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ABSTRACT: Complex technological networks designed for distribution of some resource or commodity are a
pervasive feature of modern society. Moreover, the dependence of our society on modern technological networks
constantly grows. As a result, there is an increasing demand for these networks to be highly reliable. The degree
to which a network is able to provide the required service needs to be quantitatively estimated. This quantitative
assessment of network reliability is a very important aspect of network design, optimization, and operation.
In this paper, we propose a framework for quantitative assessment of network reliability, formulate a general
network reliability problem within this framework, and propose an efficient Markov chain Monte Carlo method
for solving this problem, which is based on Subset Simulation, a very efficient stochastic simulation method
originally developed for estimation of small failure probabilities of complex civil engineering structures such
as tall buildings and bridges at risk from earthquakes. The efficiency of the method is demonstrated with an
illustrative example where two small-world network models are compared in terms of reliability of networks
they produce.

1 INTRODUCTION

Complex technological networks are a pervasive fea-
ture of modern society. The worldwide increase in ur-
banization and globalization, accompanied by rapid
growth of infrastructure and technology, has pro-
duced complex networks with ever more interdepen-
dent components. These networks are designed for
distribution of some resource or commodity. Exam-
ples include transportation networks (e.g. networks of
roads or rails, or networks of airline routes), commu-
nication networks (e.g. telephone networks or the In-
ternet), utility networks (e.g. networks for delivery of
electricity, gas or water), etc.

Systems in the form of technological networks are
an integral part of megacities; their failures, although
rare, have serious consequences on the wellbeing of
society. The dependence of our society on techno-
logical systems and information networks constantly
grows. Nowadays we can hardly imagine our life
without electricity, telephones, airplanes, and even
without the Internet. As a result, there is an increas-
ing demand for modern technological networks to be
highly reliable. The degree to which a network is able
to provide the required service needs to be quantita-
tively estimated. This quantitative assessment of net-

work reliability is a very important aspect of network
design, optimization, and operation.

Traditional methods for network reliability analy-
ses are based on graph theory and mostly look at
small scale networks. These methods aim to exactly
compute the network reliability and can be roughly
classified by the following (not mutually exclusive)
three categories: enumeration methods, direct meth-
ods, and decomposition methods. Enumeration meth-
ods are typically based on either complete state enu-
meration or (more sophisticated) a minpath or mincut
enumeration. Direct methods are intended to compute
the reliability of a network from the structure of the
underlying graph, without a preliminary search for the
minpaths and mincuts. In decomposition methods, the
main idea is to divide the network into several sub-
networks, and the overall reliability is then calculated
based on the reliabilities of the corresponding subnet-
works. A detailed review of traditional methods for
reliability analysis of small scale network is provided
in (Jonczy & Haenni 2007). All these methods in one
way or another are based on combinatorial exhaustive
search through the network.

On the other hand, one of the inherent characteris-
tic features of modern technological networks is their
very large size. Today the complexity of real-world



networks can reach millions or even billions of ver-
tices and edges with incomprehensible topology.

This dramatic change of scale induced a corre-
sponding change in the philosophy of reliability anal-
yses. Many of the exhaustive search algorithms that
have been applied to small networks are simply not
feasible for large networks, since essentially all reli-
ability problems of interest are NP-hard (Rosenthal
1977) and the exhaustive algorithms grow in com-
plexity very rapidly as a function of the network size.
It has been thus recognized that the classical meth-
ods of reliability and risk analysis fail to provide the
proper instruments for analysis of actual modern net-
works (Zio 2007). As a result, a new field of research
has recently emerged with the focus shifting away
from the combinatorial exhaustive search methodol-
ogy to the study of statistical properties of large net-
works, together with the study of their robustness to
random failures, errors, and intentional attacks.

In this paper, we propose a framework for quan-
titative assessment of network reliability, formulate a
general network reliability problem within this frame-
work, and propose an efficient Markov chain Monte
Carlo method for solving this problem, which is based
on Subset Simulation (Au & Beck 2001), a very ef-
ficient stochastic simulation method originally de-
veloped for estimation of small failure probabilities
of complex civil engineering structures such as tall
buildings and bridges at risk from earthquakes.

We proceed as follows. In the next section, we
formulate a general network reliability problem sub-
jected to several realistic conditions that make this
problem computationally difficult. In Section 3, we
describe the Subset Simulation algorithm for solving
the network reliability problem. An illustrative ex-
ample that demonstrates how Subset Simulation can
be effectively used for solving the maximum-flow
reliability problem and for finding reliable network
topologies is provided in Section 4. Concluding re-
marks are made in Section 5.

2 NETWORK RELIABILITY PROBLEM

A network topology is represented as a graph G =
(V,E), where V = {v1, . . . , vn} and E = {e1, . . . , em}
are sets of n nodes (or vertices) and m links (or
edges), respectively. Any graph G with n nodes can
be represented by its n× n adjacency matrix A(G),
where Aij = 1 if there is a link connecting vi to vj
(i ̸= j) and Aij = 0 otherwise. The degree of a node
vi ∈ V , denoted d(vi), is the number of links inci-
dent to the node and it is equal to the ith row sum
of A. The graph G may be either undirected or di-
rected. In the latter case, the adjacency matrix A(G)
is not necessarily symmetric. In this case, node degree
d(v) is replaced by in-degree din(v) and out-degree
dout(v), which count the number of links pointing in
towards and out from a node, respectively. In general,
any undirected network can be considered as directed

after replacement of every undirected link by two cor-
responding opposing directed links.

In what follows we assume that nodes are per-
fectly reliable, i.e. they have zero failure probabil-
ity. It can be shown that any network with node fail-
ures is polynomial-time reducible into an equivalent
directed network with link failures only (Colbourn
1987). Thus, this assumption does not, in fact, limit
the generality, and networks with link failures only
are sufficiently general.

A network state is defined as an m-tuple s =
(s1, . . . , sm) with si ∈ [0,1], where si = 1 if link ei
is fully operational (or “up”) and si = 0 if link ei is
completely failed (or “down”). If si ∈ (0,1), then link
ei is partially operational. The set of all network states
S is then an m-dimensional hypercube,

S = {(s1, . . . , sm) | si ∈ [0,1]} = [0,1]m (1)

Let π(s) be a probability distribution on the net-
work state space S which provides a probability
model for the occurrence of different network states,
s ∼ π(s). For example, if we assume that each link ei
is either up (si = 1) or down (si = 0) and that links fail
independently of each other with failure probabilities
pi, then this induces a discrete probability distribution
on S: each state s = (s1, . . . , sm) with si = 0,1 has
occurrence probability

π(s) =
m∏
i=1

qsii p
1−si
i , (2)

where qi = 1− pi is the edge reliability; partially op-
erational links do not occur in this model. In general
case, π(s) is a continuous probability model on S, and
its choice depends on a particular network.

Furthermore, we define a performance function µ :
S →R that quantifies the degree to which the network
provides the required service. In the context of net-
works, µ is typically interpreted as a utility function,
i.e. higher values of µ correspond to better network
performance. Let us define the failure domain F ⊂ S
as follows:

F = {s ∈ S | µ(s) < µ∗}, (3)

where µ∗ is the critical threshold.
The network reliability problem is to compute the

probability of failure pF , that is given by the following
integral:

pF = P(s ∈ F) =
∫
S
π(s)IF(s)ds = Eπ[IF ]. (4)

Several classical reliability problems (Ball, Col-
bourn, & Provan 1995, Rosenthal 1977, Colbourn
1987) are special cases of the above general formu-
lation, e.g. Source-to-Terminal Connectedness, Net-
work Connectedness, Traffic to Central Site, to name
but a few.

We make the following real-life assumptions:



(i) The computational effort for evaluating the net-
work performance function µ(s) for each state
s ∈ S is significant, thereby making the indica-
tor function IF(s) expensive to compute. There-
fore, it is essential to minimize the number of
such function evaluations.

(ii) The number of edges m is large, i.e. m ≫ 1.
Many actual networks have millions (e.g. road
networks), or even billions, of edges (e.g. the In-
ternet).

(iii) The probability of failure pF is very small, i.e.
pF ≪ 1. Real-life networks are reliable to some
extent (otherwise they would not be in use), and
their failures are usually rare events.

These assumptions make the network reliability
problem computationally very challenging. Due to
(i) and (ii), the integral in (4) is taken over a high-
dimensional hypercube and the integrand is expensive
to compute. Therefore, the exact computation of the
failure probability pF is infeasible.

The expression of pF as a mathematical expectation
(4) renders standard Monte Carlo method directly ap-
plicable, where pF is estimated as a sample average
of IF(s) over independent and identically distributed
samples of s drawn from distribution π(s):

p̂
(MC)
F =

1

N

N∑
i=1

IF(s
(i)), s(i) ∼ π(s) (5)

This estimate is unbiased and the coefficient of varia-
tion, serving as a measure of the statistical error, is

δMC =

√
1− pF
NpF

(6)

Although standard Monte Carlo is independent of
the dimension m of the network state space S, it is
inefficient in estimating small probabilities because
it requires a large number of samples (∼ 1/pF ) to
achieve an acceptable level of accuracy. For example,
if pF = 10−4 and we want to achieve an accuracy of
δMC = 10%, then we need approximately N = 106

samples. Therefore, due to conditions (i) and (iii),
standard Monte Carlo becomes computationally pro-
hibitive for our problems of interest involving small
failure probabilities.

3 SUBSET SIMULATION

The main idea of Subset Simulation (Au & Beck
2001) is to represent a small failure probability pF as a
product pF =

∏L
j=1 pj of larger probabilities pj > pF ,

where the factors pj are estimated sequentially, pj ≈
p̂j to obtain an estimate p̂F for pF as p̂F =

∏L
j=1 p̂j . To

achieve this goal, let us consider a sequence of nested

subsets of the network state space S, starting from the
entire space and shrinking to the failure domain:

S = F0 ⊃ F1 ⊃ . . . ⊃ FL = F (7)

Subsets F0, . . . ,FL−1 are called intermediate failure
domains. The failure probability can be written then
as a product of conditional probabilities:

pF =
L∏

j=1

P(Fj|Fj−1) =
L∏

j=1

pj, (8)

where pj = P(Fj|Fj−1) is the conditional probability
at the (j− 1)th conditional level. Clearly, by choosing
the intermediate failure domains F1, . . . ,FL−1 appro-
priately, all conditional probabilities p1, . . . , pL can be
made sufficiently large. The original network reliabil-
ity problem (estimation of the small failure probabil-
ity pF ) is thus replaced by a sequence of L interme-
diate problems: estimation of the larger failure proba-
bilities pj , j = 1, . . . ,L.

The first probability p1 = P(F1|S) = P(F1) can be
simply estimated by standard Monte Carlo simulation
(MCS):

p1 ≈ p̂1 =
1

N

N∑
i=1

IF1(s
(i)
0 ),

s
(i)
0

i.i.d.∼ π(s|F0) ≡ π(s)

(9)

We assume here that F1 is chosen in such a way that
p1 is relatively large, so that the MCS estimate (9)
is accurate for a moderate sample size N . Later in
this section, we will discuss how to chose intermedi-
ate failure domains Fj adaptively.

For j ≥ 2, to estimate pj using MSC one needs
to simulate i.i.d. samples from conditional distribu-
tion π(s|Fj−1), which, for general π(s) and Fj−1,
is not a trivial task. For example, it would be inef-
ficient to use MCS for this purpose (i.e. to sample
from π(s) and accept only those samples that belong
to Fj−1), especially at higher levels. Sampling from
π(s|Fj−1) for j ≥ 2 can be done by a specifically tai-
lored MCMC technique at the expense of generating
dependent samples.

The Metropolis-Hastings (MH) algorithm (Hast-
ings 1970) is perhaps the most popular MCMC algo-
rithm for sampling from a probability distribution that
is difficult to sample from directly. In this algorithm
samples are generated as the states of a Markov chain,
which has the target distribution, i.e. the distribution
we want to sample from, as its stationary distribu-
tion. In our case, the target distribution is π(s|Fj−1) =
π(s)IFj−1

(s)/Zj−1, where Zj−1 = P(Fj−1) is a nor-
malizing constant. Let s(i)j−1 be the current state of the
Markov chain and q(s|s(i)j−1), called the proposal PDF,
be an m-dimensional PDF on the network state space



S that depends on s
(i)
j−1 and can be readily sampled.

Then the MH update s
(i)
j−1 → s

(i+1)
j−1 of the Markov

chain works as follows:

1. Generate a candidate state ξ ∈ S according to
q(s|s(i)j−1),

2. Compute the acceptance probability

α = IFj−1
(ξ)min

{
1,

π(ξ)q(s
(i)
j−1|ξ)

π(s
(i)
j−1)q(ξ|s

(i)
j−1)

}
3. Accept ξ as the next state of the Markov chain,

i.e. set s(i+1)
j−1 = ξ, with probability α, or reject it,

i.e. set s(i+1)
j−1 = s

(i)
j−1 with the remaining proba-

bility 1− α.

It is easy to show that this update leaves π(s|Fj−1)

invariant, i.e. if s
(i)
j−1 is distributed according to

π(s|Fj−1), then so is s
(i+1)
j−1 , and if the Markov chain

is run for sufficiently long time (the ”burn-in period“),
starting from essentially any “seed” s(1)j−1 ∈ Fj−1, then
for large N the distribution of s

(N)
j−1 will be approx-

imately π(s|Fj−1). Note, however, that usually it is
very difficult to check whether the Markov chain has
converged to its stationary distribution. But if the seed
s
(1)
j−1 ∼ π(s|Fj−1), then all states of the Markov chain

will be automatically distributed according to the tar-
get distribution, s(i)j−1 ∼ π(s|Fj−1), i = 1, . . . ,N . The
absence of the burn-in period (i.e. the absence of the
convergence problem) is often referred to as perfect
sampling (Robert & Casella 2004) and Subset Simu-
lation has this property because of the way the seeds
are selected.

It was observed in (Au & Beck 2001) however,
that the original Metropolis-Hastings algorithm suf-
fers from the curse of dimensionality. Namely, it is
not efficient in high-dimensional conditional proba-
bility spaces, because it produces a Markov chain
with very highly correlated states. Therefore, if the
total number of network links m is large, then the
MH algorithm will be inefficient for sampling from
π(s|Fj−1), where Fj−1 ⊂ S = [0,1]m. In Subset Sim-
ulation, the Modified Metropolis algorithm (MMA)
(Au & Beck 2001), an MCMC technique based on the
original MH algorithm is used instead for sampling
from the conditional distributions π(s|Fj−1). MMA
differs from the MH algorithm in the way the candi-
date state ξ = (ξ1, . . . , ξm) is generated. Instead of us-
ing an m-dimensional proposal PDF on S to directly
obtain the candidate state, in MMA a sequence of uni-
variate proposal PDFs is used. Namely, each coordi-
nate ξk of the candidate state is generated separately
using a univariate proposal distribution qk(sk|s(i)j−1,k)

dependent on the kth coordinate s
(i)
j−1,k of the current

state. Then a check is made whether the m-variate
candidate ξ ∈ S generated in such a way belongs to
the subset Fj−1 in which case it is accepted as the

next Markov chain state; otherwise it is rejected and
the current MCMC sample is repeated. For details on
MMA, we refer the reader to the original paper (Au
& Beck 2001) and to (Zuev, Beck, Au, & Katafygio-
tis 2012) where the algorithm is discussed in depth.

Let us assume now that we are given a seed s
(1)
j−1 ∼

π(s|Fj−1), where j = 2, . . . ,L. Then, using MMA,
we can generate a Markov chain with N states starting
from this seed and construct an estimate for pj similar
to (9), where MCS samples are replaced by MCMC
samples:

pj ≈ p̂j =
1

N

N∑
i=1

IFj
(s

(i)
j−1),

s
(i)
j−1

MMA∼ π(s|Fj−1)

(10)

Note that all samples s(1)j−1, . . . , s
(N)
j−1 in (10) are identi-

cally distributed in the stationary state of the Markov
chain, but are not independent. Nevertheless, these
MCMC samples can be used for statistical averaging
as if they were i.i.d., although with some reduction in
efficiency (Doob 1953).

Subset Simulation uses the estimates (9) for p1 and
(10) for pj , j ≥ 2, to obtain the estimate for the failure
probability:

pF ≈ p̂F =
L∏

j=1

p̂j (11)

The remaining ingredient of Subset Simulation that
we have to discuss is the choice of intermediate fail-
ure domains F1, . . . ,FL−1. Recall that the “ultimate”
failure domain F = FL ∈ S is defined as F = {s ∈
S | µ(s) < µ∗}. The sequence of intermediate failure
domains can then be defined in a similar way:

Fj = {s ∈ S | µ(s) < µ∗
j}, (12)

where µ∗ = µ∗
L < µ∗

L−1 < . . . < µ∗
1 is a sequence of in-

termediate critical thresholds. Intermediate threshold
values µ∗

j define the values of the conditional prob-
abilities pj = P(Fj|Fj−1) and, therefore, affect the
efficiency of Subset Simulation. In practical cases it
is difficult to make a rational choice of the µ∗

j -values
in advance, so the µ∗

j are chosen adaptively (see (13)
below) so that the estimated conditional probabilities
are equal to a fixed value p0 ∈ (0,1). In (Zuev, Beck,
Au, & Katafygiotis 2012), p0 is called the conditional
failure probability.

SubSim for Network Reliability Problem
Input:

◃ p0, conditional failure probability;
◃ N , number of samples per conditional level.

Algorithm:
Set j = 0, number of conditional level.



Set NF(j) = 0, number of failure samples at level j.
Sample s

(1)
0 , . . . , s

(N)
0

i.i.d.∼ π(s).
for i = 1, . . . ,N do

if µ(i) = µ(s
(i)
0 ) < µ∗ do

NF(j)← NF(j) + 1
end if

end for
while NF(j)/N < p0 do

j ← j + 1
Sort {µ(i)}: µ(i1) ≤ µ(i2) ≤ . . . ≤ µ(iN )

Define

µ∗
j =

µ(iNp0
) + µ(iNp0+1)

2
(13)

for k = 1, . . . ,Np0 do
Starting from s

(1),k
j = s

(ik)
j−1 ∼ π(s|Fj), generate

1/p0 states of a Markov chain
s
(1),k
j , . . . , s

(1/p0),k
j ∼ π(s|Fj), using MMA.

end for
Renumber:
{s(i),kj }Np0,1/p0

k=1,i=1 7→ s
(1)
j , . . . , s

(N)
j ∼ π(s|Fj)

for i = 1, . . . ,N do
if µ(i) = µ(s

(i)
j ) < µ∗ do

NF(j)← NF(j) + 1
end if

end for
end while
Output:

I p̂F , estimate of pF :

p̂F = pj0
NF(j)

N
(14)

The adaptive choice of µ∗
j -values in (13) guaran-

tees, first, that all seeds s
(1),k
j are distributed accord-

ing to π(s|Fj) and, second, that the estimated con-
ditional probability P(Fj|Fj−1) is equal to p0. Here,
for convenience, p0 is assumed to be chosen such that
Np0 and 1/p0 are positive integers, although this is
not strictly necessary. It was demonstrated in (Zuev,
Beck, Au, & Katafygiotis 2012) that choosing any
p0 ∈ [0.1,0.3] will lead to similar efficiency and it is
not necessary to fine tune the value of the conditional
failure probability as long as Subset Simulation is im-
plemented properly.

4 EXAMPLE: MAXIMUM FLOWS IN
SMALL-WORLD NETWORKS

In this section we illustrate how Subset Simulation
can be used for solving the maximum-flow reliability
problem and for finding reliable network topologies.

4.1 The maximum-flow reliability problem

Network flow problems naturally arise in many real
world applications such as coordination of vehicles
in a transportation network, distribution of water in a
utility network, and routing of packets in a communi-
cation network. The maximum-flow problem, where
the goal is to maximize the total flow from one node
of a network to another, is one of the classical network
flow problems (Ford & Fulkerson 1962).

Suppose that in addition to a network G= (V,E), a
distinguished pair of nodes, the source a ∈ V and the
sink b ∈ V , is specified. Also assume that each link
e = (v,u) ∈ E has a non-negative capacity c(v,u) ≥
0. A quadruple (G,a, b,{c}) is often referred to as a
flow network. A flow on G is non-negative function
f : E → R+ that satisfies the following properties:

• Capacity constraint: the flow along any link can-
not exceed the capacity of that link,

f(v,u) ≤ c(v,u), for all (v,u) ∈ E (15)

• Flow conservation: the total flow entering node
v must equal the total flow leaving v for all nodes
except a and b,∑
u∈V

f(u, v) =
∑
u∈V

f(v,u), v ∈ V \ {a, b} (16)

For convenience, it is assumed in (16), that
f(v,u) = 0 if (v,u) /∈ E.

The value |f | of a flow f is the net flow out of the
source:

|f | =
∑
v∈V

f(a, v)−
∑
v∈V

f(v, a) (17)

It is easy to show that |f | also equals the net flow into
the sink,

|f | =
∑
v∈V

f(v, b)−
∑
v∈V

f(b, v) (18)

The value of a flow represents how much one can
transport from the source to the sink.

The maximum-flow problem is that of finding the
maximum flow f⋆ = argmax |f | in a given flow net-
work (G,a, b,{c}). There is a simple algorithm called
the augmented path algorithm (also called the Ford-
Fulkerson algorithm) that calculates the maximum
flows between nodes in polynomial time. The the-
ory of maximum flow algorithms is well covered in
(Ahuja, Magnati, & Orlin 1962).

The maximum-flow reliability problem considered
in this paper is motivated by the maximum-flow prob-
lem. Assume for convenience that all link capacities
s1, . . . , sm are normalized, 0 ≤ si ≤ 1, and suppose
that, instead of being prescribed, they are uncertain.
For example, due to environmental degradation, pipes



in a water distribution network may leak at an un-
known rate. Let π be a probability model for link ca-
pacities, i.e. a probability distribution on the network
state space S = {s = (s1, . . . , sm) | 0 ≤ si ≤ 1}. For
a given realization s ∼ π(s), we define the max-flow
network performance function to be equal to the value
of the corresponding maximum flow:

µMF (s) = |f ⋆(s)| (19)

The failure domain F ⊂ S can now be defined as be-
fore, F = {s ∈ S | µMF (s) < µ∗}, where µ∗ is the
critical threshold. Thus, the introduction of uncertain
link capacities brings us into the network reliability
framework described in (4): pF = P(s ∈ F).

One of the fundamental questions in network sci-
ence and reliability theory is the following: given n
nodes and m links, how to combine them into the
most reliable network? In the next section we ana-
lyze a simpler but related question: given two network
models that generate componentwise equivalent but
topologically different networks, how to find out what
network model produces a more reliable network?

4.2 Small-world network models

One of the most important breakthroughs in modeling
real-world networks was a shift from classical ran-
dom graph models, where links between nodes are
placed purely at random, to models that explicitly
mimic certain statistical properties observed in actual
networks. Small-world network models were origi-
nally inspired by the counter intuitive phenomenon
observed by the social psychologist Stanley Milgram
in human social networks (Milgram 1967). In his fa-
mous experiment, each of the participants (randomly
chosen in Nebraska) was asked to forward a letter
to one of their friends in an attempt to get the let-
ter ultimately to a desired target person (who lived
in Boston, Massachusetts). The obtained results were
very surprising: the average number of people needed
to transmit the letter to the target was approximately
six. This gave birth to the popular belief that there
are only about six handshakes between any two peo-
ple in the world, so-called “six degrees of separation.”
Milgram’s experiment was one of the first quantita-
tive observations of the small-world effect, the fact
that despite their often large size and high level of
clustering, in most actual networks there is a rela-
tively short path between almost any two nodes. The
small-world effect has been observed in many real
networks, including technological ones such as power
grids (Watts & Strogatz 1998), airline routes (Ama-
ral, Scala, Barthelemy, & Stanley 2000), and railways
(Sen, Dasgupta, Chatterjee, Sreeram, Mukherjee, &
Manna 2003).

In their seminal paper, (Watts & Strogatz 1998)
proposed the first network model (the WS model) that
generates “small-worlds”, i.e. networks with small

average shortest-path lengths and high levels of clus-
tering. The original WS model is a one-parameter
model which interpolates between a regular lattice
and a random graph. The model starts from a one-
dimensional lattice of n nodes with periodic bound-
ary conditions, i.e. a ring lattice. Each node is then
connected to its first 2k neighbors (k on either side),
with k≪ n. Thus we obtain a regular symmetric lat-
tice with m = nk links. The small-world network is
then created by taking each link and turn and, with
probability p, rewiring one end of that link to a new
node chosen uniformly at random. The rewiring pro-
cess generates on average pnk long-range connec-
tions. Note that, as p goes from 0 to 1, the model
moves from a deterministic regular lattice to a ran-
dom graph. For 0 < p < 1, the WS model generates
networks with the small-world property.

Since the pioneering work of Watts and Strogatz,
many modifications of the WS model have been pro-
posed and studied. In this paper, we consider two
small-world network models that are built on one-
and two-dimensional lattices with periodic boundary
conditions, the small-world ring model and the small-
world torus model, respectively.

• Small-World Ring model ⊗(n,k)
As the WS model, ⊗(n,k) starts with a ring lat-
tice of n nodes. This lattice has n undirected
links, which equivalently can be considered as
2n directed links. Next, for each node v, the
model generates k additional directed links con-
necting that node with other k nodes v1, . . . , vk
chosen uniformly at random. Note that for each
selected vi, either link (v, vi) or (vi, v) is placed
with equal probabilities.

• Small-World Torus model �(n,k)
This model starts with a square n×n lattice. Pe-
riodic boundary conditions make it topologically
equivalent to a 2-D torus, hence the name of the
model. This torus has 2n2 undirected links, or,
equivalently, 4n2 directed links. The small-world
torus �(n,k) is then created by adding k directed
links per each node in the same way as in the case
of ⊗(n,k) above.

Hereafter, we refer to deterministic lattice links as the
regular links and to the randomly generated links as
the random shortcuts. Realizations of ⊗(16,3) and
�(4,1) are schematically shown in Figures 1(a) and
1(b), respectively.

It is easy to see that ⊗(n1, k1) and �(n2, k2) pro-
duce componentwise equivalent networks if and only
if n1 = n2

2 and k1 = k2 + 2. Topologically, however,
the network realizations of these models will still be
different, since the underlying lattices have different
dimensions. Thus, we have:

Componentwise: ⊗ (n2, k + 2) = �(n,k)

Topologically: ⊗ (n2, k + 2) ̸= �(n,k)
(20)



Figure 1: (a) Realization of the small-world ring model ⊗(n,k),
with n = 16 and k = 3. Solid and dashed lines represent regu-
lar links and random shortcuts, respectively. For visibility, only
random shortcuts that correspond to nodes 1, 5, 9, and 13 are
shown; (b) Realization of the small-world torus model �(n,k),
with n = 4 and k = 1. Solid and dashed lines represent regu-
lar links and random shortcuts, respectively. For visibility, only
random shortcuts that correspond to nodes 1, 4, 13, and 16 are
shown.

The small-world torus model �(n,k) has more
regular links, while the small-world ring model
⊗(n2, k + 2) has more random shortcuts. This split
between the number of regular links versus random
shortcuts, that represents the tradeoff between local
connectivity and global reachability, has the poten-
tial to yield significantly different reliability proper-
ties for the two network models. To demonstrate the
effectiveness of Subset Simulation for network relia-
bility estimation, we investigate the following ques-
tion: what model,⊗(n2, k+2) or �(n,k), produces a
more reliable network, where reliability is understood
as the maximum-flow reliability?

4.3 Simulation results

Reliabilities of two network models with different
topologies can be compared in the following way.
Given a network realization ⊗̂ ∼ ⊗(n2, k + 2), a
source-sink pair (a, b), and the critical threshold
µ∗, we can estimate the network failure probability
pF(⊗̂; (a, b);µ∗) with respect to the max-flow per-
formance function (19), using Subset Simulation de-
scribed in Section 3. By averaging over different net-
work realizations and source-sink pairs, we obtain the
expected failure probability for a given critical thresh-
old for the small-world ring model:

p̄F ,⊗(µ
∗) =E⊗,(a,b)[pF(⊗̂; (a, b);µ∗)]

≈ 1

M

M∑
i=1

pF(⊗̂i; (ai, bi);µ
∗)

(21)

Similarly we can estimate the expected failure proba-
bility for the small-world torus model:

p̄F ,�(µ
∗) =E�,(a,b)[pF(�̂; (a, b);µ∗)]

≈ 1

M

M∑
i=1

pF(�̂i; (ai, bi);µ
∗),

(22)

Figure 2: The relative reliability curve in the linear scale (left
panel) and log scale (right panel), for n=5. Here, p1 = p̄F,⊗ and
p2 = p̄F,� as in (21) and (22) for µ∗ ∈ (0.1,3).

Figure 3: The relative reliability curve in the linear scale (left
panel) and log scale (right panel), for n=8. Here, p1 = p̄F,⊗ and
p2 = p̄F,� as in (21) and (22) for µ∗ ∈ (0.1,6).

where �̂i ∼ �(n,k) are i.i.d, and node pairs (ai, bi)
are chosen uniformly at random.

Since our goal is to compare reliabilities of net-
works that are produced by the two network models,
we are interested not in the functions p̄F ,⊗(µ

∗) and
p̄F ,�(µ

∗) per se, but rather in their relative behavior.
We can achieve this by treating the critical threshold
µ∗ as a parameter and plotting p̄F ,⊗ versus p̄F ,�. The
resulting curve will lie in the unit square, since both
probabilities are between 0 and 1; it starts at (0,0),
since both probabilities converge to 0, as µ∗ → −∞;
and it ends at (1,1), since both probabilities converge
to 1, as µ∗ → +∞. We refer to this curve as the rel-
ative reliability curve. We are especially interested in
the behavior of the relative failure probability curve
in the vicinity of the origin (0,0), since this region
corresponds to highly reliable networks, and an accu-
rate estimation of failure probabilities in this region is
especially challenging.

In this paper, we compare the reliability proper-
ties of ⊗(n2, k + 2) and �(n,k) for two values of n,
namely, n= 5 and n= 8. For each n, we consider sev-
eral values of k, i.e. several different numbers of ran-
dom shortcuts per node. The number of samples used
in each Subset Simulation run is N = 2000 per level,
and the conditional failure probability is p0 = 0.1.
Figures 2 and 3 show the resulting relative reliability
curves for n = 5 and n = 8, respectively.

For n = 5, k = 0,1,2, and 3 are studied. For
both small-world ring and small-world torus models,
M = 200 network realizations {⊗̂i} and {�̂i} and



source-sink pairs {(ai, bi)} are generated to estimate
the expected failure probabilities in (21) and (22). A
fine grid of µ∗-values between 0.1 and 3 is used to
obtain the relative reliability curve in Figure 2. For
n = 8, k = 0,1,2, and 4 are considered. In this case,
M = 100 network realizations and source-sink pairs
are simulated to estimate p̄F ,⊗(µ

∗) and p̄F ,�(µ
∗) in

(21) and (22), respectively. A fine grid of µ∗-values
between 0.1 and 6 is used to obtain the relative relia-
bility curve in Figure 3.

For both n= 5 and n= 8, we observe the following
results:

1. The relative reliability curve lies below the equal
reliability line, i.e. below the diagonal that con-
nects the origin (0,0) with (1,1). This indicates
that, on average, the small-world torus model
produces a more reliable (in the max-flow sense)
network than the small-world ring model.

2. When k increases, the relative reliability curve
shifts towards the equal reliability line. This re-
sult is expected because as k increases, both
network models become topologically closer to
each other (both converge to a random graph),
and, therefore, their reliability properties become
similar.

3. The relative reliability curve is approximately
linear in the log-scale, i.e.

p̄F ,� ≈ (p̄F ,⊗)
α, α < 1 (23)

This suggests that when both models produce
highly reliable networks, i.e. when the critical
threshold µ∗ is very small, the small-world torus
model produces a substantially more reliable net-
work than the small-world ring model does.

Thus, our simulation results show that the small-
world torus model is more efficient in producing
reliable networks than the small-world ring model,
where reliability is understood as the maximum-flow
reliability. It is important to highlight that if di-
rect Monte Carlo simulation were used instead of
Subset Simulation for estimating failure probabilities
pF(⊗̂i; (ai, bi);µ

∗) and pF(�̂i; (ai, bi);µ
∗) in (21) and

(22), respectively, then it would take impractically
long time to obtain these results.

5 CONCLUSIONS

In this paper, we propose a framework for quanti-
tative assessment of network reliability, formulate a
general network reliability problem within this frame-
work, and propose an efficient Markov chain Monte
Carlo method for solving this problem. The proposed
method is based on Subset Simulation, a very efficient
stochastic simulation method originally developed for
estimation of small failure probabilities of complex

civil engineering structures such as tall buildings and
bridges at risk from earthquakes. The efficiency of
the method is demonstrated with an illustrative exam-
ple where two small-world network models, namely,
the small-world torus model and the small-world ring
model, are compared in terms of reliability of net-
works they produce, where reliability is understood
as the maximum-flow reliability. Simulation results
demonstrate that the small-world torus model is more
efficient in producing reliable networks.
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