Chapter 12

Thursday, July 28, 2011

12.1 Markov Processes

Today’s lecture will focus on the central role that Linear Algebra plays in under-
standing probabilistic or stochastic processes, where a system evolves according
to certain probabilities. In particular, the kinds of processes that we will focus
on are those where the state of a system only depends on the state of the sys-
tem in the previous time step. These systems, called Markov processes, have
far-reaching applications in dynamics, economics, and statistical mechanics.

12.1.1 Motivating Markov Processes - An Example from
Sociology

Sociologists are interested in group dynamics and, in particular, how individu-
als flow into and out of various subpopulations of society. We will consider a
simplistic scenario where there are exactly two subpopulations and individuals
can be in exactly one of these. The setting is the Greater Los Angeles area;
this sprawl consists of two types of inhabitants: those that live in urban set-
tings (e.g., downtown LA) and those in suburban settings (e.g., Pasadena). A
sociologist has computed that there is much movement every census period (10
years) between the two regions of Los Angeles. Specifically, she has computed
that every ten years, 40% of those living in urban settings move to the suburbs
(and thus 60% of those in urban settings remain urban). Furthermore, she has
found that every ten years, 30% of the suburban dwellers move to an urban
setting (and thus 70% of suburbanites remain suburban).

Using these statistics, we may compute what the suburban population S
and the urban population U is every ten years. So, assume that at the 0-th
census reading, we have subpopulations Sy = 1000 and Uy = 3000. The above
statistics indicate that to calculate the urban population U; at the first census
reading, we must add the number of individuals staying urban (which will be
.6 - 3000) and the number of people switching from suburban to urban (which
will be .3-1000). Thus, at the first census reading, we obtain the subpopulation

U; = .6-3000 4+ .3 - 1000 = 1800 + 300 = 2100.

In a similar fashion, we may calculate the suburban population at S; at
the first census by adding those that remain suburban (.7 -1000) to those that
convert from urban life to suburban life (.4 - 3000). Thus, the total suburban
population at the first census reading will be

Sp =.4-3000 + .7 - 1000 = 1200 + 700 = 1900.



If we abstract this calculation a bit, we begin to see where concepts from
Linear Algebra are beginning to crop up. In particular, if we do not specify the
initial subpopulations Sy and Uy and leave them as these variables, we obtain
the following system of equations in solving for S; and Us:

Uy = .6Up + .35
Sl = .4U0 + .750 ’

The linearity of systems begs us to evoke matrix multiplication to write this

system as
Ui | | 6 3 U
IR
Of course, we are also interested what happens at the second census. Since
we are assuming that the rate at which individuals move from S to U is constant,
we see that we may generalize the above matrix equation. In fact, if we want
to know what the subpopulations [Uy41, Sk+1] are at the (k + 1)-st census, we

only need to know the subpopulations [Ug, Si] at the k-th census. These two
sets of subpopulations are related by the matrix equation

Uk+1 _ .6 .3 Uk;
Seke1 | | 407 Sk |
We also note that [Ug, Sk] can be computed by knowing [Uk_1, Sk—1]. If
we continue along this fashion, we see that the only piece of information we
really need is what the initial subpopulations [Up, Sp] was. In fact, we may find

[Ug, Sk] by multiplying our initial population vector by our transition matrix k
times. Thus, we have the following matrix equation for the subpopulations at

census k: i
U, | | 6 3 Uo
S | T 4 7 So |-
12.1.2 Analyzing our Markov Process

The simplicity of this situation obviously means that this result does not mirror
reality. In particular, our system assumes that no one is born or dies. Further-
more, it assumes that an individual will be in exactly one of the two states S
or U when in fact more complicated living situations exists. One of the other
unrealistic assumptions is that the rate at which subpopulations flow from one
state to another remains the same at every census period. In fact, U.S. historical
analyses indicate that these rate flow coefficients have changed dramatically in
the past several decades.

This example does, though, give us an excellent starting example of a Markov
process. A discrete Markov process is a system with n states evolving over a
discrete time parameter ¢, where the system at time ¢ depends only on the system
at time ¢ — 1. We see that our sociological example is indeed a Markov process
with n = 2 states (one is either urban or suburban) because the subpopulations
at the k-th census reading only depend on the subpopulations at the (k — 1)-st
census reading.

To generalize our example a bit, if a system has n states, then we can
represent the system at time k by a vector Sy = [Sk1, Sk2, - - ., Skn], where Sk,
indicates the number of objects in state n at time k. To describe how these states
change, we give the probability p;; that an object in state 7 will transition to
state j in the next time step. So, if we want to know how many objects are
expected in state j at time k 4 1, we need to compute

Sk+1,5 = P1jSk1 + D2jSk2 + -+ + PnjSkn-



Doing this for all j, we obtain the following matrix equation

Sk+1,1 P11 P21 P31 Pal Sk1
Skt1,2 P12 P22 P32 " Dn2 Sk2
Sk+1,n Pin P2n DP3n e Pnn Skn

This matrix, which we will call A is called a stochastic matriz or a tran-
sition matriz. Notice that its ij entry is the probability p;;, so the indexing
of the probability and the row-column indexing are opposite. As this describes
how the n states flow into and out of each other, this matrix will be a square
(n x n)-matrix. Of crucial important is that the individual entries are all prob-
abilities. Thus, for every ¢ and j, we have that 0 < p;; < 1. Furthermore, since
these p;; is the probability that an object will flow from state i to state j, we
must have that

Pi1 +Di2 + 0+ Pin = 1,

and thus the entries of every column must sum to 1.

12.1.3 Steady State Vectors

When we are analyzing a system evolving over a time, we would like to know
which configurations of our system do not change when we apply our transition
matrix. These configurations, called steady states are analytically crucial to
understanding the long-term dynamical behavior. So, assume that we have some
stochastic (n x n)-matrix A that gives us the transition probabilities between
our n states. If an n-vector x € R™ is a steady state vector, then A will have
no effect on x and thus we have the familiar equation

Ax = x.

This equation is simply the eigenvalue-eigenvector equation with eigenvalue A\ =
1. Of course, not all matrices have an eigenvalue 1, but perhaps since our
stochastic matrix is so constrained (e.g., all terms between 0 and 1 and all
columns summing to 1), there may always be a steady state vector. A famous
theorem called the Perron-Frobenius theorem guarantees us that this is always
the case:

Theorem - The Perron-Frobenius Theorem. Let A be a square stochastic
matrix. Then A always has 1 as an eigenvalue and every other eigenvalue A has
[A] < 1.

The existence of 1 as an eigenvalue ensures that there is always some non-
zero vector x such that Ax = x; this x is exactly the steady-state vector we
were hoping for.

Returning to our sociological example, recall that our Markov system was

defined by

v, ] _[6 310

S| | 4 7 So |-
The Perron-Frobenius theorem guarantees that our stochastic matrix A has
eigenvalue 1. We verify this computationally by finding the characterstic poly-

nomial to be A2 — 1.3\ + .30. Using the quadratic equation, we get that the
eigenvalues are

C13+£VI3?—-4-1-3 13+V49 13+.7
- 2 o 2 2

A 1,.3.



As promised, we have an eigenvalue of 1 and can thus compute our steady state
vectors by finding the eigenspace corresponding to the eigenvalue A = 1. To do
this, we solve (A — I)x = 0. and get the equation

| -4 3 Up| | O
a-ne=[ 3 518 ]-10)
This gives us a system of redundant equations, each of which is equivalent to

—.4Upy + .35y = 0. Solving for Uy, we get that Uy = .755p and thus all steady
state vectors have the form

Uo | | 755 | _ g .75

So | | So |7 1 |”
Thus, any initial population configuration where the initial urban subpopula-
tion Uy is 3/4 of the initial suburban population Sy will give a system that

remains constant over time. To verify this, we consider the initial subpopula-
tion configuration given by [3000,4000]. Applying our stochastic matrix, we see

that

6 .3 3000 | | 3000

4.7 4000 | ~ | 4000 |-
Of course, since Ax = x for this particular x, A*x = x as well. Thus, once a
steady vector, always a steady state vector.

12.1.4 Long-Term Dynamics of Markov Processes

Another important feature of these evolving (dynamical) systems that we wish
to understand is what happens in the long-run. That is, what happens if we
allow the time in our dynamical system to tend towards infinity. For this to
happen, we must compute
Xoo = lim AFx.
k—o0

For this to even be possible, we must of course understand how to compute A*
for large values of k. Unfortunately, it is not true in general that the entries of
AF are obtained by taking the k-th power of each entry. Notice, though, that
if had a diagonal matrix D (i.e. a square matrix with 0’s off the diagonal and
arbitrary numbers in the diagonal), then it is in fact true that D* is the diagonal
matrix obtained by simply raising each entry to the k-th power.

This begs the question of how we may transform the matrix A (which is not
necessarily diagonal) to a diagonal matrix D. The concept that we reach is that
of change of basis. Essentially, we want to change our basis from the standard
one to a basis of eigenvectors. We want this because A acts on these eigenvec-
tors by simply stretching them by their corresponding eigenvalues. Thus, if we
change the basis for A to one given by eigenvectors, it will act like a diagonal
matrix D, where the diagonal elements are exactly the eigenvalues of A.

To change basis, we need to find some invertible matrix P that has as its
columns the new basis that we want. Of course, since the columns will form
a basis, we are guaranteed that P will be invertible. For our purposes, the
columns will eigenvectors. Finding this P, we may then change basis to have
A act like D; the relationship between A, D, and P is given by the following
change of basis equation:

P~'AP =D.

Of course, the upshot of having this relationship is that we can then solve
for A and obtain A = PDP~!. This helps us move towards our goal of finding
a nice form for AF because adjacent P and P~! will cancel out:

A* = (PDP Y = PDP'PDP~'...PDP7L.



Canceling out the middle terms, we are left with
AF = ppkp-1.

Of course, since D is diagonal, D* is very easy to compute: just raise each
diagonal element to the k-th power!

Returning to our sociology example, recall that we have already computed
the eigenvalues of A to be 1 and .3. We also computed that any eigenvector for
the eigenvalue A = 1 is a scalar multiple of [.75,1]. Computing the eigenvectors
for A = .3, we see that its eigenspace consists of scalar multiples of [1, —1]. So,
to form P, we must choose one eigenvector for each eigenvalue (and we are free
to choose whichever one we want). To avoid fractions, let us use [3,4] as the
eigenvector for A = 1 and [1, —1] as the eigenvector for the eigenvalue A = .3

We then have
1 3
p-[12].

We notice that we must compute the inverse of P. There is a well-defined
method to do this for any invertible square matrix (e.g., using minors and
cofactors). We present here the simple case of invertible an invertible (2 x 2)-

matrix A: )
a b 1 d —b
c d T detA| —¢ a |’

Thus, the inverse of our matrix P is given by

1{4 -3
-1 _ *
o[t 2]

One may quickly verify that indeed P~' AP = D by seeing that

1{21 0 30
1 _ L _
P AP—7[0 7}—[0 1].

Notice that the eigenvalue .3 is in the first spot diagonal spot because its corre-
sponding eigenvector [1,—1] is in the first column; a similar situation hold for
the eigenvalue A = 1.

We computed earlier that A¥ = PD*P~1. Since D is diagonal, D is easy
to compute and we are left with the following;:

K orko-1 | 1 3 014 =37 _
A= PD7P _{—1 4”0 L I S U O

1[ (4)(.3%) +3 (—3)(.3k)+3]
7| (=4)(3F)+4  (3)(3F)+4 |°

If we take a limit as k — oo of A* and use the fact that limj,_,. .3* = 0, we get

13 3
. E_ 1+
aim A _7[4 4]

Thus, in the limit, we expect that our subpopulations will tend towards
lim 113 3 Uo | _ 11 3(Uo+ So)
koo 7 | 4 4 SO B 7 4(U0 + SO) .
So, if our population had started off with Uy = 1000 and Sy = 3000, then it will
eventually reach a limiting state of
1] 12000
7 | 16000 |-

One surprising aspect about this limiting state is that it is an eigenvector
for the eigenvalue \ = 1.



