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10.1 Subspaces and Linear Transformations

To understand the deep theory behind how Linear Transformations act on the vector
spaces R™, we must have the notion of a subspace, a subset of R™ that is closed under
scalar multiplication and addition.

10.1.1 Subspaces of R"

A subspace V of R™ is a subset of R™ in which any two vectors x,y € V and a € R, the
sum x +y is also in V and « - x is also in V. Thus, a subspace of a vector space is a
vector space in its own right. It is closed under scalar multiplication and addition.

10.1.2 Important Examples of Subspaces of R"

Example - The zero subspace.
The subset consisting of the single element (0,0,...,0) (called the zero-vector) is a
subspace of R™. Notice that

a-(0,0,...,0) = (a-0,a-0,...,a-0)=(0,0,...,0),

thus it is closed under scalar multiplication. Further, since there is only one vector in
this space, it is clear that it is closed under addition:

(0,0,...,0)+(0,0,...,0) = (0,0,...,0).

Thus, both requirements to be a subspace are satisfied and the zero subset is indeed a
subspace.

Example - Subspaces of R3.
Consider the subset V of all vectors of the form (z1,x9,0) with z; € R; thus, this is
the subset with the third entry zero. Given any a € R,

a-(r1,22,0) = (- 21,0 22,a-0) = (- 21, - T2,0);

thus, for any x € V, a-x € V and V is closed under scalar multiplication. Further, if
x = (21,22,0) € V and y = (y1,92,0) € V, then

X+y = (1’1,1’2,0) + (ylayQaO) = (1’1 +y1,$2 +y270)



Since the third term of the sum is zero, this vector sum is still in V', and thus this subset
is closed under vector addition. Therefore, both the requirements for being a subspace
are satisfied and V' is indeed a subspace.

Notice that this construction will also work if the first or second (or both) entries are
required to be 0.

Example - The Kernel of the Linear Transformation L 4.
Consider an n X m matrix A; of course, this gives rise to a linear transformation

Ly:R™—R"
given by left-multiplication x +— A - x. Consider the subset of R™ given by
Ker(A) = {x e R™|A-x = 0},

where 0 is the zero element (0,0,...,0) € R™. This subset is called the kernel of the map
L4 (also known as the kernel of A). We will prove that this subset of R™ is a subspace.
First, we prove that the kernel of L4 is closed under scalar multiplication. If x € Ker(A)
and o € R is a scalar, then we must show that o - x € Ker(A). Since x € Ker(A), then

La(x)=A-x=0.

We see that

Liy(a-x)=A(a-x)=a-Ax=a0=0.
Thus, ax is also in Ker(A). Further, if x,y € Ker(A4), then Ax = Ay = 0. We see that
their sum x + y is also in Ker(A):

La(x+y)=Ax+y)=Ax+Ay=0+0=0.

Since both conditions are met, Ker(A) is a subspace of R™.

Example - The Image of the Linear Transformation L4
Given the same n X m-matrix A, we can also consider the subset of R™ which is the
image of the map L 4. This subset is called the column space of A and is given by

Col(A) = {y € R"|A-x =y for some x € R™}.

Thus, Col(A) are all the vectors in R™ that are mapped onto by some vector in R™. To
show that this subset is closed under scalar multiplication, we note that if y € R™ such
that there exists some x € R™ such that A-x =y. So, to show that o -y is in Col(4),
we must find a pre-image that maps to « -y. Consider « - x. If we plug this into our
map L4 we obtain

Li(a-x)=Ala-x)=a-Ax=«a" Y.

Thus, oy is also in the image and thus oy € Col(A). To show that Col(A) is closed under
addition, take y,z € Col(A); thus, there are pre-images x, w € R™ such that A-x =y
and A-w = z. To show that y + z € Col(A), we consider the vector x +w € R™:

La(x+w)=Ax+w)=Ax+Aw =y + z.

Thus, y + z is in the image Col(A4). Thus, the two requirements are satisfied and Col(A)
is a subspace of R".

10.2 Vector Spaces

In the previous section, we investigated the notion of a subspace of R™; these are precisely
the subsets of R™ that are closed under matrix addition and scalar multiplication. These
two properties ensure that we can simply focus on these subsets; these spaces, known as
vector spaces, act very much like R* (for perhaps a different value of k).



10.2.1 Definitions and Examples

A key property of an n-vector v in R" is that if we multiply it by a real number o € R
or add it another n-vector w € R™, then we obtain other n-vectors av and v + w. Thus,
R"™ has the property that it is closed under scalar multiplication and closed under
vector addition. Of course, we could say the same thing about any subspace of R™
(like the kernel or column space of a linear transformation). If we look beyond sets of
n-vectors to general sets with a notion of scalar multiplication and vector addition which
is closed under these two operations, we obtain the definition of a wector space.

To solidify the concept of a vector space, let us investigate some important examples.

Example - Polynomials of degree n. The set P,, consists of all polynomials p(z) =
™ +ap_12" 1+ -+ a1z +ag of degree at most n. Vector addition is given by regular
polynomial addition, and scalar multiplication is regular multiplication of a polynomial
by a real number. Notice that if we take two polynomials of degree at most n, then their
degree is also at most n. Furthermore, when we scale a polynomial of degree n by some
real number, it also remains of degree at most n. Thus, P, is a vector space.

Example - All polynomials. A larger space P is the set of all polynomials (with no
restriction on the degree). Using the same operations as with P,,, P also becomes a vector
space since the sum or scalar multiple of a polynomial is once again a polynomial.

Example - Continuous functions on R. Let C(R) be the set of all continuous
functions on R, with addition and scalar multiplication being function addition and
scalar multiplication. Since the sum of two continuous functions is continuous and the
scalar multiple of a continuous function is continuous, C(R) is a vector space that includes
both P and P,, as subsets (in fact, subspaces). We may generalize this set to the C*(R),
the set of all functions on R which are £ times differentiable.

Example - Convergent Sequences. Consider the set of all sequences that converge
to some real number (this limit may be different for the individual sequences). We may
add the sequences x,, and y, by having its k-th term be the sum of xy +y;. Furthermore,
we may scale a sequence z,, by a € R to produce a new sequence where the k-th term
is axy. Since the sum of two convergent sequences is convergent and the scalar multiple
of a convergent sequence is convergent, we see that this set does indeed form a vector
space.

10.3 Bases and Dimensions of Vector Spaces

10.3.1 Bases, Span, and Linear Independence

Notice that if we have the 3-vector x = (4, —7,/2), we can write it as a sum of three
scaled vectors:

x = (4, —m,V/2) =4-(1,0,0) — 7 - (0,1,0) + v2- (0,0, 1).

Also, notice that this is actually the unique way to write this particular vector. These
are examples of the notion of span and linear independence. Any subset of R? that have
these two properties (in this example, it’s the vectors e; = (1,0,0),e2 = (0,1,0), and
ez = (0,0,1)) is called a basis for R3.

Formally, given any set of n vectors vy,va,..., vy, in a vector space V', we say that
this set spans the vector space V if every vector x € V can be written as a linear
combination of the v;’s. That is, there are scalars a1,...,a, € R such that

X =a1V1 +agvey + -4+ a,Vn.



Thus, a subset of vectors spans a vector space if there are enough of them so that any
other vector in V is just a linear combination of them.

We say that a subset of vectors vq,va,..., vy is a linearly independent subset of
a vector space V if whenever we can write the zero vector as a linear combination

0=a;vy +agva+---+a,vn,

then we must have that
ap=ags=---=a, =0.

Thus, a set of vectors is linearly independent if the only way to write the zero vector is
the trivial way (with all the scalars being zero). Intuitively, this means that the subset
of vectors vy,..., vy is small enough that we can write each vector uniquely.

If we are lucky enough to a subset of vectors vy, vs, ..., v, that spans V and is linearly
independent, then this set is known as a basis. Thus, a basis is big enough to be able
to write any vector in V' as a linear combination of them, but small enough that there
is only one way to do it. It is not difficult to prove that one natural choice of basis for
R"™ is

e; = (1,0,0,...,0),ex = (0,1,0,...,0),...en = (0,0,0,...,1);
actually, this is referred to as the canonical basis for R™. Of course, there are many other

bases for R™. We will shortly give a criterion for deciding if a collection of vectors is a
basis for R™.

10.3.2 Dimension of a Vector Space

Given an arbitrary vector space V with a finite basis vq1,va,..., vy, we say that the
dimension of V' is n (the number of vectors in the basis). This concept is well-defined
because of the following theorem.

Theorem. Let V be a vector space with a basis of n vectors. Then, any other basis for

V will also have n vectors.

For example, eg, ez, ... e, is a basis for R™ and thus its dimension is n (as expected).
Note that the above theorem tells us that any other basis for R™ will also have n vectors.

Another somewhat obvious theorems is that subspaces of a vector space have smaller
dimensions.

Theorem. If V is a subspace of a finite-dimensional vector space W, then

dim(V) < dim(W).
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