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6.1 Continuity
6.1.1 Defining Continuity of a Function.

Yesterday, we saw that the limit lim,_,, f(z) of particularly nice functions was
essentially obtained by plugging in x = a. The types of functions where we can
do this are called continuous.

Let f(z) be a function. We say that the function f(x) is continuous at a
if the following two conditions hold:

1) f(a) exists (i.e., f(z) is defined at a)
2) limgq f(x) = f(a).

We say that f(z) is a continuous function if it is continuous at every
point a € R.

Essentially, continuous functions are precisely those where we can compute
their limits in the simplest way possible: just plug in the value a into the function
f(x). This may also be interpreted in terms of the geometry of the graph of
f(z). The first condition asserts that f(x) has no holes in its graph. The second
condition asserts that f(z) has no jumps in its graph.

6.1.2 Properties of Limits and Continuity

Knowing how limits behave under the usual operations of addition, subtraction,
multiplication, and division help us to generate more examples of continuous
functions.

Properties of Limits. Assume that f(z) and g(x) are two functions with
lim,,, f(z) = L and lim,_,, g(z) = M.

a) If ¢ € R, then lim,_,, (¢ f(z)) = ¢ lim,—, f(z) = c- L.

)
b) lim, . (f(z) + g(z)) = limg—, f(2) + lim,—, g(x) = L + M.
)
)

¢) lim, . (f(x) - g(x)) =limgy—, f(x) - limy e g(x) = L - M.
d) If g(x) and M # 0, then
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Since the definition of continuity is based explicitly on the limit, the above
properties of limits give us similar properties for continuous functions.

Properties of Continuous Functions. If f(z) and g(x) are continuous at a
point a, then the following hold:

a) For any ¢ € R, the function ¢ - f(z) is also continuous at a.

)
b) The sum function f(x) 4 g(z) is also continuous at a.
¢) The product function f(z) - g(z) is continuous at a.

)

d) If g(a) # 0, then the quotient function % is continuous at a.

6.1.3 Applications of Continuity

The idea of a continuous function having no holes in its graph can be used to
obtain several statements about continuous functions that seem obvious.

Intermediate Value Theorem. Let f(z) be a continuous function f : [a, b] —
R. Then for every y between f(a) and f(b), there exists some ¢ € [a,b] such

that f(c) =y.

Thus, a continuous function cannot skip points. A straightforward corollary
of this is the following;:

Bolzano’s Theorem. If f(x) is a continuous function which changes signs,
then f(z) has a root.

In fact, Bolzano’s theorem gives us an analytic proof of the fact that every
odd-degree polynomial has at least one real root. Since our polynomial p(x) is
odd-degree, we can always find points x1,xo € R where p(x1) > 0 and p(x2) < 0
by looking at points postive and negative enough. We have already proved this
statement algebraically using the fact that roots of real polynomials come in
complex conjugate pairs; our analytic proof gives the more graphical interpre-
tation that (continuous) polynomials must cross the z-axis at some point.

6.2 The Derivative.

6.2.1 The Idea of a Derivative

Now that we have the notion of a limit, we will be focusing on a very special
kind of limit, the derivative. First, we give the definition of a derivative and
then see how this relates to limits of slopes and instantaneous rates of change.

Given a function f(z) : R — R, we say that f(z) is differentiable at a if the
limit limy,_q M exists. This limit, if it exists, is the derivative of f(z)
at a and is denoted by f’(a). Thus,
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Now, we will try to understand what this definition of a derivative has to do
with limits of slopes. Intuitively, the derivative of f(x) at a point a (also known
as f’(a)) should be the instantaneous rate of change of f at a. In other words, if



we had a line tangent to f(x) at a, then the slope of this line is understood to be
its derivative. How do we see this from the previous definition of the derivative
that we gave. We can approximate this tangent line by a sequence of secant
lines. To find these secant line, we consider the line through the point (a, f(a))
and (a+ h, f(a+ h)), where h is small. Notice that both of these points are on
the curve of f(x). This slope of this line is given by “rise over run”:
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As our h — 0, both the top and bottom terms tend to zero; however, it is
precisely this ratio of how fast rise and run go to zero that will give us the slope
of the tangent line.

Thus, at each point a € R where this derivative limit exists, finding this
derivative f’(a) gives a function called the derivative function f’(x). If this
f'(z) exists at all points, then our function f is called differentiable. It’s called
the derivative of f(z) because it is derived only from f using this limit. This
derived function f’(x) lets us know what the slope of the tangent line is at
(z, f(x)).

The notation f’(x) for the derivative of a function is known as Newton’s
notation for a derivative. Historically, the derivative was simultaneously and
independently defined by Liebniz. His notation for the derivative of a function
f(z) is given by %. This notation reminds us that the derivative was taken by
finding the slope of secant lines of the graph % and taking Ax — 0. We will
interchange between these two common notations.

6.2.2 Computing a Derivative
In practice, finding this limit may be difficult. Here is a good starting example.
Example. Compute the derivative of f(x) = b, the constant function.

Computation. Using the limit definition of a derivative, we will compute f/(a).

Then,
. flat+h)—f(a)
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Since f(x) = b, we obtain
lim —— = lim 0.
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Thus, we are taking the limit of the constant 0 function as h — 0. Thus,
the limit will be 0 and we have that f’(a) = 0. Since this is true for any a
we choose, our derivative function will be f’(x) = 0. Intuitively, this is clear
because the constant graph is horizontally flat and thus any tangent line will
also be horizontally flat and have slope 0.

Here is the computation of the derivative of any linear function f(z) =
mx + b.
Example. Compute the derivative of f(x) = mz +b.

Computation. Again, we work with the definition as a limit. Using our
function f(x), we have that
(m(a+h) +b) — (ma+b)

= lim =
h—0 h h—0 h




. mh .
lim — = lim m = m.
h—0 h h—0

Of course, this makes geometric sense because the tangent lines to the graph
of the linear function f(x) = ma + b will have tangent lines the same slope as
the function itself, namely m.

Further, we can see that the previous example is a special case of this ex-
ample. The constant function f(z) = b is the linear function with m = 0 since
f(z) =0z 4+ b="0. Of course, then f'(z) =m =0.

6.2.3 Some Common Derivatives

We will find the derivatives for a variety of basic functions. Using properties of
the derivative, we can then compute derivatives for more complicated functions.

Example - Monomials. For any n € R, the derivative of the monomial z" is
given by multiplying by n and reducing the exponent to n — 1. In other words,

d

— " n—l.
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Example - The Trigonometric Functions. The functions sinx and cosx
are related by their derivatives. Specifically, the derivative of sinx is cos x:

— sinx = cos .

dx

Further, the derivative of cosz is — sin z:

— cosr = —sinz.
dz

Example - The Exponential Function. The exponential function f(z) = e*
is the unique function that with that property that it is its own derivative:

d

xT xT
—e* =e”.
dx

In fact, we can generalize this for any base number b. If g(z) = b* where b > 0,
then

d
—b% = (Inb) - b”.
70 = (nd)

Indeed, when b = e, this reduces to our above derivative of e”.

Example - The logarithm. The natural logarithm (or logarithm with base
e) has the following derivative:

1 1
dzr nx—x.



6.2.4 Properties of Derivatives

Let f(z) and g(z) be two differentiable functions with derivatives f’(z) and
g'(z), respectively.

a) [Derivatives of Scaled Functions] The derivative of ¢ f(z) is ¢- f'(x):
(c f(2) =c- f(a).

b) [Additivity of the Derivative] The derivative of the sum function f(z) +

g(x) is f'(2) + ¢'(2):

(f(z) +9(x))" = f'(x) + ¢'(2).

¢) [The Product Rule] The derivative if the product function f(z) - g(x) is

f'(x) - g(x) + f(x) - g'(2):

((f(2) - g(2))" = f'(x) - g(2) + f() - ¢ (2).
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d) [The Quotient Rule] If g(z) is never zero, then the derivative of
given as follows:

f@)  fx)-glx) - flz)-g'(x)
g(x) g(x)? '

e) [The Chain Rule] If we have the composition of functions f(g(z)), then
its derivative is given as follows:

6.2.5 Computing some derivatives

We will use the basic derivatives that we know and the properties above to
compute derivatives of more complicated functions.

Examples.
1) Let f(z) = 52% — Tz + 2. Then,

d d
%f(a:):%(5x3—7x+2).

We may use the additivity and scaling of derivatives to compute the f'(z):

d_ 4 d_ 4 d d
dem Tx + d:v5x dz7x+dac
d 4 d d 3 3
—* =T —2=5-42°-7-1 =2 — 1.
5dxx 7d:z:x+ e 5-4x 7-1+0 Ox 7



2) Let h(z) = 2%sinz. Then, we use the Product Rule (with f(z) = 2% and
g(z) = sinzx so that h(z) = f(z) - g(x)). thus,
d d

d
e = %(xz) ~sinx+x2~%81n$:

2z sinz + 2% cos z.

3) Consider h(x) = cos(x®). Then, we see this as the composition of two
functions: h(z) = f(g(x)) where f(x) = cosz and g(z) = 23. The chain
rule tells us that we need to evaluate f’(z) = —sinz and ¢'(z) = 322 and
plug this into the function h'(z) = f'(g(z)) - ¢’(x). Since f'(z) = —sinz,
then f'(g(z)) = —sin(x3). Thus, the derivative is given by

. cos(x?) = —sin(z?) - (32?) = —3x?sin(z?).

4) Consider the quotient function

x

h(z) =

sinz’

We use the Quotient Rule with h(z) = % and f(z) = e* and g(z) =
sinz. We need to compute the derivative of both the numerator and the
denominator: f'(z) = e® and ¢'(z) = cosz. Using our Quotient Rule

formula, we have that

W () g3 (z) N (sinx)? B sin?

_ f'(x)-g(x)— f(x)-g'(x) (e”)(sinw) — (e”)(cosz) e*(sinx — cosm)-



