Chapter 8

Thursday, July 21, 2011

8.1 Applications of Calculus: Fourier Analysis

8.1.1 The Idea of Fourier Analysis

In the homework problems, we have seen via Taylor polynomials that functions can many
times be approximated by a sequence of other functions of higher and higher complexity.
With Taylor polynomials, we use high-order derivatives of f(z) at a given point a to con-
struct polynomials T,,(z) of increasing degree that frequently begin to mimic the overall
behavior of f. Though we have not formally defined the convergence of a sequence of func-
tions, we can intuitively see that for many functions, as the degree of our Taylor polynomial
grows, the the gap between T),(z) and f(z) shrinks.

We continue in this vein by constructing a sequence of functions that seem to converge
to certain functions f. In contrast to using the derivatives of f(x), the Fourier expansion of
f will use integration to find our approximating functions. Furthermore, we must restrict
ourselves to functions that are periodic, or repetitive.

8.1.2 Periodic Functions

Fourier analysis utilizes the two trigonometric functions sin x and cos x to build complicated
functions frequently observed in acoustics, optics, and mechanics. A crucial property of both
sinx and cosx is that their graphs repeat every 2m. In general, we say that a function is
periodic if there exits some k > 0 such that f(z + k) = f(x) for all z € R. These are
precisely the graphs that look exactly the same if you look at = or at x 4+ k and thus have a
repeating pattern. If f is periodic, then the smallest & > 0 for which f(z + k) = f(z) holds
is called the period of f. Thus, both sinx and cosx are periodic of period 2.

Because of their repetition, to know what happens to f(x) for all values of x, we only
need to understand f on some bounded interval [a,a + k] (for any a). In fact, it is usually
easiest to understand f on the domain [—k/2,k/2]; the rest of f can be understood by
repeating what happened in [—k/2, k/2].

8.1.3 The Fourier Expansion

The goal of the Fourier expansion is to approximate f using sin(nz) and cos(mz) for in-
creasing values of n and m. In fact, we wish to use functions of the form

= ?0 + ; a, cos(kx) + by sin(kx)] .



The coefficients a; and b; are known as the harmonics of f and have physical and acoustic
interpretations.

Essentially, a harmonic expansion fn of f is a decomposition of f into simpler periodic
pieces. We will only define the harmonics for functions of period 27; for functions of arbitrary
period, a similar formulation is available (but not mentioned in these notes). To this end,
we define
1

an = — ! f(z)cos(nx)dr and b, =— ' f(z) sin(nz) dz.
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Of course, the idea is that as we add more harmonics a,, and b,, into approximation, fn
will approach f. Let’s demonstrate the power of the Fourier expansion with an example.
Consider the square wave function given on [—m, 7| by
1 0<z<m
f(x)—{ -1 —7m<z2<0

By periodicity, we can translate this every 27 to obtain graph of f(z) for all R.
To find the harmonics of the function, we must integrate f against sin(nx) and cos(nx).
We see that
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ap = — f(z) cos(0x) do = — f(z)dx = 0.
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In general, we find that
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ap = — f(@) cos(nx)de = — —cos(nx) dx + — cos(nz)dr = 0.
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In contrast, we have that
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Notice that the last expression gives us 0 when n is even and % when n is odd. Thus, we
have the following Fourier expansions of f(z):

2 4 1

fa(x) = = (Sinx + 3 sin3x> ;
folw) = = (sina + 3 sinde + Csinba )
5(z) = — | sinz + gsindz + sinbz |;

A 4 1 1 1
fr(x) = — (sinz + - sin3z + —sinbzx + —sin 7z | .
T 3 ) 7

Below are supplied the plots of these functions. Notice that as n increases, the graphs
of f, tend toward the graph of f(z).
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