
August 4 Workshop - Applications of Differential
Equations

Question 1. An undampened spring with a 3 kg mass is held stretched 0.6 m beyond its natural length
by a force of 20 N. If the spring begins at its equilibrium position but a push gives it an initial velocity
of 1.2 m/s, find the position of the mass after t seconds.

Question 2. A spring with mass 3 kg has damping constant 30 and spring constant 123. Find the
position of the mass at time t if it starts at the equilibrium position and has an initial velocity of 2 m/s.
Plot your position function.

Question 3. Assume that we have an undampened mass-spring system and we begin by pulling our
mass to a displacement of x0 and then release the mass so that at time t = 0, it has no initial velocity.

(a) Show that the amplitude of this system is exactly A = x0 and thus the mass will go above and
below its resting point by at most x0. Why does this make sense physically?

(b) If instead of having no initial velocity, we did have some initial x′(0) = α, what would the amplitude
be?

(c) Use (b) to show that no matter whether the initial velocity is towards or away from the equilibrium,
the amplitude of a spring-mass system with some non-zero initial velocity is also greater than the
amplitude of a system with zero initial velocity. Is this physically believable?

Question 4. One common situation with a mass-spring system is that there is some external force that
acts on a spring (for example, attaching another spring-mass system to the mass). If we have such a
situation where we know the force F (t) explicitly, then using Newton’s Law and the discussion from
lecture, we obtain the non-homogeneous, linear, second-order equation

mx′′ + cx′ + kx = F (t).

(a) Assume that the external force F is constant. That is, F (t) = α. Show that x(t) = α/k is a
particular solution for this differential equation. What does this this solution mean physically?

(b) Assume that the spring-mass system is undampened. Use (a) to find the general form for all
solutions to your differential equation when F (t) = α.

(c) Many times, the external force has a periodic behavior. Take, for example, F (t) = F0 cosω0t,
where ω0 6= ω. Assume for this question that there is also no dampening. Using the method of
undetermined coefficients, show that the general solution has the form

x(t) = c1 cosωt+ c2 sinωt+
F0

m(ω2 − ω2
0)

cosω0t.

(d) If in (c) the external force was given by F (t) = cos(ωt) (where now ω0 = ω), show that the general
form of the solution is given by

x(t) = c1 cosωt+ c2 sinωt+
F0

2mω
t sinωt.

(e) Show that for ω0 equal to ω (as in (d)), the solutions in (d) will reinforce the natural frequency
ω and thus heighten the amplitude. To show this, discuss what happens to x(t) as t → ∞. Such
a phenomenon is known as resonance and is epitomized by shattering glass with a loud tone with
resonant frequency.
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Question 5. For this question, we will consider the motion of a pendulum hanging from a ceiling. This
pendulum will have length L; our goal is to measure for any time t, the angle θ(t) that the pendulum
makes from its resting (vertical) position. The motion of the pendulum is given by the non-linear
differential equation:

d2θ

dt2
+
g

L
sin θ = 0.

where g is the gravitational constant.

(a) Argue that for small angles θ, we may replace sin θ by θ and turn the above differential equation
into a linear second-order equation. What is this linear equation?

(b) Using this linear differential equation, find the angle of motion θ(t) of a pendulum with L = 1 m
if θ is initially 0.2 rads and the initial angular velocity is dθ/dt = 1 rad/s.

(c) What is the maximum angle from the vertical for the pendulum?

(d) What is the period of the pendulum? That is, how long does it take the pendulum to complete
one full swing?

(e) At what time will the pendulum first be vertical?

(f) What is the angular velocity dθ/dt when the pendulum is vertical?

Question 6. This question investigates the role of linear algebra in solving ordinary differential equations
via the Wronskian of two functions. Recall that in a vector space, two vectors are linearly independent
if the only way to write the zero vector as a linear combination is the trivial way. When our vector space
is the space of differentiable functions C1(R), we say that two differential functions f and g are linearly
independent if anytime c1f(t) + c2g(t) = 0 for all t ∈ R, then c1 = c2 = 0. Consider the (2× 2)-matrix
given by [

f g
f ′ g′

]
.

The Wronskian W (f, g)(t) is defined as the determinant of this matrix and is again a function of t.

(a) Prove that the functions f(t) = 2 sin2 t and g(t) = 1 − cos2 t are linearly dependent by finding a
non-trivial linear combination of f and g that gives the zero function.

(b) Show that f(t) = t and f(t) = t2 are linearly independent by showing that the only way to write
the zero vector as a linear combination of f and g is the trivial way.

(c) Show that if c1f(t) + c2g(t) = 0, then c1f
′(t) + c2g

′(t) = 0 as well.

(d) Use (c) and properties of determinants and linear independence to show that if the Wronskian
W (f, g)(t) is non-zero for some t0, then f and g are linearly independent.

(e) For a second-degre linear homogeneous differential equation ay′′ + by′ + cy = 0, the three cases
are when the characteristic polynomial has two distinct real roots, a repeated root, or two com-
plex (conjugate) roots. What do solutions look like in terms of the roots of the characteristic
polynomial?

(f) For each of the cases in (e), use the Wronskian to verify that the two solutions you write every
solution in terms of are linearly independent.

(g) Assuming that the solution space for a second-degree homogeneous linear differential equation is
2-dimensional, why is (f) enough to ensure that your two solutions form a basis for the solution
space?
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