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5.1 The Idea of a Limit

The limit is the building block of differential and integral calculus. Specifically,
it makes precise the idea of approaching a number or approaching infinity. The
major application of the limit is the idea of a derivative, the instantaneous rate
of change of a function.

5.2 Limits of Sequences

5.2.1 Definitions and Examples of Sequences

A sequence is essentially an ordered, countably infinite list of (possibly repeat-
ing) real numbers. For every natural number n, the sequence {an} gives us back
a real number an. A sequence is usually written as follows: {an} = a1, a2, a3, . . . .
The notation {an} usually refers to the ordered set of all the elements in the set,
while an refers to the n-th element of the sequence {an}. Of course, a sequence
of complex numbers also makes sense and many of the statements and proofs
for complex sequences follow almost immediately from those of real sequences.

One simple example of a sequence is one that has as its n-th entry, the
number n:

{an} = 1, 2, 3, . . . .

Of course, our sequences may be as simple as we like (like the constant sequences
cn = a, a, a, . . .) and can become very complicated. An example of the latter are
recursive sequences, where the n-th entry can be derived from the previous
n − 1 entries. For example, consider the following relatively easy recursive
sequence:

x1 = 1

xn = n · xn−1.

Running the recursion a few steps, we see that our sequences has as its first
terms: {xn} = 1, 2, 6, 24, 120, 640, . . . . A proof by induction can easily give that
our sequence can actually be explicitly written as a factorial: xn = n!

There are a variety of standard examples of sequences. Listed below are
some:

an = (−1)n = −1, 1,−1, 1,−1, 1, . . .

bn =
1

n
= 1,

1
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,

1

3
,

1

4
, . . .
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cn = sin
(nπ

2

)
= 0, 1, 0,−1, 0, 1, 0,−1, . . .

Note that to make sense of a sequence, we must tell you what the starting
element is. Usually, this is the term a0 or a1, but sometimes our statement does
not make sense for n = 0 or n = 1.

5.2.2 Describing Limits - Monotonicity and Boundedness

There are many adjectives that mathematicians use to qualitatively describe
sequences. A sequence is monotone increasing if an ≤ an+1 for all n. Simi-
larly, a sequence is monotone decreasing if an ≥ an+1 for all n. Thus, as is
implied in the name, a sequence is increasing if its value goes up as n goes up;
conversely, a sequence is decreasing if its value goes down as n goes up. We say
that a sequence is monotone if it is either monotone increasing or monotone
decreasing.

A sequence is bounded below if there exists some constant C1 ∈ R such
that an ≥ C1 for every n. Similarly, a sequence is bounded above if there exists
a constant C2 ∈ R such that an ≤ C2 for all n. Thus, a sequence is bounded
above if every entry in the sequence is below some fixed number; similarly, a
sequence is bounded below if every entry is above some fixed number. We say
a sequence is bounded if it is both bounded above and bounded below.

5.2.3 Convergence of Limits

Intuitively, we see that many sequences an begin to get really close to some
fixed number L as n gets big. This is the idea motivating the definition of the
convergence of a sequence.

We say that a sequence an converges to L if for every ε > 0, there exists
some N such that for every n > N , |an − L| < ε.

This definition seems convoluted at first until we begin to break it apart.
To prove convergence of a sequence an, we are given a small number ε as a
challenge. Given this ε, we must provide some N such that from then on (i.e.,
for n > N) the distance between an and L is as small as they wanted (i.e.,
|an − L| < ε). Note that the N that we provide depends on the ε that is
requested. Intuitively, a smaller ε requires a larger N because we must go
further along in the convergent sequence to get within the smaller radius.

This definition is best illustrated by an example. We will prove that the
sequence an = 1/n will converge to 0. Intuitively, this is clear since as n gets
very large, 1/n gets very close to zero; in fact, it becomes as close to zero as we
like. Note that in this proof, we first have a discussion, in which we will decide,
given ε > 0, what value of N we should choose. Needless to say, N will depend
on ε.

Proposition. The sequence an = 1/n converges to 0.

Discussion. To show an → 0, our goal is to, given some ε > 0, find an N such
that for n > N , |an − L| < ε. Since an = 1/n, we need to solve∣∣∣∣ 1

n
− 0

∣∣∣∣ < ε.

Of course, this is equivalent to
1

n
< ε;
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we were able to drop the absolute value because n > 0 and thus 1/n > 0.
Solving, we have that

1

ε
< n.

Thus, we should let N =
1

ε
.

Proof. Given ε > 0, let N =
1

ε
. Then, for n > N , we have that

n > N =
1

ε
,

which give us that
1

n
< ε. Since 1/n > 0, this is equivalent to∣∣∣∣ 1

n
− 0

∣∣∣∣ < ε,

which is exactly what we wanted to prove by our definition of an, L, and con-
vergence.

One commonly used theorem about converging limits whose proof uses inti-
mately various axiomatic properties of R is the following.

Theorem. Every bounded, monotone sequence converges.

5.3 Limits of Functions.

5.3.1 Approaching a number.

When we studied the limit of a sequence an, we always let n → ∞. In the
context of a function f(x), we are interested in what happens as our variable x
gets close to some real number a. Of course, the definition of taking a limit as
x goes to some number a of f(x) will be phrased in much of the same logic and
language as that of sequences.

5.3.2 Defining the limit of a function.

The definition for the limit of a sequence was phrased as an ε − N statement.
In a similar spirit, the definition for the limit of a function is given as an ε− δ
statement. As before, we are given ε > 0, and we are asked to produce a δ > 0
so that our function f(x) is close to our limit L.

We say that the limit of f(x) as x approaches a is L if for every ε > 0,
there exists a δ > 0 such that 0 < |x− a| < δ implies that |f(x)− L| < ε. We
write

lim
x→a

f(x) = L.

Thus, we are given the challenge of getting f(x) ε-close to L; to do this, we
need to give them a small region around a (of radius δ) such that for x in this
region, f(x) is ε-close to L. Of course, an example is the best way to illustrate
the mechanics of this definition. As before, we will calculate the δ we need (in
terms of ε) in a discussion.

Proposition. The constant function f(x) = b has limx→a f(x) = b.

Discussion. To prove this proposition, we need to find, given some ε > 0, a
δ > 0 such that |x − a| < δ implies that |f(x)− b| < ε. However, we see that
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since f(x) = b, then we have the following equality |f(x)− b| = |b − b| = 0.
Thus, we may choose any δ > 0 since any x will give us that

|f(x)− b| = |b− b| = 0 < ε

since ε was taken to be strictly greater than 0.

Proof. Given any ε > 0, let δ = 1 (we can actually let δ be any positive
number. Then, for any x (in particular, for those with |x − a| < δ), we have
that |f(x)− b| = |b− b| = 0 < ε. Thus, limx→a f(x) = b.

Proposition. Let f(x) = 2x+ 6. Then

lim
x→a

f(x) = 2a+ 6

for any a ∈ R

Discussion. Assume we are given ε > 0. Our goal is to find a δ > 0
such that if we are in the region |x− a| < δ, then our function will satisfy
|(2x+ 6)− (2a+ 6)| < ε. Starting with this latter inequality, we will try to
solve for δ in terms of ε by finding a term of |x− a|. Thus, the inequality

|(2x+ 6)− (2a+ 6)| < ε

simplifies to
|2(x− a)| < ε.

Using properties of absolute values, we we can reduce this to

2 |x− a| < ε.

Now, we can find our |x− a| term by dividing by 2 to obtain

|x− a| < ε

2
.

Thus, a wise choice of δ will be this bounding constant ε
2 .

Proof. Given any ε > 0, let

δ =
ε

2
.

Then, if |x− a| < δ, then

|x− a| < ε

2
.

In particular, we have that

2 |x− a| = |2(x− a)| < ε.

Adding a subtracting a 6 gives us

|(2x+ 6)− (2a+ 6)| < ε.

Of course, since f(x) = 2x+ 6 and L = 2a+ 6, we have that

lim
x→a

2x+ 6 = 2a+ 6.
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