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9.1 Linear Algebra: The Idea of Linearity

Linear Algebra is the study of real n-dimensional spaces and maps between
them that preserve the linear structure of Rn. This linearity actually makes
many computations in Linear Algebra very manageable. Furthermore, these
linear maps have far-reaching applications in many fields of Mathematics.

9.2 Understanding Rn

9.2.1 Vectors

We will see that Rn will essentially be n copies of R. An n-vector is an n-tuple
of real numbers

x = (x1, x2, x3, . . . , xn)

with xi ∈ R. Thus, any ordered collection of n real numbers will specify an
n-vector. The space of all n-vectors is known as Rn:

Rn = {(x1, x2, . . . , xn) |xi ∈ R}.

Notice that it is important they are ordered as we need to know which real
number to put in which slot. As a vector space, Rn also has some additional
structure. There is a notion of scalar multiplication. For any α ∈ R (called a
scalar), we can multiply α with any n-vector by

α · x = α · (x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn) .

Intuitively, this stretches our vector x by a factor of α. We also have a no-
tion of vector addition; given any two n-vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), we can form their sum:

x + y = (x1, x2, . . . , xn) + (y1, y2, . . . , yn) =

(x1 + y1, x2 + y2, . . . , xn + yn) .

Of course, it only makes sense to add two vectors of the same dimension. Notice
that these two operations of scalar multiplication and vector addition behave
nicely with respect to each other; we have the following distributive property:

α · (x + y) = α · x + α · y.
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The notion of the vector space Rn is a generalization of the additive and
multiplicative structure of R. Clearly, R1 = R as vector spaces since scalar
multiplication here is just regular multiplication and vector addition is regular
addition.

9.2.2 Visualizing Rn

We will be focusing on R1,R2, and R3 since they are the real vector spaces
that we can visualize geometrically. We already have a good notion of R as
a flat infinitely long line. This one-dimensional object is the object of the
study of single-variable calculus. Now, if we take one horizontal copy of R and
one vertical copy of R and intersect them at their zero points, this gives us a
coordinate description of R2. Given any 2-vector (x1, x2), we find this on R2 by
finding x1 on the horizontal copy of R and finding x2 on the vertical copy of R.
Then, we find the vector (x1, x2) by going over to x1 on the vertical R and up
to x2 on R2. Thus, R2 is geometrically a flat plane and any point on this plane
can be represented by a 2-vector.

Visualizing R3 is just a generalization of the above geometric construction
of R2. Since our universe is (at least on a visual level) 3-dimensional, many
physical applications require a concrete understanding of R3. To construct this,
we consider three copies of R, but arrange them so that the first and second
copies are flat (like on a table top) and meet perpendicularly and the third one
is perpendicular to both copies of R (coming up out of the table top). Again,
any 3-vector (x1, x2, x3), we find it on R3 by finding x1 on the first copy of R,
go over to x2 on the second copy of R, and then go up to x3 on the last copy.
Once again, any 3-vector can be represented uniquely in this manner.

It is also helpful to see how the algebraic operations of scalar multiplication
and vector addition are reflected geometrically. We will focus on R3. Recall
that scalar multiplication of a scalar α with a 3-vector x = (x1, x2, x3) is given
by

α · x = α · (x1, x2, x3) = (αx1, αx2, αx3) .

Thus, every single entry xi is scaled by α. The overall effect on the vector x
is that it is stretched to be α-times as long in the direction of x. Note that if
α = 0, then α · x will give the zero vector (0, 0, 0); further, if α < 0, then x will
be stretched by |α| in the opposite direction (i.e., in the direction of −x). If
we consider two 3-vectors x = (x1, x2, x3) and y = (y1, y2, y3), we recall how to
add these vectors:

x + y = (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3).

Now, we consider a parallelogram with one vertex at (0, 0, 0), one at (x1, x2, x3)
and the third (y1, y2, y3). The only way to complete this parallelogram is by a
fourth vector; this vector is realized geometrically as the sum x + y.

9.3 The World of Matrices

Notice that a vector is essentially a convenient way to keep track of n indepen-
dent real variables. In a similar way, we can define a matrix as an arrangement
of real numbers in an array. Formally, an n ×m-matrix is an array of n rows
and m columns, with each of the nm slots being filled by one real number. The
number that we put in the i-th row and the j-th column will be denoted aij .
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Many times, we will denoted an n×m-matrix by A = [aij ] or can be written in
its rows and columns:

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

 .
We can see an n-vector as an n × 1-matrix, which is also called a column

vector. Thus, the vector x = (x1, x2, . . . , xn) can be written as

x =


x1
x2
...
xn

 .
As we placed scalar multiplication and vector addition on Rn, we will place

these structures as well as a matrix multiplication structure on the space of
matrices. First, given any n ×m matrix A and a scalar α, the scalar product
α ·A scales each entry of A by α:

α ·A = α ·


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

 =


α · a11 α · a12 . . . α · a1m
α · a21 α · a22 . . . α · a2m

...
...

. . .
...

α · an1 α · an2 . . . α · anm

 .
Given any two n×m-matrices A and B, we can form the matrix addition of A
and B by adding the matrices term-wise:

A+B =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
an1 an2 . . . anm

+


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
. . .

...
bn1 bn2 . . . bnm

 =


a11 + b11 a12 + b12 . . . a1m + b1m
a21 + b21 a22 + b22 . . . a2m + b2m

...
...

. . .
...

an1 + bn1 an2 + bn2 . . . anm + bnm

 .
Notice that addition only makes sense when the matrices have the same m and
n.

Now, we will be able to place a multiplication structure on matrices. If we
are given an n×m matrix A and an m× p matrix B, the matrix product of A
and B will be an n× p-matrix C. We obtain the ij entry of the product matrix
by

cij =

m∑
k=1

aik · bkj .

Notice that there are exactly m terms in this sum since the i-th row of A has
m entries and the j-th column of B also has m entries. Essentially, this sum
formula means that to find the ij-th entry of the product A ·B, we take the i-th
row of A and the j-th column of B and add the product of the first terms and
second terms and so on, until we reach the m-th (last) terms. So, multiplication
by matrices can be a bit tedious to compute, but for small matrices (e.g., when
m,n ≤ 3), this computation is manageable.
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9.3.1 Computation Examples

Let’s take the 2× 3-matrix

A =

[
1 2 0
−2 3 −1

]
and the 3× 2-matrix

B =

 0 4
5 −1
2 2

 .
Consider the following scalar multiplications:

−1 ·A = −1 ·
[

1 2 0
−2 3 −1

]
=

[
−1 −2 0
2 −3 1

]
;

3 ·B = 3 ·

 0 12
15 −3
6 6

 .
Now, given these A and B that we have, the multiplication A · B makes sense
because A is an 2×3 matrix and B is an 3×2; furthermore, this product matrix
A ·B will be a 2× 2 matrix. If we look at our matrices,

A =

[
1 2 0
−2 3 −1

]
and B =

 0 4
5 −1
2 2

 ,
we see that to compute the 1, 1 entry c11. According to our formula, this will
be

c11 =

3∑
k=1

a1kbk1 = a11b11 + a12b21 + a13b31 = 1 · 0 + 2 · 5 + 0 · 2 = 10.

Notice that this is just multiplying the first row and the first column termwise
and them adding up. Doing the other computations, we have

c12 =

3∑
k=1

a1kbk2 = 1 · 4 + 2 · −1 + 0 · 2 = 2;

c21 =

3∑
k=1

a2kbk1 = −2 · 0 + 3 · 5 +−1 · 2 = 13;

c22 =

3∑
k=1

a2kbk2 = −2 · 4 + 3 · −1 +−1 · 2 = −13.

Thus, we have that

A ·B =

[
1 2 0
−2 3 −1

]
·

 0 4
5 −1
2 2

 =

[
10 2
13 −13

]
.

Notice that we can also form the product B · A since B is a 3 × 2 matrix and
A is a 2 × 3 matrix; thus, the product is a 3 × 3 matrix. Doing the matrix
multiplication as above, we have that

B ·A =

 0 4
5 −1
2 2

 · [ 1 2 0
−2 3 −1

]
=

 −8 12 −4
3 7 1
−2 10 −2

 .
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Notice, of course, that A · B 6= B · A since they are not even of the same
dimensions. Even if they were of the same dimension, it is (generally) true that
A ·B 6= B ·A.

Notice that the product structure on matrices and the additivity structure on
matrices behave distributively. Given an n×m-matrix A and two m×p-matrix
B and C, then

A · (B + C) = A ·B +A · C.

Example - The Identity Matrix. The most important and basic matrix is
an n × n-matrix In, which has 1’s along the diagonal and 0’s everywhere else.
Thus, it is given by

In =


1 0 0 0
0 1 · · · 0

0
...

. . . 0
0 0 . . . 1

 .
The most important property of the identity matrix is that it leaves any matrix
with which it is multiplies unchanged. Thus, if A is any n× p matrix and B is
any p× n-matrix, then In is a multiplicative identity:

In ·A = A

B · In = B.

9.3.2 Matrices as Maps on Vector Spaces

Recall that we can view an n-vector x = (x1, x2, . . . , xm) as an n× 1-matrix

x =


x1
x2
...
xn

 .
If we take any n ×m-matrix A and form the multiplication A · x will produce
an n× 1-matrix (i.e., an n-vector). Thus, we can see left multiplication LA by
an n×m-matrix A is a function from Rm to Rn. Formally, this map is given by

LA : Rm → Rn

x 7→ A · x.

One of the major reasons that these maps given by left-multiplication by A
is that it preserves the linear structure of Rn; we say that such a map is a linear
transformation. Precisely, if A is an n ×m-matrix, then map LA : Rm → Rn

(given by left-multiplication of an m-vector by A) preserves the scalar structure:

LA(αx) = A · (αx) = αA · x = αLAx.

Further, this map LA preserves the additive structure:

LA(x + y) = A · (x + y) = A · x +A · y = LAx + LAy.

Thus, this map LA of a scaled vector is LA of the vector scaled; also, the map
LA takes the sum of two vectors x + y to the sum of LAx and LAy.
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