when, for the first time in human 
history, more than half of the world’s population was living in cities. For more developed 
regions, such as North America and Europe, this happened even earlier. Figure 1 shows the 
dynamics of the percentage of total population living in urban areas for different regions between 

mailto:kostia@caltech.edursu.edu
mailto:beer@irz.uni-hannover.de


 2   

1967 and 2015. Furthermore, it is projected that by 2050, 66% of the world’s population will be 
urban (United Nations 2014). As urban conglomerations are growing, the dependence of our 
society on critical infrastructure networks, spanning cities, countries, and even continents, is 
constantly increasing. This makes the study of critical infrastructure networks, the enhancement 
of their resiliency, and the quantification of the associated uncertainties one of the most 
challenging and important problems of modern engineering.  
 

 
Figure 1. Percentage of population living in urban areas by region, 1967-2015.  

Data from database: World Development Indicators, <http://databank.worldbank.org/>. 
 

 Improving the resilience of (especially aging) infrastructures is absolutely necessary for 
avoiding failures such as the one happened in 2010 in San Bruno (a suburb of San Francisco, 
CA), when a 30-inch diameter natural gas pipeline (installed in 1956) exploded, killing 8 people, 
injuring 58, and destroying 38 homes (Lagos et al. 2010; NTSB 2011). Because of the strong 
shaking caused by the explosion, some of the local residents, first responders, and news media 
thought initially that it was an earthquake. It took nearly an hour to find out that it was actually a 
natural gas pipeline explosion. Although this failure was truly devastating, it was still a “local” 
failure in the sense that it did not propagate and did not cause any other failures. But in principle 
the consequences of this local failure could have been even worse. 
 It is well known that the network of natural gas pipelines and electric power grid are 
strongly interconnected, since pipelines provide fuel for electrical generators and the grid 
provides power for compressors, storage, and control systems in the gas network. This coupling 
creates a wealth of potential scenarios for failure propagation, one of which is schematically 
illustrated in Figure 2: the pipeline explosion (denoted by the fire sign) causes an electrical 
generator failure in the grid, which triggers a sequences of cascading power outages (power grids 
are prone to cascading failures), which, in turn, leads to substantial losses of natural gas 
production. Electric power and other infrastructure problems in California provide many 
examples of this kind of interdependencies and feedback loops (Rinaldi et al. 2001).     
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Figure 2. Failure propagation in coupled infrastructure networks: U.S. natural gas pipeline 
network (on the left, source: Energy Information Administration) and U.S. power grid (on 
the right, source: <https://commons.wikimedia.org/wiki/File:UnitedStatesPowerGrid.jpg>).   
 
 In this paper, we adopt a network view on critical infrastructures and discuss how to 
estimate their reliability and what challenges need to be overcome to make this accurately and 
efficiently. The rest of the paper is organized as follows. In Section 2, we formulate a general 
network reliability problem and explain why it is computationally very challenging. In Section 3, 
we briefly describe a recently introduced network reliability method, and, taking this method as 
an example, we focus on the challenges in Section 4. Section 5 concludes with a brief summary.  
 
2. NETWORK RELIABILITY PROBLEM 
 
Suppose that an infrastructure network is modeled as a graph with 𝑛𝑛 nodes and 𝑚𝑚 links. Assume 
that all nodes are absolutely reliable and don’t fail, but links may fail. The network state is then 
represented by a vector 𝑠𝑠 = (𝑠𝑠1, … , 𝑠𝑠𝑚𝑚), where 𝑠𝑠𝑖𝑖 = 1 if the 𝑖𝑖𝑡𝑡ℎ link is fully operational, 𝑠𝑠𝑖𝑖 = 0 if 
it is fully failed, and 0 < 𝑠𝑠𝑖𝑖 < 1 if it is partially operational. Geometrically, the network state 
space, 𝑆𝑆 = {𝑠𝑠 = (𝑠𝑠1, … , 𝑠𝑠𝑚𝑚), 0 ≤ 𝑠𝑠𝑖𝑖 ≤ 1}  is thus an 𝑚𝑚-dimensional hypercube, where vertices  
(1, … ,1) and (0, … ,0) correspond to an ideal state and complete failure state, respectively.   
 Next, let 𝑓𝑓(𝑠𝑠) be a probability distribution function (PDF) on the network state space 𝑆𝑆 
which provides a probability model for occurrence of different states. In applications, the PDF 
𝑓𝑓(𝑠𝑠) is constructed based on expert knowledge and available data. Also, let 𝑢𝑢(𝑠𝑠) be a 
performance function that quantifies the degree to which the network provides the required 
service (Ghosn 2016). Here, 𝑢𝑢(𝑠𝑠) is interpreted as a utility function, meaning that higher values 
of 𝑢𝑢(𝑠𝑠) correspond to better performance. Finally, let’s define a failure domain 𝐹𝐹 ⊂ 𝑆𝑆 as a 
collection of network states with performance below a certain critical threshold 𝑢𝑢∗, 
 
 𝐹𝐹 = {𝑠𝑠 ∶ 𝑢𝑢(𝑠𝑠) < 𝑢𝑢∗}. (1) 

 
 The network reliability problem is then to estimate the probability of failure 𝑝𝑝𝐹𝐹 which is 
given by the following integral: 
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 𝑝𝑝𝐹𝐹 = �𝑓𝑓(𝑠𝑠)𝑑𝑑𝑠𝑠 =
𝐹𝐹

� 𝑓𝑓(𝑠𝑠)𝐼𝐼𝐹𝐹(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑅𝑅𝑚𝑚

, (2) 

  
where 𝐼𝐼𝐹𝐹(𝑠𝑠) is the indicator function of the failure domain 𝐹𝐹, i.e. 𝐼𝐼𝐹𝐹(𝑠𝑠) = 1 if 𝑠𝑠 ∈ 𝐹𝐹 and 𝐼𝐼𝐹𝐹(𝑠𝑠) =
0 if 𝑠𝑠 ∉ 𝐹𝐹. This problem is of fundamental importance for both risk assessment of existing 
technological networks and design of future infrastructures. 
 There exist a few factors which make estimating the failure probability (2) challenging. 
First, the number of links 𝑚𝑚 is very large. For example, the U.S. Western States power grid has 
more than 6,000 links (Watts and Strogatz 1998) and the California road network has more than 
2.5 million links, i.e. roads connecting intersections and endpoints (Leskovec et al. 2009). 
Therefore, the failure domain (1) is high-dimensional and numerical integration methods are 
simply computationally infeasible. Next, the probability of failure 𝑝𝑝𝐹𝐹 is very small, since the 
network failure is a relatively rare event. This means that if we want to employ the Monte Carlo 
method (Robert and Casella 2004; Zio 2013), which is a standard general method for high-
dimensional integration, then, to get an accurate estimate of 𝑝𝑝𝐹𝐹, we need to generate a large 
number of samples. This stems from the fact that the coefficient of variation (COV) of the Monte 
Carlo estimate is approximately 𝛿𝛿 ≈ 1/�𝑁𝑁𝑝𝑝𝐹𝐹, where 𝑁𝑁 the total number of samples (e.g. Beck 
and Zuev 2017). Finally, computing the performance function 𝑢𝑢(𝑠𝑠) is typically time-consuming 
due to the complexity and size of the network. As a result, the computational effort for 
evaluating the integrand 𝑓𝑓(𝑠𝑠)𝐼𝐼𝐹𝐹(𝑠𝑠) in (2), involving checking whether 𝑠𝑠 is a failure state, is 
significant, which makes the use of a large number of Monte Carlo samples computationally 
prohibitive.  
 Estimating network reliability is thus indeed a very challenging problem, and we are still 
at the very beginning of developing efficient practical methods for solving this problem. In 
recent years, several promising methods have been developed for network reliability, resilience, 
and risk analysis. Liu and Li (2012) introduced an analytical method, based on the minimal cut 
recursive decomposition algorithm, for evaluating the network connectivity reliability. Fang and 
Zio (2013) proposed a general framework for multi-scaled representation of critical 
infrastructure networks, which is based on a recursive unsupervised spectral clustering method, 
and showed how this representation can be used for network reliability analysis at different 
scales. Gómez et al. (2014) used agent-based modeling for developing an efficient integrative 
methodology for risk assessment and management of infrastructure networks. 
 In what follows, we focus our attention on a recently proposed stochastic simulation 
method for network reliability estimation (Zuev et al. 2015), which is based on the Subset 
Simulation method, originally introduced by Au and Beck (2001) for estimating small failure 
probabilities of complex structural systems, such as buildings and bridges, subject to earthquake 
excitations. This focus on simulation is driven the desire for a high general applicability of the 
approaches for estimating network reliability. In the next two sections, we briefly describe this 
method and highlight some of the main challenges that need to be overcome to make it and other 
proposed network reliability methods accurate and efficient in real-world applications. 
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3. SUBSET SIMULATION FOR NETWORK RELIABILITY ESTIMATION 
 
The key idea behind Subset Simulation is to decompose a very small failure probability into a 
product of larger conditional probabilities, each of which can be efficiently estimated by a 
Monte-Carlo-like method. This is achieved by considering a sequence of nested subsets, called 
intermediate failure domains, that starts from the entire network state space 𝑆𝑆 and finishes at the 
target failure domain 𝐹𝐹, 
 𝑆𝑆 = 𝐹𝐹0 ⊃ 𝐹𝐹1 ⊃ ⋯ ⊃ 𝐹𝐹𝐿𝐿−1 ⊃ 𝐹𝐹𝐿𝐿 = 𝐹𝐹.  (3) 

 
Each intermediate failure domain 𝐹𝐹𝑖𝑖 in (3) is defined similarly to the target failure domain in (1) 
by relaxing the value of the critical threshold 𝑢𝑢∗: 
 
 𝐹𝐹𝑖𝑖 = {𝑠𝑠 ∶ 𝑢𝑢(𝑠𝑠) < 𝑢𝑢𝑖𝑖∗},     where   𝑢𝑢∗ = 𝑢𝑢𝐿𝐿∗ < 𝑢𝑢𝐿𝐿−1∗ < ⋯ < 𝑢𝑢1∗. (4) 

 
Given subsets (3), the failure probability can be written as a product of conditional probabilities: 
 
 𝑝𝑝𝐹𝐹 = 𝑃𝑃(𝐹𝐹) = 𝑃𝑃(𝐹𝐹1)𝑃𝑃(𝐹𝐹2|𝐹𝐹1) …𝑃𝑃(𝐹𝐹𝐿𝐿|𝐹𝐹𝐿𝐿−1). (5) 

 
By choosing the intermediate thresholds 𝑢𝑢𝑖𝑖 appropriately, one can make all conditional 
probabilities 𝑃𝑃(𝐹𝐹𝑖𝑖|𝐹𝐹𝑖𝑖−1) in (5) large enough, so that the corresponding conditional events 𝐹𝐹𝑖𝑖|𝐹𝐹𝑖𝑖−1 
are not rare and can be estimated efficiently by sampling.  
 The first factor, 𝑃𝑃(𝐹𝐹1), can be in fact efficiently estimated by direct Monte Carlo, 
provided that 𝑢𝑢1∗ is sufficiently large. To estimate 𝑃𝑃(𝐹𝐹𝑖𝑖|𝐹𝐹𝑖𝑖−1) for 𝑖𝑖 ≥ 2, one should be able to 
sample from the conditional distribution 𝑓𝑓(𝑠𝑠|𝐹𝐹𝑖𝑖−1), which is, in general, a nontrivial task. In 
Subset Simulation, this is achieved by using the Modified Metropolis algorithm (MMA) (Au and 
Beck 2001; Zuev and Katafygiotis 2011), which is a Markov chain Monte Carlo (MCMC) 
algorithm (Liu 2001; Robert and Casella 2004) specifically tailored for sampling from 
conditional distributions in high dimensions. The main difference between MMA and the 
original Metropolis algorithm (MA) (Metropolis et al. 1953) is in the way the candidate states of 
Markov chains are generated.  Unlike MA, where a high-dimensional proposal distribution is 
used to generate a candidate state, MMA generates a candidate state component-wise using a 
sequence of univariate proposal distributions.  It was shown in (Au and Beck 2001) that MMA 
outperforms MA in high dimensions, provided that random variables 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚 are independent. 
A geometric explanation as to why this happens, based on the properties of multivariate normal 
distribution in high-dimensions, is provided in (Katafygiotis and Zuev 2008). For more details on 
MMA, the reader is referred to (Zuev et al. 2012), where both the algorithm and its practical 
implementation are discussed in detail. 
   The efficiency of Subset Simulation strongly depends on the choice of intermediate 
critical thresholds 𝑢𝑢1∗, … ,𝑢𝑢𝐿𝐿−1∗ , since they control the values of conditional probabilities 
𝑃𝑃(𝐹𝐹𝑖𝑖|𝐹𝐹𝑖𝑖−1) in (5). It is difficult to find the optimal values of 𝑢𝑢𝑖𝑖∗ in advance, and so they are 
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defined adaptively and sequentially. First, a moderate number 𝑛𝑛 of Monte Carlo samples 
distributed according to 𝑓𝑓(𝑠𝑠) is generated. Based on these samples, 𝑢𝑢1∗ is defined such that 
𝑃𝑃(𝐹𝐹1) = 𝑝𝑝0, where 𝑝𝑝0 ∈ (0,1) is some fixed value (typically, 𝑝𝑝0 = 0.1). Next, MCMC samples 
distributed according to the conditional PDF 𝑓𝑓(𝑠𝑠|𝐹𝐹1) are generated using MMA. Based on these 
samples, 𝑢𝑢2∗  is defined such that 𝑃𝑃(𝐹𝐹2|𝐹𝐹1) = 𝑝𝑝0. The algorithm proceeds in this way until the 
target failure domain 𝐹𝐹 has been sampled sufficiently. The Subset Simulation estimate of the 
network failure probability 𝑝𝑝𝐹𝐹 is then given by 
 
 �̂�𝑝𝐹𝐹𝑆𝑆𝑆𝑆 = 𝑝𝑝0𝐿𝐿−1

𝑛𝑛𝐹𝐹
𝑛𝑛

, (6) 
    
where 𝐿𝐿 is number of levels, i.e. the number of intermediate failure domains in (3), 𝑛𝑛 is the 
number of generated samples at each level, and 𝑛𝑛𝐹𝐹 is the number of samples in 𝐹𝐹 at the last level.  
 The efficiency of Subset Simulation for network reliability estimation is demonstrated in 
(Zuev et al. 2015), where two small-world network models are compared in terms of the 
maximum-flow reliability of the networks they generate. For more details on and general 
introduction to Subset Simulation and its applications to rare event estimation, the reader is 
referred to the original paper, where the method was developed (Au and Beck 2001), a detailed 
exposition at an introductory level with implementation in MATLAB (Zuev 2015), and a 
fundamental monograph (Au and Wang 2014).  
 
4. CHALLENGES 
 
Estimating reliability of critical infrastructure networks is one of the central problems of modern 
civil engineering, operations research and applied statistics. Yet we are at the very beginning of 
developing efficient solutions, since there exist several fundamental challenges that make this 
problem both conceptually and computationally very difficult. In this section, we highlight some 
of these challenges and propose ways to overcome them.  
 In the IEEE report “Reliability analysis of complex network systems: research and 
practice in need” (Zio 2007), Prof. Zio observed that “…the classical methods of reliability and 
risk analysis fail to provide the proper instruments of analysis.” A moment of thought shows that 
this observation is directly applicable to Subset Simulation, which is a very efficient classical 
reliability method, originally developed for structures (Au and Beck 2001), not networks. As 
explained in Section 3, to extend Subset Simulation to networks, one needs to assume that 
components 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚 of the network state 𝑠𝑠 are independent, which is, of course, an 
oversimplification, since in real infrastructure networks 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚 are correlated: a link failure 
often increases the probability of failure of neighboring links. Moreover, many infrastructures 
are prone to cascading failures, where a local failure propagates through the network and leads to 
a global failure (Dueñas-Osorio and Vemuru 2009; Hines et al. 2009). This shows that Subset 
Simulation solves the network reliability problem only approximately, and to make it useful for 
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estimating the reliability of real infrastructure networks, realistic models of link correlations and 
cascading failures must be incorporated into the framework.  
 Over the last two decades, many different models of cascading failures in complex 
networks as well as methods for assessing the criticality of network components with respect to 
cascading failures have been proposed by researchers from different research communities, e.g. 
sociology (Watts 2002), physics (Crucitti et al. 2004), applied mathematics (Swift 2008), 
computer science (Iyear et al. 2009), and engineering (Zio and Sansavini 2011; Hernandez-
Fajardo and Dueñas-Osorio 2013; Song et al. 2016), to mention but a few. A qualitatively 
realistic modeling of the effects of cascading failures on an infrastructure network is challenging 
because of 1) the complexity and variety of the physical and engineering mechanisms involved 
and 2) the interactions between physics of cascading failures and the decisions made by humans 
who operate the network.  Therefore, a thorough analysis and domain-specific synthesis of 
developed models of cascading failures as well as modeling of “soft” factors (such as human 
errors, impact of online social networks, etc.) is required for accurate estimation of critical 
infrastructure reliability. 
 Another challenge in assessing reliability and resilience of critical infrastructure networks 
comes from the fact that they are strongly interconnected, mutually dependent, and subject to 
complex feedback loops. In Section 1, we discussed that the network of natural gas pipelines and 
the electric power grid are coupled (see Fig. 2). This cross-sector interdependence is not an 
exception, it is rather a rule: essentially all critical infrastructures are interconnected (Rinaldi 
2001). Examples of infrastructure interdependencies are demonstrated in Figure 3. As a result, 
failures or poor performance of one infrastructure network can have a negative effect on other 
infrastructures, and this may result into a big shock to the national or even global economy. 
Moreover, these multi-sector interdependencies make infrastructure networks more fragile and 
vulnerable to cascading failures triggered by both random failures and intentional attacks, than 
the single networks taken in isolation (Buldyrev, 2010). These mechanisms of cascading failures 
are critical for a realistic risk assessment. Consequences of initial failure scenarios evolve 
through cascades between networks finally resulting in an economic loss or loss of human life. 
Since these cascades cannot be captured properly with the current network analysis approaches 
risk assessment is generally lacking a substantiated quantification of failure consequences. 
 Taking cross-sector interdependencies into account is thus absolutely necessary for both 
estimation of the reliability and enhancement of the resilience of critical infrastructures as well as 
for optimal design of interdependent networks (González et al. 2016). A survey of different 
approaches to modeling critical infrastructure interdependency is provided in (Pederson et al. 
2006). More recently, a new methodology, based on the so-called multi-layer networks 
(Boccaletti et al. 2014; Kivelä et al. 2014), has been developed for modeling dependence and 
interactions between different complex networks and various processes on the corresponding 
“networks of networks” (D’Agostino and Scala 2014). Multi-layer networks have been 
successfully used for analyzing complex networks and extracting useful insights about the 
underlying complex systems in different fields of sciences and engineering. 
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Figure 3. Multi-sector interdependencies of critical infrastructure networks. 

  
 This brings us to the last point of this paper: interdisciplinary collaboration is the key for 
understanding how to assess the reliability of infrastructure and how to make it more resilient. 
Complex networks are intrinsically multidisciplinary objects and they are studied by very diverse 
and heterogeneous research communities. For example, networks are used to analyze the spread 
of epidemics in human networks (Newman 2002), for predicting a financial crisis (Elliott et al. 
2014), and for developing a theory of quantum gravity (Boguñá et al. 2014). Also networks may 
help us to understand how a brain works (Krioukov 2014) and how to treat cancer (Barabási et 
al. 2011). Moreover, insights obtained in network studies are often truly interdisciplinary and 
results obtained, for instance, for biological networks, could be extended and applied to 
infrastructure networks, which could be very important for making critical infrastructures more 
reliable and resilient. Despite the fact that the value of interdisciplinary research has been long 
recognized and promoted (NSF 2016), interdisciplinary collaboration in the area of critical 
infrastructure networks is still in its infancy. This is mainly because the area itself is relatively 
new: for example, prior to the 1990s, little attention was given to infrastructure 
interdependencies (Visarraga 2011). So it is important to organize more interdisciplinary 
workshops and conferences, where researchers from different fields can discuss the progress they 
have made, exchange ideas, describe the open problems they are facing, and, most importantly, 
form interdisciplinary groups for attacking these problems. Another issue concerns the 
conservatism of our publication media, which are typically focused on single-discipline 
developments. Cross-disciplinary developments are often considered as not fitting into the scope 
of a journal because of elements from a second discipline. We need to break off this silo 
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structure in order to facilitate interdisciplinary discussions on this new generation of 
developments to make substantial progress. Similarly, research foundations and stakeholders 
need to translate their initial opening for interdisciplinary research into a comprehensive 
implementation of a interdisciplinary assessment and funding structure with interdisciplinary 
units, panels, etc. 
 It is important to realize however that this interdisciplinary “dialog” will not be smooth 
and easy due to substantial differences in educational backgrounds and “vocabularies” used by 
researcher from different fields. As illustration, Adam at al. (2015) developed a theoretical 
approach for studying cascading effects, which can be potentially very useful for understanding 
cascading failures in infrastructure networks. Understanding this paper, however, requires 
familiarity with notions of topological closer, isomorphism, with elements of universal algebra, 
and other notions which are far beyond the standard mathematical education of civil engineers. 
To use the results of this paper, engineers have to either educate themselves, or convince the 
authors to explain their results in the language engineers can understand. Neither of these two 
tasks is easy, but we believe both are necessary.  
 
5. CONCLUSION 
 
This paper adopts a network perspective to highlight some of the main challenges researchers 
face when estimating reliability of critical infrastructures. In particular, we discuss the extension 
of Subset Simulation, an efficient classical reliability method for estimating small failure 
probabilities of structures, to networks. We show that for accurate network reliability estimation, 
several important challenges must be overcome, including realistic domain-specific models for 
link correlations and cascading failures, large-scale modeling of cross-sector interdependencies 
and feedback loops, modeling of “soft” factors, such as human errors and interaction of 
infrastructure with online social networks. Domain knowledge and expertise from multiple 
branches of engineering, system analysis, applied mathematics, statistical physics, computer 
science, and computational statistics are required to successfully address the outlined challenges. 
To succeed in these tasks, interdisciplinary collaboration is thus a must. 
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