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Wednesday, July 20, 2011

7.1 Applications of the Derivative

7.1.1 The Mean Value Theorem

The Mean Value Theorem is perhaps the most important theorem involving
differentiation. To motivate the theorem, let us imagine that we are driving a
car from time a to time b in a differentiable way (e.g., no sudden braking or
accelerating). Let f(t) be our position function, which tells us where our car
is at time t. If someone asks you “how fast did you travel from time a to time
b,” there are two ways to answer: in terms of averages or instantaneously. If
they only care about your average speed, then you would simply take the total
distance travelled (f(b)− f(a)) and divide that by the total time (b− a). The
ratio

f(b)− f(a)

b− a

is known as the mean or average velocity. However, if the person wants to know
your instantaneous velocity, then you would simply supply the derivative f ′(t) of
f . This would give at any time t the exact velocity as read on your speedometer
as time t. Of course, as you drove from time a to time b, your velocity varied
(depending on traffic, stoplights, etc.). These two different answers to the same
question beg a natural questions: is there always a time t between a and b such
that our instantaneous velocity is exactly the same as the average velocity? The
Mean Value Theorem guarantees that the answer is yes.

Theorem - The Mean Value Theorem. Let f be a function differentiable
on [a, b]. There exists some c between a and b such that

f ′(c) =
f(b)− f(a)

b− a
.

In graphical terms, this says that for a differentiable function f , there exists
at least one c such that the tangent line at c has the same slope as the secant
line between (a, f(a)) and (b, f(b)). However, just like with the Intermediate
Value Theorem, this theorem is non-constructive, which means that it does not
tell you which c it is guaranteeing (only that it exists). The mere existence,
though, is enough to produce some very important results.
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7.1.2 Ramifications of the Mean Value Theorem

One of the most impressive corollaries of the Mean Value Theorem is that it
gives us a graphical interpretation of the derivative. In particular, it tells us
that the sign of f ′(x) tells us if f is increasing or decreasing. First, let us define
exactly what we mean by these terms. A function is said to be increasing if
whenever x < y, f(x) ≤ f(y). Similarly, a function is said to be decreasing
if whenever x < y, f(x) ≥ f(y). These definitions indicate that increasing
functions are going up, while decreasing functions are going down.

Proposition. Let f(x) be a differentiable function of [a, b].

(a) If f ′(x) = 0 for all x ∈ [a, b], then f(x) is a constant function.

(b) If f ′(x) ≤ 0 for all x ∈ [a, b], then f(x) is a decreasing function.

(c) If f ′(x) ≥ 0 for all x ∈ [a, b], then f(x) is an increasing function.

Proof. To prove (a), we must show that f(x) = f(y) for all x, y ∈ [a, b]. By
the Mean Value Theorem and the fact that f ′(c) = 0 for all c ∈ [a, b], we have
that

0 = f ′(c) =
f(y)− f(x)

x− y
.

Assuming x 6= y, then we have that f(y) − f(x) = 0 and thus f(x) = f(y).
Thus, f is a constant function.

To prove (b), we must show that if x < y and f ′(c) ≤ 0 for all c ∈ [a, b], then
f(x) ≥ f(y). By the Mean Value Theorem, we have that

0 ≥ f ′(c) =
f(y)− f(x)

y − x
.

Since x < y, then y − x > 0 and so 0 ≥ f(y)− f(x). Thus, f(x) ≥ f(y) and f
is decreasing.

To prove (c), we mimic the proof of (b). By the Mean Value Theorem, we have
that

0 ≤ f ′(c) =
f(y)− f(x)

y − x
.

As above, f(y) ≥ f(x) and thus f is increasing.

7.2 The Integral

7.2.1 The Definite Integral as Area

Consider a function f(x) which is positive on the interval [a, b]. Then, f(x) lies
above the x-axis and we can talk about the region bounded by the x-axis on the
bottom, the graph of f(x) on top, x = a on the left and x = b on the right. We
want to produce an easy way of computing the area of this region. Since f(x)
is curved, our best approach to computing this area is to approximate the area
by thin rectangles stacked next to each other.

First, we choose a partition of the interval [a, b] into n points. To do this,
we consider n points equally spaced apart; as they are equally spaced, they will
have to be ∆x = b−a

n apart. Thus, if we start at a, the next equally spaced

point will be at a + ∆x = a + b−a
n . Going over one more ∆x, we move to
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a + 2 b−a
n . Applying this process n times, we see that the 0-th point x0 is at a

and, in general, the i-th point xi to be given by

xi = a + i∆x = a + i
b− a

n
.

Wee see that the n-th point is given by

xn = a + n∆x = a + n
b− a

n
= a + b− a = b.

We will now use these points to build a rectangle based at this point with
height given on the curve f(x). In particular, consider the first rectangle whose
bottom left corner is at x0 and bottom right corner is at x1 and has height
f(x0). Thus, the area of this rectangle is base times height. The base length is
given by

x1 − x0 = (a−∆x)− a = ∆x,

and the height is given by f(x0). So, the area of this rectangle is given by

f(x0) ·∆x.

If we run this construction for any i ≤ n − 1 to build the i-th rectangle with
base between xi and xi+1 and height f(xi), we can again calculate its area as
being

f(xi) ·∆x.

These rectangles now fit into the graph of f(x) as approximating the area under
the curve. We note that we must stop at the n− 1 rectangle since this the n-th
rectangle would extend to xn+1, which is outside of [a, b].

Now that we have these rectangles, let’s find a closed form (depending on n)
of what this approximation will be. Since the union of all rectangles will have
area close to the area bound by the curve. Thus, we add up all the areas of the
rectangles to obtain

In(f) =

n−1∑
i=0

f (a + i∆x) ∆x =

n−1∑
i=0

f

(
a + i

b− a

n

)
· b− a

n
.

Since ∆x is constant (with respect to i), we can pull it out of the sum to obtain
the Left Approximation:

In(f) =
b− a

n

n−1∑
i=0

f

(
a + i

b− a

n

)
.

In the above construction, only the upper left corner of each rectangle
touched the graph. If we instead choose to have the upper right corner of
each rectangle touch the graph, we must alter our construction by starting at
x1 = a + ∆x (instead of at a. Also, we must end at xn = a + nb− an = a
(instead of at xn−1 = a + (n− 1) b−a

n = b− b−a
n ). Thus, the area of the rectan-

gles will still be f(xi) ·∆x, but our i will range from 1 to n. Thus, this Right
Approximation gives us

In(f) =

n∑
i=1

f(xi)∆x =
b− a

n

n∑
i=1

f

(
a + i

b− a

n

)
.

Whichever approximation we wish to use, it is clear that our choice of how
many partitions of [a, b] we take (given by n) will affect our approximation of
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the area under the curve. The more partitions that we have, the less error
our approximation will have. These approximations In(f) and In(f) are both
sequences of real numbers. If any one of these limits converges to a real number,
then this limit is the area bound by the curve and our function f(x) is called
integrable. This quantity is called the definite integral and is denoted by

lim
n→∞

In(f) =

∫ b

a

f(x) dx = lim
n→∞

In(f).

Of course, it is a good exercise to show that limn→∞ In(f) converges if and only
if limn→∞ In(f).

Notice that the above construction and calculation does not require that f(x)
lie above the x-axis on [a, b]. Thus, the definite integral generalizes a concept of
signed area, where portions of the graph lying below the x-axis bound negative
area.

7.2.2 The Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus is both surprising and practical. It is
surprising because it links intimately the separate concepts of the derivative and
integral. It is practical because it gives an explicit way of computing the area
under a curve.

The key concept here is that of an antiderivative. Given a function f(x), if
there exists a differentiable function F (x) such that F ′(x) = f(x), then F (x)
is called an antiderivative of f(x). Notice that if F (x) is an antiderivative of
f(x), then F (x) + c (where is c is a constant) is also an antiderivative. Thus,
antiderivatives of f(x) are not unique; however, it is true that any two an-
tiderivatives differ by a constant. Below is the statement of the Fundamental
Theorem of Calculus.

Theorem. [The Fundamental Theorem of Calculus] Let f(x) be an integrable
function and F (x) any antiderivative of f(x) (i.e, F ′(x) = f(x)). Then,∫ b

a

f(x) dx = F (b)− F (a).

Thus, we can compute the area bounded by the curve of f(x) by finding
an antiderivative F (x) and plugging in the endpoints a and b. Of course, if we
choose a different antiderivative G(x) = F (x) + c, then the computation of the
definite integral with either F (x) or G(x) will yield the same answer:∫ b

a

f(x) dx = G(b)−G(a) = (F (b)− c)− (F (a)− c) = F (b)− F (a).

7.2.3 Computing Antiderivatives.

The best way to compute antiderivatives is to take guesses of what they may
be and verify they are indeed antiderivatives by taking a derivative.

Monomials. Consider the function f(x) = xn for n 6= −1. Consider the

potential antiderivatives F (x) = xn+1

n+1 . Taking a derivative, we see that

F ′(x) =
d

dx

xn+1

n + 1
=

n + 1

n + 1
xn = xn = f(x).
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Thus, all possible antiderivatives of f(x) = xn is given by

F (x) =
xn+1

n + 1
+ c.

Notice that since n 6= −1, we are never dividing by zero.

Trigonometric Functions. We know that d
dx sinx = cosx and d

dx cosx =
− sinx. Thus, we can see directly that the antiderivatives of cosx is given by

F (x) = sinx + c,

and the antiderivatives of sinx are given by

F (x) = − cosx.

Exponential. Since the derivative of ex is itself, we see that the antiderivative
of ex is given by

F (x) = ex + c.

7.2.4 Properties of the Integral.

Many of the useful properties of integrals come from using the Fundamental
Theorem of Calculus in conjunction with the properties of derivatives.

Properties of the Integral. Assume that f and g are differentiable and
integrable functions and that c is any real constant.

a) [Integrals of Scaled Functions] We can pull out scalars from integrals:∫ b

a

c · f(x) dx = c

∫ b

a

f(x) dx.

b) [Additivity of the Integral] The integral of a sum is the sum of the integrals:∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx +

∫ b

a

f(x) dx.

c) [Integration by Parts] ∫ b

a

u dv = uv|ba −
∫ b

a

v du.

d) [u-substitutions] ∫ b

a

f(u(t)) · u′(t) dt =

∫ u(b)

u(a)

f(x) dx.
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