July 19 Workshop - Continuity and Differentiation

Question 1. Use induction, the product rule, and the derivative of f(x) = x to show that if $f(x) = x^n$, then $f'(x) = nx^{n-1}$ for every integer $n \ge 1$.

Question 2. Prove the Quotient Rule using the Product Rule and the Chain Rule.

Question 3. Use the definition of the derivative to prove that f(x) = |x| is not differentiable at x = 0.

Question 4. Compute the derivative of $f(x) = x^x$.

Question 5. Use the definition of the derivative to compute the derivatives of $\sin x$ and $\cos x$. In your computations, you may use the following two limits without proof:

$$\lim_{h \to 0} \frac{\sin h}{h} = 1 \text{ and } \lim_{h \to 0} \frac{1 - \cos h}{h} = 0.$$

Question 6. Compute the derivatives of the following functions using the derivatives of $\sin x$ and $\cos x$ along with the properties of derivatives:

- a) $f(x) = \sec x$
- b) $f(x) = \csc x$
- c) $f(x) = \tan x$
- d) $f(x) = \cot x$

Question 7. Recall that the binomial theorem gives a quick way expand high powers of monomials:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Use this and the definition of the derivative to compute the derivative of $f(x) = x^n$ for all $n \in \mathbb{N}$.

Question 8. Prove the Brouwer Fixed Point Theorem: Given any continuous function $f:[0,1] \to [0,1]$, there exists some fixed point (i.e, some point $c \in [0,1]$ such that f(c) = c).

Question 9. A function $f: \mathbb{R} \to \mathbb{R}$ is called K-Lipschitz if for every $x, y \in \mathbb{R}$, we have the inequality

$$|f(x) - f(y)| \le K \cdot |x - y|$$

for some $K \geq 0$. In general, a function is *Lipschitz* if it is K-Lipschitz for some K.

- a) Prove that a function is 0-Lipschitz if and only if f is a constant function.
- b) Use the $\delta \varepsilon$ definition to prove that any K-Lipschitz function is continuous.
- c) Prove that the space of Lipschitz functions is a linear space; that is, if f and g are Lipschitz functions and $c \in \mathbb{R}$, then $c \cdot f$ is Lipschitz and f + g is Lipschitz.