July 27 Workshop - Dimensions, Determinants, and Eigenspaces

Question 1. Consider the set

$$SL_n(\mathbb{R}) = \{A \mid \det(A) = 1\},\$$

where A is an $n \times n$ matrix. Show that $SL_n(\mathbb{R})$ is a *group* with the operation of matrix multiplication by proving the following.

- (a) CLOSED UNDER MULTIPLICATION. If $A, B \in SL_n(\mathbb{R})$, then $A \cdot B \in SL_n(\mathbb{R})$.
- (b) EXISTENCE OF IDENTITY. Prove that there exists some element $I \in SL_n(\mathbb{R})$ such that $I \cdot A = A \cdot I = A$ for all $A \in SL_n(\mathbb{R})$.
- (c) CLOSED UNDER INVERSES. Prove that for every $A \in SL_n(\mathbb{R})$, there exists some $A^{-1} \in SL_n(\mathbb{R})$ such that $A \cdot A^{-1} = I_n$.

Question 2. A square matrix A is similar to a square matrix B if there is some invertible matrix P such that

$$A = PBP^{-1}.$$

These similarities are very important in changing basis.

- (a) If A and B are similar, show that det(A) = det(B).
- (b) Use (a) to show that A is invertible if and only if B is invertible.
- (c) Show that if A is invertible (and thus B is also invertible), then A^{-1} is similar to B^{-1} .
- (d) If A and B are similar, show that they have the same characteristic polynomial and thus have equivalent eigenvalues.
- (e) Find the the eigenvalues of the (2×2) -matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right].$$

Use this and (d) to show that A is not similar to the identity matrix.

Question 3. Consider the (3×3) -matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{array} \right].$$

- (a) Find the characteristic polynomial of A. Use it to find the eigenvalues of A.
- (b) For each of the above eigenvalues, compute the corresponding eigenspaces.
- (c) Sketch the eigenspaces in \mathbb{R}^3 . How does the matrix A transform these eigenspaces?

Question 4. Let A be an upper triangular matrix.

- (a) Show that the eigenvalues of A are precisely its n diagonal entires.
- (b) Use determinants to show that A is invertible if and only if 0 is not a diagonal entry.
- (c) Use (a) to show that for an upper triangular A, its determinant is equal to the product of its eigenvalues.
- (d) Argue that if 0 were an eigenvalue of A, then some (non-zero) eigenvector x is being mapped to 0 by A; thus A is not an injective map and therefore not invertible.
- (e) Use properties of determinant and transposes to show that A and A^T have the same characteristic polynomials and thus the same eigenvalues. Argue that this means that (a)-(d) hold true for lower triangular matrices as well.

Question 5. Consider the (2×2) -matrix

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

We will give a complete characterization of the eigenvalues for this general (2×2) -matrix.

- (a) Compute the characteristic polynomial for the matrix A in terms of the parameters a,b,c, and d.
- (b) Verify that the characteristic polynomial you found in (a) is equivalent to

$$\lambda^2 - \operatorname{tr}(A)\lambda + \det(A),$$

where tr(A) and det(A) are the trace and determinant of A, respectively.

- (c) For eigenvalues to exist, the characteristic polynomial of A must have real roots. Use the characteristic polynomial in (b) to find conditions on $\det(A)$ and $\operatorname{tr}(A)$ that will ensure that real roots (and thus eigenvalues) exist.
- (d) Under what conditions on tr(A) and det(A) will we have a single eigenvalue λ with multiplicity 2?