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11.0.1 Determinants of Square Matrices

The determinant of a matrix is a number that one can associate to a square
matrix that gives a lot of information about its column vectors and its invert-
ibility. We will only give the definition of determinant for (1× 1), (2× 2), and
(3× 3)- matrices. Given a (1× 1)-matrix A = [a11], the determinant is given by
its single entry:

det(A) = a11.

Given a (2× 2)-matrix

A =

[
a b
c d

]
,

its determinant is given by

det(A) = ad− bc.

Given a (3× 3)-matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
its determinant is given by

det(A) = a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33.

The definition of the determinant of an (n×n)-matrix becomes more compu-
tationally complicated as n increases. Certainly, for n = 1, 2, 3, the complexity
of each determinant grows quickly. One of the most important properties of
determinants is that they behave well with respect to matrix multiplication.

Theorem. Let A and B be two (n× n)-matrices. Then

det(AB) = det(A) · det(B).

For certain kinds of matrices, the determinant is of a particularly easy form.
Consider an (n × n)-matrix A which is upper triangular ; these are precisely
the matrices with 0’s below the diagonal and arbitrary elements everywhere else.
Another way of stating this is that A = (aij) with aij = 0 if i < j.
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Theorem. Let A be an upper triangular (n× n)-matrix. Then,

det(A) = a11a22 · · · ann;

that is, the determinant of A is given by the product of its diagonal terms.
Given a square matrix A, its transpose AT is also square and we may thus

discuss its determinant. In fact, the determinant of A and AT are related in the
best possible way:

Theorem. Let A be a square matrix, then det(A) = det(AT ).

Combining the above two theorems tells us that the determinant of a lower
triangular matrix is also the product of its diagonal elements.

11.0.2 Determinants and Invertibility

One of the most important uses of determinants is that they give a quick method
for deciding if a square matrix is invertible. An (n × n)-matrix A is called
invertible if there exists another (n× n)-matrix A−1 such that

A ·A−1 = In,

where In is the (square) identity matrix with 1’s along the diagonal and 0’s
everywhere else.

Note that the identity matrix In is an upper triangular matrix (since there
are only 0 entries below the diagonal). Thus, by our theorem above, the de-
terminant of In will be the product of its diagonal entries and thus det(In) =
1 ·1 · · · 1 = 1. Using this and the above theorem, we see that if A is an invertible,
then A ·A−1 = In and thus

1 = det(In) = det(A ·A−1) = det(A) det(A−1).

For this to be true, we must have that det(A) 6= 0 and

det(A−1) =
1

det(A)
.

In fact, the converse is true and we have the following very important charac-
terization of invertibility.

Theorem. An (n× n)-matrix A is invertible if and only if det(A) 6= 0.

Another useful aspect of the determinant is that it detects when a set of n
n-vectors is a basis. By the theorem about the number of elements in a basis,
there must be n vectors; given these vectors, we can form an (n× n)-matrix A
with the n vectors as its columns. We have the following theorem.

Theorem. A collection of n n-vectors is a basis for Rn if and only if the matrix
A with these vectors as its n columns is invertible. Thus, the vectors are a basis
if and only if det(A) 6= 0.

11.1 Eigenvalues, Eigenvectors, and Eigenspaces

Recalling that an (n×m)-matrix A gives a map from Rm to Rn, one becomes
interested in the possibility that geometric information about the transformation
A may be encoded algebraically in A. In particular, if we restrict ourselves to a
square (n× n)-matrix A, the map is now from Rn to itself. Of interest is when
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the matrix A stretches a particular x ∈ Rn in some direction. If this stretch did
occur, then we have algebraically that

Ax = λx

for this particular x and for some real number λ. When this stretching does
occur, we say that λ is an eigenvalue for A and that x is an eigenvector with
eigenvalue λ. We must also add the stipulation that 0 is never an eigenvector
since, if allowed, would correspond to infinitely many eigenvalues.

One important feature of eigenvectors is that they form very important sub-
spaces of Rn called eigenspaces. This space is defined as

Eλ(A) = {x ∈ Rn |Ax = λx or x = 0}.

This set Eλ(A) is called the eigenspace corresponding to the eigenvalue λ.
Since 0 is not an eigenvector, we must purposefully include it in our definition
of the eigenspace. We wish to show that this subset Eλ(A) forms a subspace
by showing closure under scalar multiplication and vector addition. If x is an
eigenvector with eigenvalue λ, then αx is also an eigenvector with eigenvalue λ
since

A(αx) = αAx = αλx = λ(αx).

Similarly, if both x and y are eigenvectors with eigenvalue λ, then the sum
x + y is also an eigenvector with eigenvalue λ since

A(x + y) = Ax +Ay = λx + λy = λ(x + y).

11.1.1 Computing Eigenvalues and Eigenvectors

To find the eigenvalues and eigenvectors of the square matrix A, we must solve
the matrix equation Ax = λx. By subtraction, this equation is equivalent to
Ax−λx = 0. Since the identity matrix I has no effect on vectors, we may insert
it to obtain Ax − λIx = 0. Factoring out the common x, we see that for x to
be an eigenvector of A with eigenvalue λ, the following equation must hold:

(A− λI)x = 0.

So, the matrix A − λI must send the non-zero vector x to the zero vector 0.
Such a matrix A−λI is not invertible since it sends a non-zero vector to the zero
vector, so its determinant must be zero. Thus, we must solve the polynomial
equation

det(A− λI) = 0.

This determinant det(A−λI) is a polynomial in the variable λ and is known as
the characteristic polynomial of A.

As an example, consider the (2× 2)-matrix

A =

[
2 −4
−1 −1

]
.

Its characteristic polynomial is found by computing the determinant of A− λI:

det(A− λI) = det

([
2− λ −4
−1 −1− λ

])
= (2− λ)(−1− λ)− (−4)(−1) =

λ2 − λ− 6 = (λ− 3)(λ+ 2).

The roots of this characteristic polynomial are precisely the eigenvalues. Thus,
A has eigenvalues −2 and 3.
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The next step is to compute the eigenspace of the individual eigenvalues. If
we begin with the eigenvalue λ = −2, then an eigenvector will satisfy Ax = −2x.
Of course, this is equivalent to x satisfying (A+ 2I)x = 0. For this equation to
hold, we must have the following:

(A+ 2I)x =

[
4 −4
−1 1

] [
x1
x2

]
=

[
0
0

]
.

This gives us the following system of equations:

4x1 − 4x2 = 0
−x1 + x2 = 0

.

Solving, we see that x1 = x2. Thus, any vector of the following form will be an
eigenvector for λ = −2: [

x1
x1

]
= x1

[
1
1

]
.

Thus, the eigenspace E−2(A) for the eigenvalue −2 is all scalar multiples of
the vector [1, 1]. Geometrically, this is simply the line in R2 going through the
origin and the point (1, 1). Since this is an eigenspace, the matrix A transforms
R2 by stretching this line by flipping it (since −2 is negative) and then scaling
by 2.

We compute the eigenspace for λ = 3 in a similar way. The matrix equation
(A− 3I)x = 0 gives us equation

(A− 3I)x =

[
−1 −4
−1 −4

] [
x1
x2

]
=

[
0
0

]
.

Once again, this leads to the following system of equations:

−x1 − 4x2 = 0
−x1 − 4x2 = 0

,

which is, of course, redundant. This equation thus tells us that x1 = −4x2.
Thus, any vector of the following form will be an eigenvector for λ = 3:[

−4x2
x2

]
= x2

[
−4
1

]
.

Thus, the eigenspace E3(A) corresponding to the eigenvalue λ = 3 consists of
all scalar multiples of the vector [−4, 1]. Thus, A transforms R2 by stretching
the line spanned by [−4, 1] by stretching it by a factor of 3.
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