## July 25 Workshop - Vectors and Matrices

Question 1. The system of linear equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
  

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$
,  

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

can be represented as the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

where A is the  $3 \times 3$  matrix with  $a_{ij}$  as its ij-entry,  $\mathbf{x}$  is the 3-vector with entries  $[x_1, x_2, x_3]$ , and  $\mathbf{b}$  is the 3-vector with entries  $[b_1, b_2, b_3]$ . The vector  $\mathbf{x}$  is called a solution to the system  $A\mathbf{x} = \mathbf{b}$ . Furthermore, a system of equations is called homogenous if  $\mathbf{b}$  is the zero vector  $\mathbf{0}$  (and thus each  $b_i = 0$ ).

- (a) Show that if **y** and **z** are two solutions to a homogenous equation A**x** = **0**, then **y** + **z** and  $\alpha$ **y** are also solutions to the homogenous system for  $\alpha \in \mathbb{R}$ .
- (b) Show that (a) is not necessarily true if our system is not a homogenous equation.
- (c) Show that if **p** is a solution to the inhomogeneous equation  $A\mathbf{x} = \mathbf{b}$ , and **y** is a solution to the corresponding homogeneous equation  $A\mathbf{x} = \mathbf{0}$ , then  $\mathbf{y} + \mathbf{p}$  is a solution to  $A\mathbf{x} = \mathbf{b}$ .
- (d) Consider the system

$$3x - 4y + 4z = 7$$
  

$$x - y - 2z = 2$$
  

$$2x - 3y + 6z = 5$$

Write this system of equations as a matrix system  $A\mathbf{x} = \mathbf{b}$ . Show that  $\mathbf{p} = [1, -1, 0]$  is a solution to your matrix system.

- (e) Consider the *homogenous* system  $A\mathbf{x} = \mathbf{0}$ . Show that  $\mathbf{y} = [12, 10, 1]$  is a solution to this homogenous system.
- (f) Use (a) to show that  $\alpha \mathbf{y}$  is also a solution to the homogenous system  $A\mathbf{x} = \mathbf{0}$  for any  $\alpha \in \mathbb{R}$ .
- (g) Use (d), (f), and (c) to find infinitely many solutions to the inhomogeneous equation  $A\mathbf{x} = \mathbf{b}$ .

**Question 2.** For a square matrix A, we define the trace of A as the sum of the diagonal entries of A (and write it as tr(A)). Prove or disprove:

- a) tr(A+B) = tr(A) + tr(B)
- b) tr(AB) = tr(A)tr(B)
- c) tr(AB) = tr(BA).

Question 3. An  $n \times n$ -matrix  $A = (a_{ij})$  is called *symmetric* if  $a_{ij} = a_{ji}$  for all  $0 \le i, j \le n$ . Further, given an  $n \times m$ -matrix  $B = (b_{ij})$ , its transpose is the  $m \times n$ -matrix  $B^T$  whose i, j entry is  $b_{ji}$ . Thus, a square matrix A is symmetric if and only if  $A = A^T$ .

a) Let A and B be two  $n \times m$  matrices and  $\alpha \in \mathbb{R}$ . Prove that  $(A+B)^T = A^T + B^T$ ,  $(\alpha \cdot A)^T = \alpha \cdot A^T$ , and  $(A^T)^T = A$ 

1

b) Prove that if A is an  $n \times m$ -matrix and B is an  $m \times p$  matrix, then

$$(AB)^T = B^T A^T.$$

- c) Show that for any  $n \times n$ -matrix A, the matrices  $A \cdot A^T$  and  $A + A^T$  are symmetric.
- d) Show that for any two symmetric  $n \times n$ -matrices A and B, A+B is symmetric

**Question 4.** Although matrix addition and multiplication follow many of the same rules as real addition and multiplication, there are some very important and striking differences. In particular, the existence of *zero-divisors* contrast starkly with multiplication in  $\mathbb{R}$ . A matrix A is said to be a zero-divisor if there exists some  $B \neq \mathbf{0}$  such that  $A \cdot B = \mathbf{0}$ , where  $\mathbf{0}$  is the matrix with 0 in every entry.

(a) Prove that the  $2 \times 2$  matrix

$$\left[\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array}\right]$$

is a zero-divisor.

(b) In general, prove that if a matrix is of the form

$$\left[\begin{array}{cc}a&a\\b&b\end{array}\right],$$

then it is a zero-divisor.

- (c) If A is a zero-divisor, prove that  $B \cdot A$  is a zero-divisor for any matrix B.
- (d) A matrix A is called an *idempotent* if  $A^2 = A$ . If A is an idempotent which is not the identity matrix, prove that A is a zero-divisor.
- (e) Is is true that if A and B are both zero-divisors, then A + B is also a zero-divisor? Prove or find a counterexample.

**Question 5.** This question regards the *Heisenberg group*  $H_3(\mathbb{R})$ , a subset of  $3 \times 3$ -matrices that is crucial in one-dimensional quantum mechanical systems. A  $3 \times 3$  matrix is in the Heisenberg group if it is of the form

$$\left[\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right],$$

where  $a, b, c \in \mathbb{R}$ .

- (a) Show that the  $3 \times 3$  identity matrix is an element of the Heisenberg group.
- (b) Show that the Heisenberg group is closed under matrix multiplication. That is, show that if  $A, B \in H_3(\mathbb{R})$ , then  $A \cdot B$  is also in  $H_3(\mathbb{R})$ .
- (c) We can also form the discrete Heisenberg group  $H_3(\mathbb{Z})$  by asking that the parameters a, b, and c be integers; that is,  $a, b, c \in \mathbb{Z}$ . Show that, as in (a) and (b), the discrete Heisenberg group contains the identity and is closed under matrix multiplication.

2