July 26 Workshop - Subspaces, Vector Spaces, and Bases

Question 1. Let \mathbb{P}_n be the space of polynomials of degree at most n with real coefficients. Of course, \mathbb{P}_n has a natural additive structure (addition of polynomials) and scalar multiplicative structure (multiply each coefficient of the polynomial by our real scalar). In what follows, we will prove that \mathbb{P}_n is a vector space and an important linear map on \mathbb{P}_n .

- (a) Prove that if $f, g \in \mathbb{P}_n$, then $\alpha f \in \mathbb{P}_n$ and $f + g \in \mathbb{P}_n$.
- (b) What is the additive identity in \mathbb{P}_n and what is the additive inverse of $f \in \mathbb{P}_n$?
- (c) Show that the vectors $1, x, x^2, \ldots, x^n$ form a basis for \mathbb{P}_n and thus $\dim(\mathbb{P}_n) = n+1$.
- (d) Let $D: \mathbb{P}_n \to \mathbb{P}_n$ be the map that sends f(x) to f'(x). Show that D is a linear map; that is, show that if $a \in \mathbb{R}$ and $f, g \in \mathbb{P}_n$, then $D(a \cdot f) = a \cdot D(f)$ and D(f+g) = D(f) + D(g).
- (e) Give a basis for the kernel and the image of D; what are their dimensions?

Question 2. Recall that if A is an $(n \times m)$ -matrix, then it may be viewed as a map from \mathbb{R}^m to \mathbb{R}^n defined by $\mathbf{x} \mapsto A\mathbf{x}$.

- (a) Show that Ker(A), the kernel of A, always contains the zero vector **0**.
- (b) Show that Ker(A) = 0 if and only if the map given by A is one-to-one.
- (c) If the columns of A are linearly dependent, show that $\operatorname{Ker}(A)$ contains a non-zero vector.
- (d) Show the converse of (c). That is, show that if the columns of A are linearly independent, then $Ker(A) = \mathbf{0}$.
- (e) Use (b) (d) to verify the following statement: The columns of A are linearly independent if and only if $Ker(A) = \mathbf{0}$ if and only if the map given by A is one-to-one.

Question 3.

- (a) Let A be an $m \times n$ -matrix and let $\mathbf{e_i}$ be the n-vector with a 1 in the i-th component and 0 everywhere else. Show that $A \cdot \mathbf{e_i}$ is the i-th column of the matrix A.
- (b) Use (a) to show that any $m \times n$ -matrix A such that $A \cdot \mathbf{x} = \mathbf{0}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$ must be the zero matrix.
- (c) Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ be a basis for \mathbb{R}^n . Show that $\operatorname{Col}(A)$ is spanned by $A \cdot \mathbf{v_i}$.
- (d) Use (c) to show that Col(A) is spanned by its column vectors.
- (e) Use (b) to show that if Col(A) = 0, then A is the zero matrix.

Question 4.

- (a) Prove that any collection of *n*-vectors that contains the zero vector $\mathbf{0} \in \mathbb{R}^n$ cannot be a basis for \mathbb{R}^n .
- (b) Prove that any two non-zero 2-vectors $\mathbf{v_1}, \mathbf{v_2} \in \mathbb{R}^2$ give a basis for \mathbb{R}^2 if and only if $\mathbf{v_1}$ is not a scalar multiple of $\mathbf{v_2}$ (that is, there is no $\alpha \in \mathbb{R}$ such that $\alpha \mathbf{v_2} = \mathbf{v_1}$).
- (c) Find a collection of three non-zero 3-vectors $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \in \mathbb{R}^3$ that do not form a basis for \mathbb{R}^3 but no one $\mathbf{v_i}$ is a scalar multiple of any other.

Question 5. Prove that if a set of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots \mathbf{v_n}$ are linearly dependent, then some $\mathbf{v_i}$ is in the span of the other n-1 vectors.

Question 6. Assume that **u** and **v** are two linearly independent *n*-vectors. Under what conditions on $a, b, c, d \in \mathbb{R}$ will the new vectors

$$a\mathbf{u} + b\mathbf{v}$$
 and $c\mathbf{u} + d\mathbf{v}$

also be linearly independent?

Question 7. Let S be a collection of vectors with the property that any pair of vectors in S are linearly dependent. Show that all the vectors in S are scalar multiples of a single vector.

Question 8. Consider the following system of equations:

$$x+4y-3z = 0$$

$$11x-y-3z = 0$$

$$-5x+y+z = 0$$

- (a) Find all the solutions to the above system. What is the dimension of the solution space?
- (b) What does the solution space tell us about independence of the vectors $v_1 = (1, 11, -5), v_2 = (4, -1, 1), \text{ and } v_3 = (-3, -3, 1)$? If they are dependent, find a relation among these vectors.