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Abstract

Rare events are events that are expected to occur infrequently or, more techni-
cally, those that have low probabilities (say, order of 10�3 or less) of occurring
according to a probability model. In the context of uncertainty quantification, the
rare events often correspond to failure of systems designed for high reliability,
meaning that the system performance fails to meet some design or operation
specifications. As reviewed in this section, computation of such rare-event
probabilities is challenging. Analytical solutions are usually not available for
nontrivial problems, and standard Monte Carlo simulation is computationally
inefficient. Therefore, much research effort has focused on developing advanced
stochastic simulation methods that are more efficient. In this section, we address
the problem of estimating rare-event probabilities by Monte Carlo simula-
tion, importance sampling, and subset simulation for highly reliable dynamic
systems.
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1 Introduction

We focus on rare-event simulation for addressing reliability problems corresponding
to dynamic systems. To compute the rare-event (failure) probability for a dynamic
system, both input (excitation) and modeling uncertainties should be quantified
and propagated. Therefore, a probability model must be chosen to describe the
uncertainty in the future input for the system, and then a chosen deterministic or
stochastic system model is used, preferably in conjunction with a probability model
describing the associated modeling uncertainties, to propagate these uncertainties.
These input and system models define a probabilistic description of the system
output (response). For example, the problem of interest might be to compute
the small failure probability for a highly reliable dynamic system such as a
bridge or building under uncertain future earthquake excitation, or for an aircraft
under uncertain excitation by turbulence, using a finite-element structural model
to approximate the dynamics of the system. This model will usually be subject to
both parametric uncertainty (what values of the model parameters best represent
the behavior of the system?) and nonparametric modeling uncertainty (what are the
effects of the aspects of the system behavior not captured by the dynamic model?).
The treatment of input uncertainty has a long history in dynamic reliability theory
and random vibrations, now more commonly called stochastic dynamics, but the
treatment of modeling uncertainty is more recent.

Usually the dynamic model of the system is represented by a time-dependent
BVP (boundary-value problem) involving PDEs (partial differential equations) or
by a set of coupled ODEs (ordinary differential equations). Typically the failure
event is defined as any one of a set of performance quantities of interest exceeding
its specified threshold over some time interval. This is the so-called first-passage
problem. This challenging problem is characterized by a lack of analytical solutions,
even for the simplest case of a single-degree-of-freedom linear oscillator subject to
excitation that is modeled as a Gaussian process. Approximate analytical methods
exist that are usually limited in scope, and their accuracy is difficult to assess in a
given application [43,51]. Semi-analytical methods from structural reliability theory
such as FORM and SORM (first- and second-order reliability methods) [20, 43]
cannot be applied directly to the first-passage problem and are inapplicable, anyway,
because of the high-dimensional nature of the discrete-time input history [32, 53].
Standard Monte Carlo simulation has general applicability, but it is computationally
very inefficient because of the low failure probabilities. As a consequence, advanced
stochastic simulation schemes are needed.
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1.1 Mathematical Formulation of Problem

We assume that initially there is a continuous-time deterministic model of the real
dynamic system that consists of a state-space model with a finite-dimensional state
X.t/ 2 R

n at time t , and this is converted to a discrete-time state-space model using
a numerical time-stepping method to give

X.t C 1/ D f .X.t/; U .t/; t/; X.t/ 2 R
n; U .t/ 2 R

m; t D 0; : : : ; T (1)

where U .t/ 2 R
m is the input at discrete time t .

If the original model consists of a BVP with PDEs describing a response u.x; t/

where x 2 R
d , then we assume that a finite set of basis functions f�1.x/; : : : ; �n.x/g

is chosen (e.g., global bases such as Fourier and Hermite polynomials or localized
ones such as finite-element interpolation functions) so that the solution is well
approximated by

u.x; t/ �
nX

iD1

Xi .t/�i .x/ (2)

Then a numerical method is applied to the BVP PDEs to establish time-dependent
equations for the vector of coefficients X.t/ D ŒX1.t/; : : : ; Xn.t/� so that the
standard state-space equation in (1) still applies. For example, for a finite-element
model of a structural system, f�1.x/; : : : ; �n.x/g would be local interpolation
functions over the elements. Then, expressing the BVP in weak form, a weighted
residual or Galerkin method could be applied to give a state-space equation for the
vector of coefficients X.t/ [27].

Suppose that a positive scalar performance function g.X.t// is a quantity of
interest and that the rare-event E of concern is that g.X.t// exceeds a threshold b

over some discrete-time interval t D 0; : : : ; T :

E D
�

U D .U .0/; : : : ; U .T // W max
tD0;:::;T

g.X.t// > b

�
� R

m�.TC1/ (3)

where X.t/ satisfies (1). The performance function g.X.t// may involve
exceedance of multiple performance quantities of interest fgk.X.t// W k D
1; : : : ; Kg above their corresponding thresholds fakg. This can be accomplished by
aggregating them using the max and min operators in an appropriate combination on
the set of gk’s; for example, for a pure series failure criterion, where the threshold
exceedance of any ak represents failure, one takes the aggregate performance failure
criterion as g.X.t// D maxfgk.X.t//=ak W k D 1; : : : ; Kg > 1, while for a pure
parallel failure criterion, where all of the gk must exceed their thresholds before
failure is considered to have occurred, one takes the aggregate performance failure
criterion as g.X.t// D minfgk.X.t//=ak W k D 1; : : : ; Kg > 1.



4 J.L. Beck and K.M. Zuev

If the uncertainty in the input time history vector U D ŒU .0/; : : : ; U .T /� 2 R
D

.D D m � .T C 1// is quantified by a probability distribution for U that has a PDF
(probability density function) p.u/ with respect to Lebesgue integration over RD ,
then the rare-event probability is given by

pE D P.U 2 E/ D
Z

E
p.u/du (4)

The PDF p.u/ is assumed to be readily sampled. Although direct sampling from
a high-dimensional PDF is not possible in most cases, multidimensional Gaussians
are an exception because the Gaussian vector can be readily transformed so that the
components are independent and the PDF is a product of one-dimensional Gaussian
PDFs. In many applications, the discrete-time stochastic input history is modeled
by running discrete-time Gaussian white noise through a digital filter to shape its
spectrum in the frequency domain and then multiplying the filtered sequence by an
envelope function to shape it in the time domain, if it is nonstationary.

The model in (1) may also depend on uncertain parameters � 2 � � R
p

which includes the initial values X.0/ if they are uncertain. Then a prior PDF
p.�/ may be chosen to quantify the uncertainty in the value of vector � . Some
of the parameters may characterize the PDF for input U which can then be denoted
p.uj�/. It is convenient to redefine vector U to also include � ; then the new PDF
p.u/ is p.uj�/p.�/ in terms of the previous PDFs. We assume that model parameter
uncertainty is incorporated in this way, so the basic equations remain the same
as (1), (3), and (4). When model uncertainty is incorporated, the calculated pE
has been referred to as the robust rare-event probability [10, 40], meaning robust
to model uncertainty, as in robust control theory.

2 Standard Monte Carlo Simulation

The standard Monte Carlo simulation method (MCS) is one of the most robust
and straightforward ways to simulate rare events and estimate their probabilities.
The method was originally developed in [37] for solving problems in mathematical
physics. Since then MCS has been used in many applications in physics, statistics,
computer science, and engineering, and currently it lays at the heart of all random
sampling-based techniques [35, 44].

The basic idea behind MCS is to observe that the probability in (4) can be written
as an expectation:

pE D
Z

RD

IE.u/p.u/du D EpŒIE � (5)

where IE is the indicator function of E , that is, IE.u/ D 1 if u 2 E and IE.u/ D 0

otherwise, and D D m � .T C 1/ is the dimension of the integral. Recall that
the strong law of large numbers [45] states that if U1; : : : ; UN are independent
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and identically distributed (i.i.d.) samples of vector U drawn from the distribution
p.u/, then for any function h.u/ with finite mean EpŒh.u/�, the sample average
1
N

PN
iD1 h.Ui / converges to the true value EpŒh.u/� as N ! 1 almost surely (i.e.,

with probability 1). Therefore, setting h.u/ D IE.u/, the probability in (5) can be
estimated as follows:

pE � pMCS
E D 1

N

NX

iD1

IE.Ui / (6)

It is straightforward to show that pMCS
E is an unbiased estimator of pE with mean

and variance:

EpŒpMCS
E � D Ep

"
1

N

NX

iD1

IE.Ui/

#
D 1

N

NX

iD1

EpŒIE � D pE

VarpŒpMCS
E � D Varp

"
1

N

NX

iD1

IE.Ui/

#
D 1

N 2

NX

iD1

VarpŒIE � D pE.1 � pE/

N

(7)

Furthermore, by the central limit theorem [45], as N ! 1, pMCS
E is distributed

asymptotically as Gaussian with this mean and variance.
Frequentist interpretation of MCS: The frequentist interpretation of MCS focuses

on the forward problem, arguing that if N is large so that the variance of pMCS
E

is relatively small, then the value OpMCS
E based on (6) for a specific set of N

samples f OU1; : : : ; bU N g drawn from p.u/ should be close to the mean pE of pMCS
E .

The sample mean estimate OpMCS
E is very intuitive and, in fact, simply reflects the

frequentist definition of probability: OpMCS
E is the ratio between the number of trials

where the event E occurred, bN E D PN
iD1 IE. bU i /, and the total number of trials N .

Bayesian interpretation of MCS: The same MCS estimate OpMCS
E has a simple

Bayesian interpretation (e.g., [56]), which focuses on the inverse problem for the
specific set of N samples f bU 1; : : : ; bU N g drawn from p.u/. Following the Bayesian
approach [26], the unknown probability pE is considered as a stochastic variable
whose value in Œ0; 1� is uncertain. The Principle of Maximum Entropy [25] leads
to the uniform prior distribution for pE , p.pE/ D 1, 0 � pE � 1, which implies
that all values are taken as equally plausible a priori. Since samples U1; : : : ; UN are
i.i.d., the binary sequence IE.U1/; : : : ; IE.UN / is a sequence of Bernoulli trials, and
so for the forward problem, NE is distributed according to the binomial distribution
with parameters N and pE , NE � Bin.N; pE/. Therefore, for the set of N samples,

the likelihood function is p. bN E jpE ; N / D � N

bNE

�
p

bNE
E .1 � pE/N�bN E . Using Bayes’

theorem, the posterior distribution for pE , p.pE j bN E ; N / / p.pE/p. bN E jpE ; N /, is
therefore the beta distribution Beta. bN E C 1; N � bN E C 1/, i.e.,

p.pE j bN E ; N / D p
bNE
E .1 � pE/N�bNE

B. bN E C 1; N � bN E C 1/
(8)
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where the beta function B is the normalizing constant that equals .N C 1/Š=

. bN E Š.N � bN E/Š/ here. The MCS estimate is the maximum a posteriori (MAP)
estimate, which is the mode of the posterior distribution (8) and therefore the most
probable value of pE a posteriori:

OpMCS
E D

bN E
N

(9)

Notice that the posterior PDF in (8) gives a complete description of the uncertainty
in the value of pE based on the specific set of N samples of U drawn from p.u/.
The posterior distribution in (8) is in fact the original Bayes’ result [9], although
Bayes’ theorem was developed in full generality by Laplace [34].

The standard MCS method for estimating the probability in (4) is summarized in
the following pseudo-code.

Monte Carlo Simulation
Input:

B N , total number of samples.
Algorithm:

Set NE D 0, number of trials where the event E occurred.
for i D 1; : : : ; N do

Sample the input excitation Ui D .Ui .0/; : : : ; Ui .T // � p.u/.
Compute the system trajectory Xi D .Xi .0/; : : : ; Xi .T //

using the system model (1) with U .t/ D Ui .t/.
if max

tD0;:::;T
g.Xi .t// > b

NE  NE C 1

end if
end for

Output:
I OpMCS

E D NE
N

, MCS estimate of pE

I p.pE jNE ; N /D p
NE
E .1�pE /N �NE

B.NEC1;N �NEC1/
, posterior PDF of pE

Assessment of accuracy of MCS estimate: For the frequentist interpretation, the
coefficient of variation (c.o.v.) for the estimator pMCS

E given by (6), conditional
on pE and N , is given by (7):

ı.pMCS
E jpE ; N / D

q
VarpŒpMCS

E �

EpŒpMCS
E �

D
s

1 � pE
NpE

(10)

This can be approximated by replacing pE by the estimate OpMCS
E D bN E=N for a

given set of N samples f bU 1; : : : ; bU N g:
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ı.pMCS
E jpE ; N / �

s
1 � OpMCS

E
N OpMCS

E

4D OıMCS
N (11)

For the Bayesian interpretation, the posterior c.o.v. for the stochastic variable pE ,
conditional on the set of N samples, follows from (8):

ı.pE j bN E ; N /D
q

VarŒpE j bN E ; N �

EŒpE j bN E ; N �
D

q
1 � bNEC1

NC2r
.N C 3/

� bNEC1
NC2

��!
s

1 � OpMCS
E

N OpMCS
E

D OıMCS
N

(12)
as N ! 1. Therefore, the same expression OıMCS

N can be used to assess the accuracy
of the MCS estimate, even though the two c.o.v.s have distinct interpretations.

The approximation OıMCS
N for the two c.o.v.s reveals both the main advantage of

the standard MCS method and its main drawback. The main strength of MCS, which
makes it very robust, is that its accuracy does not depend on the geometry of the
domain E � R

D and its dimension D. As long as an algorithm for generating i.i.d.
samples from p.u/ is available, MCS, unlike many other methods (e.g., numerical
integration), does not suffer from the “curse of dimensionality.” Moreover, an
irregular, or even fractal-like, shape of E will not affect the accuracy of MCS.

On the other hand, the serious drawback of MCS is that this method is not
computationally efficient in estimating the small probabilities pE corresponding to
rare events, where from (10),

ı.pMCS
E jpE ; N / � 1p

NpE
(13)

Therefore, to achieve a prescribed level of accuracy ı < 1, the required total
number of samples is N D .pEı2/�1 � 1. For each sampled excitation Ui , a
system analysis – usually computationally very intensive – is required to compute
the corresponding system trajectory Xi and to check whether Ui belongs to E .
This makes MCS excessively costly and inapplicable for generating rare events
and estimating their small probabilities. Nevertheless, essentially all sampling-based
methods for estimation of rare-event probability are either based on MCS (e.g.,
importance sampling) or have it as a part of the algorithm (e.g., subset simulation).

3 Importance Sampling

The importance sampling (IS) method belongs to the class of variance reduction
techniques that aim to increase the accuracy of the estimates by constructing
(sometimes biased) estimators with a smaller variance [1, 22]. It seems it was first
proposed in [29], soon after the standard MCS method appeared.
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The inefficiency of MCS for rare-event estimation stems from the fact that most
of the generated samples Ui � p.u/ do not belong to E so that the vast majority of
the terms in the sum (6) are zero and only very few (if any) are equal to one. The
basic idea of IS is to make use of the information available about the rare-event E
to generate samples that lie more frequently in E or in the important region QE � E
that accounts for most of the probability content in (4). Rather than estimating pE
as an average of many 0’s and very few 1’s like in OpMCS

E , IS seeks to reduce the

variance by constructing an estimator of the form pIS
E D 1

N

PN 0

iD1 wi , where N 0 is
an appreciable fraction of N and the wi are small but not zero, ideally of the same
order as the target probability, wi � pE .

Specifically, for an appropriate PDF q.u/ on the excitation space RD , the integral
in (5) can be rewritten as follows:

pE D
Z

RD

IE.u/p.u/du D
Z

RD

IE.u/p.u/

q.u/
q.u/du D Eq

�
IEp

q

	
(14)

The IS estimator is now constructed similarly to (6) by utilizing the law of large
numbers:

pE � pIS
E D 1

N

NX

iD1

IE.Ui /p.Ui/

q.Ui/
D 1

N

NX

iD1

IE.Ui/w.Ui / (15)

where U1; : : : ; UN are i.i.d. samples from q.u/, called the importance sampling
density (ISD), and w.Ui / D p.Ui /

q.Ui /
is the importance weight of sample Ui .

The IS estimator pIS
E converges almost surely as N ! 1 to pE by the strong

law of large numbers, provided that the support of q.u/, i.e., the domain in R
D

where q.u/ > 0, contains the support of IE.u/p.u/. Intuitively, the latter condition
guarantees that all points of E that can be generated by sampling from the original
PDF p.u/ can also be generated by sampling from the ISD q.u/. Note that if q.u/ D
p.u/, then w.Ui / D 1 and IS simply reduces to MCS, pMCS

E D pIS
E . By choosing

the ISD q.u/ appropriately, IS aims to obtain an estimator with a smaller variance.
The IS estimator pIS

E is also unbiased with mean and variance:

EqŒpIS
E � D Eq

"
1

N

NX

iD1

IE.Ui/w.Ui /

#
D 1

N

NX

iD1

Eq

�
IEp

q

	
D pE

VarqŒpIS
E � D 1

N 2

NX

iD1

Varq

�
IEp

q

	
D 1

N



Eq

�
IEp2

q2

	
� p2

E

� (16)

The IS method is summarized in the following pseudo-code.
The most important task in applying IS for estimating small probabilities of rare

events is the construction of the ISD, since the accuracy of OpIS
E depends critically

on q.u/. If the ISD is “good,” then one can get great improvement in efficiency over
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Importance Sampling
Input:

B N , total number of samples.
B q.u/, importance sampling density.

Algorithm:
Set j D 0, counter for the number of samples in E .
for i D 1; : : : ; N do

Sample the input excitation Ui D .Ui .0/; : : : ; Ui .T // � q.u/.
Compute the system trajectory Xi D .Xi .0/; : : : ; Xi .T //

using the system model (1) with U .t/ D Ui .t/.
if max

tD0;:::;T
g.Xi .t// > b

j  j C 1

Compute the importance weight of the j th sample in E , wj D p.Ui /

q.Ui /
.

end if
end for
NE D j , the total number of trials where the event E occurred.

Output:

I OpIS
E D

PNE
j D1 wj

N
, IS estimate of pE

standard MCS. If, however, the ISD is chosen inappropriately so that, for instance,
NE D 0 or the importance weights have a large variation, then IS will yield a very
poor estimate. Both scenarios are demonstrated below in Sect. 6.

It is straightforward to show that the optimal ISD, which minimizes the variance
in (16), is simply the original PDF p.u/ conditional on the domain E :

q0.u/ D p.ujE/ D IE.u/p.u/

pE
(17)

Indeed, in this case, all generated sample excitations satisfy Ui 2 E , so their
importance weights w.Ui / D pE , and the IS estimate OpIS

E D pE . Moreover, just one
sample (N D 1) generated from q0.u/ is enough to find the probability pE exactly.
Note, however, that this is a purely theoretical result since in practice sampling
from the conditional distribution p.ujE/ is challenging, and, most importantly, it
is impossible to compute q0.u/: this would require the knowledge of pE , which is
unknown. Nevertheless, this result indicates that the ISD q.u/ should be chosen
as close to q0.u/ as possible. In particular, most of the probability mass of
q.u/ should be concentrated on E . Based on these considerations, several ad hoc
techniques for constructing ISDs have been developed, e.g., variance scaling and
mean shifting [15].

In the special case of linear dynamics and Gaussian excitation, an extremely
efficient algorithm for estimating the rare-event probability pE in (4), referred to
as ISEE (importance sampling using elementary events), has been presented [3].
The choice of the ISD exploits known information about each elementary event,
defined as an outcrossing of the performance threshold b in (3) at a specific time
t 2 f0; : : : ; T g. The c.o.v. of the ISEE estimator for N samples of U from p.u/ is
given by
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ıISEE
N D ˛p

N
(18)

where the proportionality constant ˛ is close to 1, regardless of how small the value
of pE . In fact, ˛ decreases slightly as pE decreases, exhibiting the opposite behavior
to MCS.

In general, it is known that in many practical cases of rare-event estimation, it is
difficult to construct a good ISD that leads to a low-variance IS estimator, especially
if the dimension of the uncertain excitation space R

D is large, as it is in dynamic
reliability problems [5]. A geometric explanation as to why IS is often inefficient
in high dimensions is given in [32]. Au [2] has presented an efficient IS method
for estimating pE in (4) for elastoplastic systems subject to Gaussian excitation.
In recent years, substantial progress has been made by tailoring the sequential
importance sampling (SIS) methods [35], where the ISD is iteratively refined, to
rare-event problems. SIS and its modifications have been successfully used for
estimating rare events in dynamic portfolio credit risk [19], structural reliability
[33], and other areas.

4 Subset Simulation

The subset simulation (SS) method [4] is an advanced stochastic simulation method
for estimating rare events which is based on Markov chain Monte Carlo (MCMC)
[35, 44]. The basic idea behind SS is to represent a very small probability pE of the
rare-event E as a product of larger probabilities of “more-frequent” events and then
estimate these larger probabilities separately. To implement this idea, let

R
D 	 E0 
 E1 : : : 
 EL 	 E (19)

be a sequence of nested subsets of the uncertain excitation space starting from the
entire space E0 D R

D and shrinking to the target rare-event EL D E . By analogy
with (3), subsets Ei can be defined by relaxing the value of the critical threshold b:

Ei D
�

U 2 R
D W max

tD0;:::;T
g.X.t// > bi

�
(20)

where b1 < : : : < bL D b. In the actual implementation of SS, the number of
subsets L and the values of intermediate thresholds fbig are chosen adaptively.

Using the notion of conditional probability and exploiting the nesting of the
subsets, the target probability pE can be factorized as follows:

pE D
LY

iD1

P.Ei jEi�1/ (21)

An important observation is that by choosing the intermediate thresholds fbig
appropriately, the conditional events fEi jEi�1g can be made more frequent, and their
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probabilities can be made large enough to be amenable to efficient estimation by
MCS-like methods.

The first probability P.E1jE0/ D P.E1/ can be readily estimated by standard
MCS:

P.E1/ � 1

n

nX

jD1

IE1 .Uj /; (22)

where U1; : : : ; Un are i.i.d. samples from p.u/. Estimating the remaining probabil-
ities P.Ei jEi�1/, i � 2, is more challenging since one needs to generate samples
from the conditional distribution p.ujEi�1/ D IEi�1 .u/p.u/

P.Ei�1/
, which, in general, is not

a trivial task. Notice that a sample U from p.ujEi�1/ is one drawn from p.u/ that
lies in Ei�1. However, it is not efficient to use MCS for generating samples from
p.ujEi�1/: sampling from p.u/ and accepting only those samples that belong to
Ei�1 is computationally very expensive, especially at higher levels i .

In standard SS, samples from the conditional distribution p.ujEi�1/ are generated
by the modified Metropolis algorithm (MMA) [4] which belongs to the family
of MCMC methods for sampling from complex probability distributions that are
difficult to sample directly from [35, 44]. An alternative strategy – splitting – is
described in the next section.

The MMA algorithm is a component-wise version of the original Metropolis
algorithm [38]. It is specifically tailored for sampling from high-dimensional
conditional distributions and works as follows. First, without loss of generality,
assume that p.u/ D QD

kD1 pk.uk/, i.e., components of U are independent. This
assumption is indeed not a limitation, since in simulation one always starts from
independent variables to generate correlated excitation histories U . Suppose further
that some vector U1 2 R

D is already distributed according to the target conditional
distribution, U1 � p.ujEi�1/. MMA prescribes how to generate another vector
U2 � p.ujEi�1/, and it consists of two steps:

1. Generate a “candidate” state V as follows: first, for each component k D
1; : : : ; D of V , sample �.k/ from the symmetric univariate proposal distribution
qk;i .�jU1.k// centered on the kth component of U1, where symmetry means that
qk;i .�ju/ D qk;i .uj�/; then, compute the acceptance ratio rk D pk.�.k//

pk.U1.k//
; and

finally, set

V .k/ D
�

�.k/; with probability minf1; rkg
U1.k/; with probability 1 � minf1; rkg (23)

2. Accept or reject the candidate state V :

U2 D
�

V; if V 2 Ei�1

U1; if V … Ei�1

(24)
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It can be shown that U2 generated by MMA is indeed distributed according to the
target conditional distribution p.ujEi�1/ when U1 is [4]. For a detailed discussion
of MMA, the reader is referred to [56].

The procedure for generating conditional samples at level i is as follows. Starting
from a “seed” U1 � p.ujEi�1/, one can now use MMA to generate a sequence
of random vectors U1; : : : ; Un, called a Markov chain, distributed according to
p.ujEi�1/. At each step, Uj is used to generate the next state UjC1. Note that
although these MCMC samples are identically distributed, they are clearly not
independent: the correlation between successive samples is due to the proposal
PDFs fqk;i g at level i that govern the generation of UjC1 from Uj . Nevertheless,
U1; : : : ; Un can still be used for statistical averaging as if they were i.i.d., although
with certain reduction in efficiency [4]. In particular, similar to (22), the conditional
probability P.Ei jEi�1/ can be estimated as follows:

P.Ei jEi�1/ � 1

n

nX

jD1

IEi .Uj / (25)

To obtain an estimator for the target probability pE , it remains to multiply the
MCS (22) and MCMC (25) estimators of all factors in (21). In real applications,
however, it is often difficult to rationally define the subsets fEig in advance,
since it is not clear how to specify the values of the intermediate thresholds
fbig. In SS, this is done adaptively. Specifically, let U

.0/
1 ; : : : ; U

.0/
n be the MCS

samples from p.u/, X
.0/
1 ; : : : ; X

.0/
n be the corresponding trajectories from (1), and

G
.0/
j D maxtD0;:::;T g.X

.0/
j .t// be the resulting performance values. Assume that

the sequence fG.0/
j g is ordered in a nonincreasing order, i.e., G

.0/
1 � : : : � G

.0/
n ,

renumbering the samples where necessary. Define the first intermediate threshold
b1 as follows:

b1 D G
.0/
np0 C G

.0/
np0C1

2
(26)

where p0 is a chosen probability satisfying 0 < p0 < 1. This choice of b1 has two
immediate consequences: first, the MCS estimate of P.E1/ in (22) is exactly p0,
and, second, U

.0/
1 : : : ; U

.0/
np0 not only belong to E1 but also are distributed according

to the conditional distribution p.ujE1/. Each of these np0 samples can now be used
as mother seeds in MMA to generate . 1

p0
� 1/ offspring, giving a total of n samples

U
.1/
1 ; : : : ; U

.1/
n � p.ujE1/. Since these seeds start in the stationary state p.ujE1/

of the Markov chain, this MCMC method gives perfect sampling, i.e., no wasteful
burn-in period is needed. Similarly, b2 is defined as

b2 D G
.1/
np0 C G

.1/
np0C1

2
(27)
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where fG.1/
j g are the (ordered) performance values corresponding to excitations

fU .1/
j g. Again by construction, the estimate (25) gives P.E2jE1/ � p0, and

U
.1/
1 ; : : : ; U

.1/
np0 � p.ujE2/. The SS method proceeds in this manner until the target

rare-event E is reached and is sufficiently sampled. All but the last factor in (21) are
approximated by p0, and the last factor P.E jEL�1/ � nE

n
� p0, where nE is the

number of samples in E among U
.L�1/
1 ; : : : ; U

.L�1/
n � p.ujEL�1/. The method is

more formally summarized in the following pseudo-code.

Subset Simulation
Input:

B n, number of samples per conditional level.
B p0, level probability; e.g. p0 D 0:1

B fqk;i g, proposal distributions; e.g. qk;i .�ju/ D N .�ju; �2
k;i /

Algorithm:
Set i D 0, number of conditional level.
Set n

.0/

E D 0, number of the MCS samples in E .

Sample the input excitations U
.0/
1 ; : : : ; U

.0/
n � p.u/.

Compute the corresponding trajectories X
.0/
1 ; : : : ; X

.0/
n .

for j D 1; : : : ; n do
if G

.0/
j D max

tD0;:::;T
g.X

.0/
j .t // > b do

n
.0/
E  n

.0/
E C 1

end if
end for
while n

.i/
E =n < p0 do

i  i C 1, a new subset Ei is needed.
Sort fU .i�1/

j g so that G
.i�1/
1 � G

.i�1/
2 � : : : � G

.i�1/
n

Define the i th intermediate threshold: bi D
�
G

.i�1/
np0 CG

.i�1/

np0C1

�
=2

for j D 1; : : : ; np0 do
Using Wj;1 D U

.i�1/
j � p.ujEi / as a seed, use MMA to generate

. 1
p0
� 1/ additional states of a Markov chain

Wj;1; : : : ; Wj;1=p0 � p.ujEi /.
end for
Renumber: fWj;sgnp0;1=p0

jD1;sD1 7! U
.i/
1 ; : : : ; U

.i/
n � p.ujEi /

Compute the corresponding trajectories X
.i/
1 ; : : : ; X

.i/
n

for j D 1; : : : ; n do
if G

.i/
j D max

tD0;:::;T
g.X

.i/
j .t // > b do

n
.i/

E  n
.i/

E C 1

end if
end for

end while
LD i C 1, number of levels, i.e. subsets Ei in (19) and (20)
N D nC n.1� p0/.L� 1/, total number of samples.

Output:

I OpSS
E D pL�1

0

n
.L�1/

E
n

, SS estimate of pF :
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Implementation details of SS, in particular the choice of level probability p0 and
proposal distributions fqkg, are thoroughly discussed in [56]. It has been confirmed
that p0 D 0:1 proposed in the original paper [4] is a nearly optimal value. The
choice of fqk;ig is more delicate, since the efficiency of MMA strongly depends on
the proposal PDF variances in a nontrivial way: proposal PDFs with both small and
large variance tend to increase the correlation between successive samples, making
statistical averaging in (25) less efficient. In general, finding the optimal variance of
proposal distributions is a challenging task not only for MMA but also for almost all
MCMC algorithms. Nevertheless, it has been found in many applications that using
qk;i .�ju/ D N .�ju; �2

k;i /, the Gaussian distribution with mean u and variance �2
k;i

yields good efficiency if �2
k;i D �2

0 and p.u/ is a multi-dimensional Gaussian with
all variances equal to �2

0 . For an adaptive strategy for choosing fqk;i g, the reader is
referred to [56]; for example, �2

k;i D �2
i can be chosen so that the observed average

acceptance rate in MMA, based on a subset of samples at level i , lies in the interval
Œ0:3; 0:5�.

It can be shown [4,7] that, given pE , p0, and the total number of samples N , the
c.o.v. of the SS estimator pSS

E is given by

ı2.pSS
E jpE ; p0; N / D .1 C �/.1 � p0/

Np0.ln p�1
0 /r

.ln p�1
E /r (28)

where 2 � r � 3 and � is approximately a constant that depends on the state
correlation of the Markov chain at each level. Numerical experiments show that
r D 2 gives a good approximation to the c.o.v. and that � � 3 if the proposal
variance �2

i for each level is appropriately chosen [4,7,56]. It follows from (13) that
ı2

MCS / p�1
E for MCS, while for SS, ı2

SS / .ln p�1
E /r . This drastically different

scaling behavior of the c.o.v.’s with small pE directly exhibits the improvement in
efficiency.

To compare an advanced stochastic simulation algorithm directly with MCS,
which is always applicable (but not efficient) for rare-event estimation, [11]
introduced the relative computation efficiency of an algorithm, 	A, which is defined
as the ratio of the number of samples NMCS required by MCS to the number of
samples NA required by the algorithm for the same c.o.v. ı. The relative efficiency
of SS is then

	SS D NMCS

NSS

D p0.ln p�1
0 /r

.1 C �/.1 � p0/pE.ln p�1
E /r

� 0:03p�1
E

.log10 p�1
E /2

(29)

for r D 2, � D 3, and p0 D 0:1. For rare events, p�1
E is very large, and, as expected,

SS outperforms MCS; for example, if pE D 10�6, then 	SS � 800.
In recent years, a number of modifications of SS have been proposed, including

SS with splitting [17] (described in the next section), hybrid SS [18], two-stage
SS [30], spherical SS [31], and SS with delayed rejection [57]. A Bayesian post-
processor for SS, which generalizes the Bayesian interpretation of MCS described
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above, was developed in [56]. In the original paper [4], SS was developed for
estimating reliability of complex civil engineering structures such as tall buildings
and bridges at risk from earthquakes. It was applied for this purpose in [5] and [24].
SS and its modifications have also been successfully applied to rare-event simulation
in fire risk analysis [8], aerospace [39,52], nuclear [16], wind [49] and geotechnical
engineering [46], and other fields. A detailed exposition of SS at an introductory
level and a MATLAB code implementing the above pseudo-code are given in [55].
For more advanced and complete reading, the fundamental monograph on SS [7] is
strongly recommended.

5 Splitting

In the previously presented stochastic simulation methods, samples of the input and
output discrete-time histories, fU .t/ W t D 0; : : : ; T g � R

m and fX.t/ W t D
0; : : : ; T g � R

n, are viewed geometrically as vectors U and X that define points
in the vector spaces R

.TC1/m and R
.TC1/n, respectively. In the splitting method,

however, samples of the input and output histories are viewed as trajectories defining
paths of length .T C 1/ in R

m and R
n, respectively. Samples that reach a certain

designated subset in the input or output spaces at some time are treated as “mothers”
and are then split into multiple offspring trajectories by separate sampling of the
input histories subsequent to the splitting time. These multiple trajectories can
themselves subsequently be treated as mothers if they reach another designated
subset nested inside the first subset at some later time and so be split into multiple
offspring trajectories. This is continued until a certain number of the trajectories
reach the smallest nested subset corresponding to the rare event of interest.

Splitting methods were originally introduced by Kahn and Harris [28], and they
have been extensively studied (e.g., [12, 17, 42, 54]). We describe splitting here
by using the framework of subset simulation where the only change is that the
conditional sampling in the nested subsets is done by splitting the trajectories that
reach each subset, rather than using them as seeds to generate more samples from
Markov chains in their stationary state. As a result, only standard Monte Carlo
simulation is needed, instead of MCMC simulation.

The procedure in [17] is followed here to generate offspring trajectories at the i th

level .i D 1; : : : ; L/ of subset simulation from each of the mother trajectories in Ei

constructed from samples from the previous level, except that we present it from the
viewpoint of trajectories in the input space, rather than the output space. Therefore,
at the i th level, each of the np0 sampled input histories Uj , j D 1; : : : ; np0, from the
previous level that satisfy Uj 2 Ei , as defined in (20) (so the corresponding output
history Xj satisfies max

tD0;:::;T
g.Xj .t// > bi ), is split at their first-passage time

tj D minft D 0; : : : ; T W g.Xj .t// > big (30)
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This means that the mother trajectory Uj is partitioned as ŒU�j ; UCj � where U�j D
ŒUj .0/; : : : ; Uj .tj /� and UCj D ŒUj .tj C 1/; : : : ; Uj .T /�; then a subtrajectory

sample eUCj D ŒeU j .tj C 1/; : : : ; eU j .T /� is drawn from

p.uCj jU�j ; Ei / D P.Ei juCj ; U�j /

P.Ei jU�j /
p.uCj jU�j / D p.uCj jU�j / D p.uCj / (31)

where the last equation follows if one assumes independence of the Uj .t/; t D
0; : : : ; T (although it is not necessary). Also, P.Ei juCj ; U�j / D 1 D P.Ei jU�j /.

Note that the new input sample eU j D ŒU�j ; eUCj � also lies in Ei since it has the
subtrajectory U�j in common with Uj , which implies that the corresponding outputs

at the first-passage time tj are equal: eXj .tj / D Xj .tj / > bi . The offspring
trajectory eU j is a sample from p.u/ lying in Ei , and so, like its mother Uj , it is
a sample from p.ujEi /. This process is repeated to generate . 1

p0
� 1/ such offspring

trajectories from each mother trajectory, giving a total of np0.
1

p0
� 1/ C np0 D n

input histories that are samples from p.ujEi / at the i th level.
The pseudo-code for the splitting version of subset simulation is the same as

the previously presented pseudo-code for the MCMC version except that the part
describing the generation of conditional samples at level i using the MMA algorithm
is replaced by

Generation of conditional samples at level i with Splitting
for j D 1; : : : ; np0 do

Using U
.i�1/
j � p.ujEi / as a mother trajectory, generate . 1

p0
� 1/ offspring

trajectories by splitting of this input trajectory.
end for

To generate the same number of samples n at a level, the splitting version of
subset simulation is slightly more efficient than the MCMC version using MMA
because when generating the conditional samples, the input offspring trajectories
eU D ŒeU�; eUC� already have made available the first part eX� of the corresponding
output trajectory eX D ŒeX�; eXC�. Thus, (1) need only be solved for eXC starting
from the final value of eX� (which corresponds to the first-passage time of the
trajectory). A disadvantage of the splitting version is that it cannot handle parameter
uncertainty in the model in (1) since the offspring trajectories must use (1) with
the same parameter values as their mothers. Furthermore, the splitting version
applies only to dynamic problems, as considered here. The MCMC version of subset
simulation can handle parameter uncertainty and is applicable to both static and
dynamic uncertainty quantification problems.

Ching, Au, and Beck [17] discuss the statistical properties of the estimators
corresponding to (22) and (25) when the sampling at each level is done by the
trajectory splitting method. They show that as long as the conditional probability



Rare-Event Simulation 17

in subset simulation satisfies p0 � 0:1, the coefficient of variation for pE when
estimating it by (21) and (25) is insensitive to p0.

Ching, Beck, and Au [18] also introduce a hybrid version of subset simulation
that combines some advantages of the splitting and MCMC versions when gen-
erating the conditional samples Uj ; j D 1; : : : ; n at each level. It is limited to
dynamic problems because of the splitting, but it can handle parameter uncertainty
through using MCMC. All three variants of subset simulation are applied to a
series of benchmark reliability problems in [6]; their results imply that for the same
computational effort in the dynamic benchmark problems, the hybrid version gives
slightly better accuracy for the rare-event probability than the MCMC version. For a
comparison between these results and those of other stochastic simulation methods
that are applied to some of the same benchmark problems (e.g., spherical subset
simulation, auxiliary domain method, and line sampling), the reader may wish to
check [47].

6 Illustrative Example

To illustrate MCS, IS, and SS with MCMC and splitting for rare-event estimation,
consider the following forced Lorenz system of ordinary differential equations:

PX1 D �.X2 � X1/ C U .t/ (32)

PX2 D rX1 � X2 � X1X3 (33)

PX3 D X1X2 � bX3 (34)

where X.t/ D .X1.t/; X2.t/; X3.t// defines the system state at time t and U .t/ is
the external excitation to the system. If U .t/ 	 0, these are the original equations
due to E. N. Lorenz that he derived from a model of fluid convection [36]. In this
example, the three parameters �; r , and b are set to � D 3, b D 1, and r D 26.
It is well known (e.g., [50]) that in this case, the Lorenz system has three unstable
equilibrium points, one of which is

X� D
�p

b.r � 1/;
p

b.r � 1/; r � 1
�

D .5; 5; 25/ (35)

that lies on one “wing” of the “butterfly” attractor. Let

X.0/ D X� C .1=2; 1=2; 1=2/ D .5:5; 5:5; 25:5/ (36)

be the initial condition and X.t/ be the corresponding solution. Lorenz showed [36]
that the solution of (32, 33, and 34) with U .t/ 	 0 always (for any t) stays inside
the bounding ellipsoid E:
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X1.t/
2

R2 b
�

C X2.t/
2

bR2
C .X3.t/ � R/2

R2
� 1; R D r C � (37)

Suppose that the system is now excited by U .t/ D ˛B.t/, where B.t/ is the
standard Brownian process (Gaussian white noise) and ˛ is some scaling constant.
The uncertain stochastic excitation U .t/ makes the corresponding system trajectory
X.t/ also stochastic. Let us say that the event E occurs if X.t/ leaves the bounding
ellipsoid E during the time interval of interest Œ0; T �.

The discretization of the excitation U is obtained by the standard discretization
of the Brownian process:

U .0/ D 0; U .k/ D ˛B.k
t/ D U .k �1/C˛
p


tZk D ˛
p


t

kX

iD1

Zi ; (38)

where 
t D 0:1s is the sampling interval and k D 1; : : : ; D D T =
t , and
Z1; : : : ; ZD are i.i.d. standard Gaussian random variables. The target domain E �
R

D is then

E D f.Z1; : : : ; ZD/ W max
0�k�D

g.k/ > 1g; (39)

where the system response g.k/ at time t D k
t is

g.k/ D X1.k
t/2

R2 b
�

C X2.k
t/2

bR2
C .X3.k
t/ � R/2

R2
(40)

Figure 1 shows the solution of the unforced Lorenz system (with ˛ D 0 so
U .t/ D 0), and an example of the solution of the forced system (with ˛ D 3) that
corresponds to excitation U 2 E (slightly abusing notation, U D U .Z1; : : : ; ZD/ 2
E means that the corresponding Gaussian vector .Z1; : : : ; ZD/ 2 E).

Monte Carlo Simulation: For ˛ D 3, Fig. 2 shows the probability pE of event E
as a function of T estimated using standard MCS:

OpMCS
E D 1

N

NX

iD1

IE.Z.i// (41)

where Z.i/ D .Z
.i/
1 ; : : : ; Z

.i/
D / � �.z/ are i.i.d. samples from the standard D-

dimensional Gaussian PDF �.z/. For each value of T , N D 104 samples were
used. When T < 25, the accuracy of the MCS estimate (41) begins to degenerate
since the total number of samples N becomes too small for the corresponding target
probability. Moreover, for T < 15, none of the N -generated MCS samples belong
to the target domain E , making the MCS estimate zero. Figure 2 shows, as expected,
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Fig. 1 The left column shows the solution of the unexcited Lorenz system (˛ D 0) enclosed
in the bounding ellipsoid E (top) and the corresponding response function g.t/ (bottom), where
t 2 Œ0; T �, T D 100. The right top panel shows the solution of the forced Lorenz system (˛ D 3)
that corresponds to an excitation U 2 E . As it is clearly seen, this solution leaves the ellipsoid E.
According to the response function g.t/ shown in the right bottom panel, this first-passage event
happens around t D 90

that pE is an increasing function of T , since the more time the system has, the more
likely its trajectory eventually penetrates the boundary of ellipsoid E.

Importance Sampling: IS is a variance reduction technique, and, as it was
discussed in previous sections, its efficiency critically depends on the choice of the
ISD q. Usually some geometric information about the target domain E is needed
for constructing a good ISD. To get some intuition, Fig. 3 shows the domain E
for two lower-dimensional cases: T D 1, 
t D 0:5 (D D 2) and T D 1:5,

t D 0:5 (D D 3). Notice that in both cases, E consists of two well-separated
subsets, E D E� [ EC, which are approximately symmetric about the origin. This
suggests that a good ISD must be a mixture of two distributions q� and qC that
effectively sample E� and EC,

q.z/ D q�.z/ C qC.z/

2
(42)

In this example, three different ISDs, denoted q1; q2; and q3, are considered:
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Fig. 2 Top panel shows the estimate of the probability pE of event E where ˛ D 3 as a function
of duration time T . For each value of T 2 Œ5; 100�, N D 104 samples were used in MCS, and
n D 2 � 103 samples per conditional level were used in the two versions of SS. The MCS and
SS/splitting estimates for pE are zero for T < 15 and T < 12, respectively. The bottom panel
shows the total computational effort automatically chosen by both SS algorithms

Case 1: q˙.z/ D �.zj ˙ zE/, where zE � �.zjE/. That is, we first generate a
sample zE 2 E and then take ISD q1 as the mixture of Gaussian PDFs centered
at zE and �zE .

Case 2: q˙.z/ D �.zj ˙ z�E /, where z�E is obtained as follows. First we generate
n D 1000 samples from �.z/ and define z�E to be the sample in E with the smallest
norm. Sample z�E can be interpreted as the “best representative” of E� (or EC),
since �.z�E/ has the largest (among generated samples) value. We then take ISD
q2 as the mixture of Gaussian PDFs centered at z�E and �z�E .

Case 3: To illustrate what happens if one ignores the geometric information about
two components of E , we choose q3.z/ D �.zjz�E/, as given in Case 2.
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Fig. 3 Left panel: visualization of the domain E in two- dimensional case D D 2, where T D 1,

t D 0:5, and ˛ D 20. N D 104 samples were generated and marked by red circles (respectively,
green dots) if they do (respectively, do not) belong to E . Right panel: the same as on the left panel
but with D D 3 and T D 1:5

Table 1 Simulation results
for IS and MCS. For each
method, mean values h OpEi of
the estimates and their
coefficient of variations
ı. OpE / are based on 100
independent runs

h OpEi ı. OpE /

MCS 3:4� 10�3 17 %

IS q1 3:2� 10�3 132.4 %

IS q2 3:4� 10�3 8.3 %

IS q3 1:8� 10�3 5.5 %

Let T D 1 and ˛ D 20. The dimension of the uncertain excitation space is then
D D 10. Table 1 shows the simulation results for the above three cases as well
as for standard MCS. The IS method with q1, on average, correctly estimates pE .
However, the c.o.v. of the estimate is very large, which results in large fluctuations of
the estimate in independent runs. IS with q2 works very well and outperforms MCS:
the c.o.v. is reduced by half. Finally, IS with q3 completely misses one component
part of the target domain E , and the resulting estimate is about half of the correct
value. Note that the c.o.v. in this case is very small, which is very misleading.

It was mentioned in previous sections that IS is often not efficient in high
dimensions because it becomes more difficult to construct a good ISD [5, 32]. To
illustrate this effect, IS with q2 was used to estimate pE for a sequence of problems
where the total duration time gradually grows from T D 1 to T D 10. This results
in an increase of the dimension D of the underlying uncertain excitation space from
10 to 100. Figure 4 shows how the IS estimate degenerates as the dimension D of
the problem increases. While IS is accurate when D D 10 .T D 1/, it strongly
underestimates the true value of pE as D approaches 100 .T D 10/.

Subset Simulation: SS is a more advanced simulation method, and, unlike IS,
it does not suffer from the curse of dimensionality. For ˛ D 3, Fig. 2 shows the
estimate of the target probability pE as a function of T using SS with MCMC and
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Fig. 4 Estimation of the target probability pE as a function of duration time T . Solid red and
dashed blue curves correspond to MCS and IS with q2, respectively. In this example, ˛ D 20 and
N D 104 samples for each value of T are used. It is clearly visible how the IS estimate degenerates
as the dimension D goes from 10 (T D 1) to 100 (T D 10)

splitting. For each value of T , n D 2 � 103 samples were used in each conditional
level in SS. Unlike MCS, SS is capable of efficiently simulating very rare events
and estimating their small probabilities. The total computational effort, i.e., the total
number N of samples automatically chosen by SS, is shown in the bottom panel of
Fig. 2. Note that the larger the value of pE , the smaller the number of conditional
levels in SS, and, therefore, the smaller the total number of samples N . The total
computational effort in SS is thus a decreasing function of T . In this example, the
original MCMC strategy [4] for generating conditional samples outperforms the
splitting strategy [17] that exploits the causality of the system: while the SS/MCMC
method works even in the most extreme case (T D 5), the SS/splitting estimate for
pE becomes zero for T < 12.

7 Conclusion

This chapter examines computational methods for rare-event simulation in the
context of uncertainty quantification for dynamic systems that are subject to future
uncertain excitation modeled as a stochastic process. The rare events are assumed
to correspond to some time-varying performance quantity exceeding a specified
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threshold over a specified time duration, which usually means that the system
performance fails to meet some design or operation specifications.

To analyze the reliability of the system against this performance failure, a
computational model for the input-output behavior of the system is used to predict
the performance of interest as a function of the input stochastic process discretized
in time. This dynamic model may involve explicit treatment of parametric and non-
parametric uncertainties that arise because the model only approximately describes
the real system behavior, implying that there are usually no true values of the
model parameters and the accuracy of its predictions is uncertain. In the engineering
literature, the mathematical problem to be solved numerically for the probability
of performance failure, commonly called the failure probability, is referred to as
the first-passage reliability problem. It does not have an analytical solution, and
numerical solutions must face two challenging aspects:

1. The vector representing the time-discretized stochastic process that models the
future system excitation lies in an input space of high dimension;

2. The dynamic systems of interest are assumed to be highly reliable so that their
performance failure is a rare event, that is, the probability of its occurrence, pE ,
is very small.

As a result, standard Monte Carlo simulation and importance sampling methods
are not computationally efficient for first-passage reliability problems. On the other
hand, subset simulation has proved to be a general and powerful method for
numerical solution of these problems. Like MCS, it is not affected by the dimension
of the input space, and for a single run, it produces a plot of pE vs. threshold
b covering pE 2 Œp�L

0 ; 1�, where L is the number of levels used. For a critical
appraisal of methods for first-passage reliability problems in high dimensions, the
reader may wish to check Schuëller et al. [48].

Several variants of subset simulation have been developed motivated by the goal
of further improving the computational efficiency of the original version, although
the efficiency gains, if any, are modest. All of them have an accuracy described by
a coefficient of variation for the estimate of the rare-event probability that depends
on ln.1=pE/ rather than

p
1=pE as in standard Monte Carlo simulation. For all

methods covered in this section, the dependence of this coefficient of variation
on the number of samples N is proportional to N�1=2. Therefore, in the case of
very low probabilities, pE , it still requires thousands of simulations (large N ) of the
response time history based on a dynamic model as in (1) in order to get acceptable
accuracy. For complex models, this computational effort may be prohibitive.

One approach to reduce the computational effort when estimating very low
rare-event probabilities is to utilize additional information about the nature of the
problem for specific classes of reliability problems (e.g., [2, 3]). Another more
general approach is to construct surrogate models (meta-models) based on using
a relatively small number of complex-model simulations as training data. The idea
is to use a trained surrogate model to rapidly calculate an approximation of the
response of the complex computational model as a substitute when drawing new
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samples. Various methods for constructing surrogate models have been applied in
reliability engineering, including response surfaces [14], support vector machines
[13, 23], neural networks [41], and Gaussian process modeling (Kriging) [21]. The
latter method is a particularly powerful one because it also provides a probabilistic
assessment of the approximation error. It deserves further exploration, especially
with regard to the optimal balance between the accuracy of the surrogate model
as a function of the number of training samples from the complex model and the
accuracy of the estimate of the rare-event probability as a function of the total
number of samples from both the complex model and the surrogate model.
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